运算放大器16个基本运算电路概论
- 格式:doc
- 大小:971.00 KB
- 文档页数:16
运算放大器基本电路大全!引言我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。
在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。
1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。
这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。
但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。
在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。
绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。
一般是正负15V,正负12V和正负5V也是经常使用的。
输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。
单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。
正电源引脚接到VCC+,地或者VCC-引脚连接到GND。
将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。
有一些新的运放有两个不同的最高输出电压和最低输出电压。
这种运放的数据手册中会特别分别指明Voh 和Vol 。
需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。
(参见1.3节)通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。
另外现在运放的供电电压也可以是3V 也或者会更低。
运算放大器16个基本运算电路设计一、集成运算放大器放大电路概述集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。
集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。
集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。
1.1反向比例电路第1题:电路如下,推导输入与输出的关系,计算电路的理论值,并与仿真值比较,说明电路功能。
vu u R R u i if 51010-=-=-=根据虚断虚短得1.2反向求和加法电路第2题:电路如下,推导输入与输出的关系,计算电路的理论值,并与仿真值比较,说明电路功能。
vu u u R R u R R u i i i fi f3(10)2123110-=--=--=—根据虚断虚短得1.3电压跟随电路第4题 电路如下,推导输入与输出的关系,计算电路的理论值,并与仿真值比较,说明电路功能。
这是一个电压跟随器:mvu u R R u i i f 100)1(1110==+=1.4加减运算电路加减运算电路如图4所示,输入信号1i u 、2i u 分别加在反相输入端和同相输入端,这种形式的电路也称为差分运算电路。
输出电压为:2211231(1)ff o i i R R R u u u R R R R =+-+图4加减运算电路1.5积分运算电路其输出电压o u 为:111o iu u dt R C =-⎰式中,11R C 为电路的时间常数。
由于受到集成运放最大输出电压OM U 的限制,选择1R 、1C 参数3,其值必须满足:111iO MR C u dt U >=⎰图5积分运算电路1.6微分运算电路图6微分运算电路电路的输出电压为o u 为:21i o du u R C dt=-式中,21R C 为微分电路的时间常数。
常用运算放大器电路(全集)下面是[常用运算放大器电路(全集)]的电路图常用OP电路类型如下:1. Inverter Amp. 反相位放大电路:放大倍数为Av = R2 / R1但是需考虑规格之Gain-Bandwidth数值。
R3 = R4 提供1 / 2 电源偏压C3 为电源去耦合滤波C1, C2 输入及输出端隔直流此时输出端信号相位与输入端相反2. Non-inverter Amp. 同相位放大电路:放大倍数为Av=R2 / R1R3 = R4提供1 / 2电源偏压C1, C2, C3 为隔直流此时输出端信号相位与输入端相同3. Voltage follower 缓冲放大电路:O/P输出端电位与I/P输入端电位相同单双电源皆可工作4. Comparator比较器电路:I/P 电压高于Ref时O/P输出端为Logic低电位I/P 电压低于Ref时O/P输出端为Logic高电位R2 = 100 * R1 用以消除Hysteresis状态, 即为强化O/P输出端, Logic高低电位差距,以提高比较器的灵敏度. (R1=10 K, R2=1 M)单双电源皆可工作5. Square-wave oscillator 方块波震荡电路:R2 = R3 = R4 = 100 KR1 = 100 K, C1 = 0.01 uFFreq = 1 /(2π* R1 * C1)6. Pulse generator脉波产生器电路:R2 = R3 = R4 = 100 KR1 = 30 K, C1 = 0.01 uF, R5 = 150 KO/P输出端On Cycle = 1 /(2π* R5 * C1)O/P输出端Off Cycle =1 /(2π* R1 * C1)7. Active low-pass filter 主动低通滤波器电路:R1 = R2 = 16 KR3 = R4 = 100 KC1 = C2 = 0.01 uF放大倍数Av = R4 / (R3+R4)Freq = 1 KHz8. Active band-pass filter 主动带通滤波器电路:R7 = R8 = 100 K, C3 = 10 uFR1 = R2 = 390 K, C1 = C2 = 0.01 uFR3 = 620, R4 = 620KFreq = 1 KHz, Q=259. High-pass filter 高通滤波器电路:C1 = 2*C2 = 0.02 uF, C2 = 0.01 uFR1 = R2 = 110 K6 dB Low-cut Freq = 100 Hz10. Adj. Q-notch filter 频宽可调型滤波器电路:R1 = R2 = 2 * R3C1 = C2 = C3 / 2Freq = 1 /(2π* R1 * C1)VR1调整负回授量, 越大则Q值越低。
(1)反相比例放大器:将输入加至反相端,同时将正相端子接地,由运放的虚短和虚断V U U 0==+-,又有102R U U R U U i -=---,得输出为:i U R RU 210-= 仿真电路为:取:Ω==k R R 2221,tV U sin 21=,得到输出结果为:tV U sin 40-=输出波形为:(2)电压跟随器:当同相比例放大器的增益为1时,可得到电压跟随器,其在两个电路的级联中具有隔离缓冲作用。
可消除两级电路间的相互影响。
其仿真波形为:取输入为4V,频率为1kHz的方波,得到输出结果为:(3)同相比例放大器:将INA133的2,5和1,3端子分别并联,以此运放作为基本放大器,反馈网络串联在输入回路中,且反馈电压正比于输入电压,引入串联电压负反馈。
反馈电压1211U R R R U f +=由运放的虚短和虚断,有输出电压为:1120)1(U R R U += 其仿真电路为:取tV U sin 21=,Ω==k R R 2212,得到结果为:tV U sin 60= 其输出波形为:(4)反相器:当方向比例放大器增益为1时可得到反相器电路,其仿真电路为:取:tV U sin 21=,输出结果为:tV U U sin 210-=-=仿真输出波形为:(5)同相相加器;将输入信号引至同相端,得到同相相加器由INA133内置电阻设计如下电路,得到输出结果为:210U U U += 仿真电路为:取tV U sin 21=,tV U sin 32=,由公式得到结果为:tV U sin 50= 仿真输出波形为:(6)相减器:将输入信号分别加在INA133的正相和反相输入端,可得到相减电路,其仿真电路如下: 其输出结果为:210U U U -=取tV U sin 51=,tV U sin 22=,计算输出结果为:tV U sin 30=其仿真输出波形为:(7)积分器:利用INA133及电容可构成反相积分器,仿真电路如下图,电阻2R 与运放构成积分器,电阻1R 可起到保护作用,防止低频信号增益过大。
运放基本电路全解析!我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。
在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。
1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。
这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。
但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。
在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。
绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。
一般是正负15V,正负12V和正负5V也是经常使用的。
输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。
单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。
正电源引脚接到VCC+,地或者VCC-引脚连接到GND。
将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。
有一些新的运放有两个不同的最高输出电压和最低输出电压。
这种运放的数据手册中会特别分别指明Voh 和Vol 。
需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。
(参见1.3节)通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。
另外现在运放的供电电压也可以是3V 也或者会更低。
一、 电路原理分析与计算1. 反相比例运算电路输入信号从反相输入端引入的运算,便是反相运算。
反馈电阻R F 跨接在输出端和反相输入端之间。
根据运算放大器工作在线性区时的虚开路原则可知:i -=0,因此i 1=i f 。
电路如图1所示,图1根据运算放大器工作在线性区时的虚短路原则可知:u -=u +=0。
由此可得: 01fi R u u R =- 因此闭环电压放大倍数为:1o fuo i u R A u R ==- 2. 同相比例运算电路输入信号从同相输入端引入的运算,便是同相运算。
电路如