高频连接器设计基础
- 格式:ppt
- 大小:455.50 KB
- 文档页数:26
电缆的阻抗本文准备解释清楚传输线和电缆感应的一些细节,只是此课题的摘要介绍。
如果您希望很好地使用传输线,比如同轴电缆什么的,就是时候买一本相关课题的书籍。
什么是理想的书籍取决于您物理学或机电工程,当然还少不了数学方面的底蕴。
什么是电缆的阻抗,什么时候用到它?首先要知道的是某个导体在射频频率下的工作特性和低频下大相径庭。
当导体的长度接近承载信号的1/10波长的时候,good o1风格的电路分析法则就不能在使用了。
这时该轮到电缆阻抗和传输线理论粉墨登场了。
传输线理论中的一个重要的原则是源阻抗必须和负载阻抗相同,以使功率转移达到最大化,并使目的设备端的信号反射最小化。
在现实中这通常意味源阻抗和电缆阻抗相同,而且在电缆终端的接收设备的阻抗也相同。
电缆阻抗是如何定义的?电缆的特性阻抗是电缆中传送波的电场强度和磁场强度之比。
(伏特/米)/(安培/米)=欧姆 欧姆定律表明,如果在一对端子上施加电压(E),此电路中测量到电流(I),则可以用下列等式确定阻抗的大小,这个公式总是成立:Z = E / I无论是直流或者是交流的情况下,这个关系都保持成立。
特性阻抗一般写作Z0(Z零)。
如果电缆承载的是射频信号,并非正弦波,Z0还是等于电缆上的电压和导线中的电流比。
所以特性阻抗由下面的公式定义:Z0 = E / I电压和电流是有电缆中的感抗和容抗共同决定的。
所以特性阻抗公式可以被写成后面这个形式:其中R=该导体材质(在直流情况下)一个单位长度的电阻率,欧姆G=单位长度的旁路电导系数(绝缘层的导电系数),欧姆j=只是个符号,指明本项有一个+90'的相位角(虚数)π=3.1416L=单位长度电缆的电感量c=单位长度电缆的电容量注:线圈的感抗等于XL=2πfL,电容的容抗等于XC=1/2πfL。
从公式看出,特性阻抗正比于电缆的感抗和容抗的平方根。
对于电缆一般所使用的绝缘材料来说,和2πfc相比,G微不足道可以忽略。
在低频情况,和R 相比2πfL微不足道可以忽略,所以在低频时,可以使用下面的等式:注:原文这里是Zo = sqrt ( R / (j * 2 * pi * f * L))应该是有个笔误。
了解高频变压器设计基础(1)
设计高频变压器首先应该从磁芯开始。
开关电源变压器磁芯多是在低磁场下使用的软磁材料,它有较高磁导率,低的矫顽力,高的电阻率。
磁导率高,在一定线圈匝数时,通过不大的激磁电流就能承受较高的外加电压,因此,在输出一定功率要求下,可减轻磁芯体积。
磁芯矫顽力低,磁滞面积小,则铁耗也少。
高的电阻率,则涡流小,铁耗小。
铁氧体材料是复合氧化物烧结体,电阻率很高,适合高频下使用,但Bs 值比较小,常使用在开关电源中。
高频链逆变技术用高频变压器代替传统逆变器中笨重的工
频变压器,大大减小了逆变器的体积和重量。
在高频链的硬件电路设计中,高频变压器是重要的一环。
高频变压器的设计通常采用两种方法[3]:第一种是先求出磁芯窗口面积AW与磁芯有效截面积Ae的乘积AP(AP=AW×Ae,称磁芯面积乘积),根据AP值,查表找出所需磁性材料之编号;第二种是先求出几何参数,查表找出磁芯编号,再进行设计。
注意:
1)设计中,在最大输出功率时,磁芯中的磁感应强度不应达到饱和,以免在大信号时产生失真。
2)在瞬变过程中,高频链漏感和分布电容会引起浪涌电流和尖峰电压及脉冲顶部振荡,使损耗增加,严重时会造成开关管损坏。
同时,输出绕组匝数多,层数多时,应考虑分布电容的影响,降低分布电容有利于抑制高频信号对负载的干扰。
对同一变压器同时减少分布电容和漏感是困难的,应根据不同的工作要求,保证合适的电容和电感。
高频传输RJ45连接器设计问题思考本文针对在高速数位传输连接器设计中遇到的高频问题做了基本介绍。
同时结合现有RJ45母产品,针对电磁兼容性和端子传输设计在实际运用中做一说明,希望起到抛砖引玉之效果,以便更好掌握其设计方法和实际应用。
标签:高速数位传输连接器电磁兼容性设计端子传输性设计1 概述我们知道当信号传输由集总模型进入分布模型时,我们称之为进入了高频传输。
电路是否进入离散模型取决于以下三点:①通路长度。
②信号上升时间Tr。
③传输速度。
对于印刷板电路,当Tr<10nS时,进入分布模型。
依据公式:频宽=0.35/上升时间Tr,则0.35/10-8=35MHz 即当传播频宽超过35MHz时,进入高频传输。
2 高速数位传输设计中遇到的问题对于低频传输的电路而言,通过的电容和电感值不是频率的函数,即不会随频率的变化而变化;但对于高频传输的电路而言,必需处理传输线效应以外,考量信号反射/串音/接地反弹/时脉不对称等等。
3 电磁兼容性设计3.1 芯片等有源器件的选用和印制电路板设计是关键首先器件有两种电磁干扰源:传输和辐射干扰源。
瞬态电流是传导和辐射干扰的初始源,减少瞬态电流必须减小印制电路板接地阻抗和使用去耦电容;其次,在设计印制电路板时,应优选多层板,将数字电路和模拟电路安排在不通的层内。
印制电路板设计应遵循以下的基本原则:①20-H原则:H是两层面的距离,即元、器件平面应比接地层平面小20倍H,才能减少辐射。
②2-W 原则:W是导线宽度,即导线间距离不小于两倍导线宽度;导线应短、宽、均匀、直。
导线宽度和拐角不要突变,转弯处应使用圆角。
③信号线,电源线应尽可能靠近地线或回线,以减少差模辐射的环面积。
④各信号线中间用地线隔开,有助于减少干扰。
3.2 地线设计是最重要的设计所谓“地”一般定义为电路或系统零电位参考点,它可以是产品金属外壳或接地平面。
接地类型有悬浮式、单点式、多点式、以及混合式。
接地方式最好采用一点接地。
适用于高频电路的连接装置设计与优化随着无线通信技术的快速发展,高频电路已经成为现代通信领域中不可或缺的一部分。
连接装置设计与优化在高频电路中起着至关重要的作用。
本文将探讨适用于高频电路的连接装置设计与优化的相关要点,并提出一些实用的设计方案。
一、连接装置的重要性连接装置是高频电路中用于传输信号与电力的关键组件。
它承担着信号传递和能量传输的双重功能。
连接装置的设计与优化对于高频电路的整体性能和稳定性至关重要。
二、连接装置设计原则1. 信号传输质量:连接装置应能够保持信号的纯净度和稳定性,减小信号损耗和失真。
因此,选择合适的连接器与电缆对于高频信号的传输非常重要。
2. 阻抗匹配:连接装置与高频电路之间的阻抗匹配是确保信号传输的关键。
理想情况下,连接装置应具有与高频电路相匹配的阻抗。
3. 抗干扰性:高频电路通常存在干扰源,如电磁辐射、射频干扰等。
连接装置在设计过程中应考虑减小对干扰的敏感性,保证高频电路的稳定性和可靠性。
三、连接装置设计方案1. 选择合适的连接器:对于高频电路的连接装置,选择合适的连接器是至关重要的。
一般来说,应选择带宽较大,频响特性好且易于焊接的连接器。
同时,连接器的设计应尽量减小插损和反射损耗,以确保信号传输的质量。
2. 优化电缆设计:电缆是连接装置中另一个重要组成部分。
优化电缆的设计可以降低传输损耗和信号失真。
合理选择电缆材料和结构,并对电缆的长度进行合理的控制,可有效提高信号的传输质量。
3. 阻抗匹配技术:由于连接装置与高频电路之间的阻抗不匹配会导致信号反射和功率损耗,因此阻抗匹配技术非常关键。
使用匹配元件,如衰减器、铁氧体环、折线等可以有效实现阻抗匹配,以提高信号传输效率。
4. 确保连接稳定性:高频电路对连接装置的稳定性有很高的要求。
设计中应考虑使用固定连接器、减少接合点、加强连接的牢固性等措施,以确保连接的稳定性和可靠性。
四、连接装置优化方法1. 使用仿真工具:利用电磁场仿真工具,如Ansys HFSS、CST Studio等,可以对连接装置进行全面的模拟和优化。
連接器基礎概論設計理論基礎資料參考:工業技術研究院●正向力理論基礎●最大應力理論基礎●接觸電阻理論基礎●保持力理論基礎正向力理論基礎●力學-懸臂樑●求解正向力F=>正向力(9.8N=1kgf)L=>懸臂樑長(mm)d=>位移量(mm)E=>彈性模數(MPa)b=>材料寬度(mm)h=>材料厚度(mm)正向力理論基礎●力學-懸臂樑●求解位移量F=>正向力(9.8N=1kgf)L=>懸臂樑長(mm)d=>位移量(mm)E=>彈性模數(MPa)b=>材料寬度(mm)h=>材料厚度(mm)正向力理論基礎●正向力與插拔力的關係(摩擦力)插入力=插入角正向分力*摩擦係數拔出力=正向力*摩擦係數F(摩擦力)=Fn(正向力)*µ(摩擦係數)●正向力與接觸阻抗的關係(實驗驗證)正向力100gf以上阻抗變異小正向力50gf以下阻抗變異大正向力理論基礎●正向力與產品可靠性的關係降服強度, 破壞理論, 彈性疲勞(恢復性)…●正向力的大小將會影響電鍍層之耐磨性●正向力與振動測試時之瞬斷的關係增加正向力可有效改善瞬斷問題●多PIN數產品可適當調整正向力●力學-懸臂樑最大應力理論基礎●求解應力L=>懸臂樑長(mm)d=>位移量(mm)E=>彈性模數(MPa)h=>材料厚度(mm)σ=>最大應力(kg/mm^2)223LdEh =σ理論基礎公式逆向工程-電腦輔助模擬分析 ANSYS逆向工程-電腦輔助模擬分析 OSD最大應力理論基礎●有限元素分析所得包含:破壞理論(含應力集中效應), 正向力(反作用力),位移量, 溫昇, 疲勞, 運動…●逆向工程界的銘言:垃圾進, 垃圾出!正確的材質資料, 有效設置邊界條件●產品微量化的結果, 連接器將小型化趨勢在小型化的趨勢下, 將會運用到材料的極限特性可靠性實驗報告501001502002501100120013001400150016001700180019001Cycle數正向力(g )接觸電阻理論基礎接觸電阻=材料電阻+接觸阻抗R = Rm + Rc接觸電阻理論基礎●材料電阻基礎理論L: 材料導電長度(mm)A: 材料截面積(mm2)r : 材料導電率(%IACS)●端子長度及截面積受連接器外型及間距而決定, 所以可變更的範圍也將受到限制接觸電阻理論基礎●接觸阻抗基礎理論(實驗)F: 端子正向力(g)●正向力在50~150gf之阻抗值在4~8mΩ●正向力小於50gf, 接觸阻抗則快速增加●一般連接器設計使用100gf 的正向力設計,接觸阻抗可設定為6.5mΩ, 再加上端子材料電阻即是接觸電阻正向力與接觸阻抗實驗測試圖接觸電阻理論基礎050100150200250Normal Force ( gf )0.010.020.030.040.050.0L L C R ( m O h m )T:0.15 R:0.30 Au: 1Sample 1Sample 2Sample 3Sample 4Sample 5理論基礎公式接觸電阻理論基礎●高導電率材料選用對降低接觸電阻效果最顯著(原正向力以達100gf以上)磷青銅的導電率約為13%, 黃銅約26%, 鈹銅則可達到40%以上, 因此選擇端子材料是降低接觸電阻最有效的方法, 可降為原來的1/2-1/3●高電流連接器設計之重點在降低接觸電阻, 降低接觸電阻的主要方法為:1.選擇高導電率的端子材料2.增加端子截面積3.補足正向力保持力理論基礎●保持力設計參數包括: 塑膠材質選用, 端子卡點設計, 干涉量設計…●保持力太大潛在問題:端子插入力增加, 工時增加且易造成端子變形塑膠內應力增加, 易造成塑膠變異…●保持力太小潛在問題:端子定位不穩定, 易鬆脫, 接觸品質不穩定…保持力理論基礎●保持力在連接器小型化的趨勢下必須非常精準設計●端子卡點設計大致分為:單邊, 雙邊, 撕裂, 凸點…●單雙邊又分為:單層, 雙層, 多層, 交錯式…雙層或是多層的前後凸點高度差(0.02~0.04mm)保持力理論基礎●干涉量通常設計0.04mm~0.12mm之間干涉量介於0.04~0.12mm之間, 干涉量與保持力的關係將維持線性比例方式增加(依據實驗證明)干涉量小於0.04mm, 保持力將呈現不穩定狀況干涉量大於0.12mm, 保持力不再維持線性增●卡點平面長度與保持力有相對的關係長度越長, 保持力越大●單邊卡點較雙邊卡點的保持力大保持力理論基礎●雙卡點較單卡點的保持力大不明顯, 可以忽略●卡點前的導角角度與保持力無關●較薄的板片保持力也相對的較低端子材料厚度變更時, 適度調整干涉量端子和塑膠干涉及接觸面積越大, 保持力越大保持力理論基礎保持力與卡點實驗測試圖保持力理論基礎 卡點型式圖保持力理論基礎 卡點型式圖保持力理論基礎 卡點型式圖。
50欧高频同轴电缆的射频连接器和接头设计射频连接器和接头是50欧高频同轴电缆中至关重要的组成部分。
它们的设计直接影响到电缆的信号传输质量和性能。
在设计过程中,我们需要考虑连接器和接头的特性阻抗、频率范围、材料选择以及机械结构等方面。
本文将从这几个方面详细介绍设计高频同轴电缆的射频连接器和接头的要点。
首先,特性阻抗是射频连接器和接头设计的重要参数。
当信号从一个媒介传输到另一个媒介时,特性阻抗的匹配至关重要,以确保信号的完美传输。
对于50欧高频同轴电缆,我们需要选择特性阻抗为50欧的连接器和接头。
这样才能保证信号在传输过程中不会发生反射和衰减,从而保证信号传输的稳定性和可靠性。
其次,频率范围是另一个需要考虑的因素。
不同的射频连接器和接头有不同的频率范围。
对于50欧高频同轴电缆,我们需要选择能够在高频范围内工作的连接器和接头。
这样才能满足电缆传输信号的需求。
一般来说,常见的高频同轴电缆连接器和接头可以覆盖从DC到18 GHz的频率范围,但也有一些可以扩展到更高的频率范围。
材料选择也是设计射频连接器和接头时需要考虑的重要因素之一。
连接器和接头的材料对信号传输的影响非常大。
常见的材料包括不锈钢、黄铜、铜合金和塑料等。
不同的材料有不同的特性,如导电性、机械强度和耐腐蚀性等。
在选择材料时,我们需要根据具体的应用场景来综合考虑各个方面的影响,并选择最适合的材料。
另外,机械结构也是射频连接器和接头设计的重要方面。
连接器和接头的机械结构不仅需要满足信号传输的要求,还需要方便安装和拆卸。
一般来说,高频同轴电缆的连接器和接头采用螺纹结构,这样可以确保连接的稳固性和可靠性。
此外,还需要考虑连接器和接头的尺寸和重量。
连接器和接头应尽可能小巧轻盈,以适应不同的应用场景。
除了上述要点,还有一些其他的设计考虑因素,如防水性能、温度范围和可靠性等。
在设计射频连接器和接头时,我们需要综合考虑这些因素,以确保连接器和接头能够满足具体的应用需求。
高频电路设计与制作pdf高频电路设计与制作高频电路是指在频率较高的电磁波范围内工作的电路,通常在100kHz以上的频率范围内。
高频电路设计与制作是一门需要掌握许多专业知识和技巧的领域,但若能正确应用这些知识和技巧,将能设计出高效稳定的高频电路。
1. 高频电路的基本原理在开始设计高频电路之前,首先需要了解高频电路的基本原理。
高频电路的行为受到电磁波的特性以及元器件的频率响应影响。
因此,了解电磁波的传播原理以及各种元器件的频率响应是至关重要的。
2. 元器件选型与特性在设计高频电路时,正确选择元器件非常重要。
元器件的频率响应、耐压能力、噪声水平以及功耗等特性都必须考虑。
例如,对于高频放大电路,需要选择具有较高的增益和功率输出的应用特定晶体管。
3. 印制电路板(PCB)布局PCB布局对于高频电路来说至关重要。
首先,需要注意信号和电源线的走向,以减少干扰和串扰。
其次,为了最小化电磁波辐射,可以使用地面平面来提供完整的地面参考平面。
此外,适当的走线方式和阻抗匹配也是必不可少的。
4. 射频仿真工具的应用在进行高频电路设计时,使用射频仿真工具是必不可少的。
这些工具可以根据电路的参数和特性进行仿真,以提前预测电路的性能。
射频仿真工具还可以用于优化电路,提高性能并减少不必要的损耗。
5. 封装和散热设计对于高频电路来说,封装和散热设计也是重要的考虑因素。
封装应提供良好的屏蔽性能以及对高频信号的传输和接收能力。
散热设计则需要确保电路能够在高负载条件下保持稳定的工作温度。
在设计和制作高频电路时,需要注意以下几点:- 熟悉并理解高频电路的基本原理和特性。
- 选择合适的元器件,根据电路需求进行参数匹配。
- 进行良好的PCB布局,以减少干扰和电磁波辐射。
- 使用射频仿真工具对电路进行性能预测和优化。
- 注意封装和散热设计,确保电路的稳定性和高效性。
总之,高频电路设计与制作需要掌握一系列技术和知识,但是只要正确应用这些技术和知识,设计出高效稳定的高频电路是完全可行的。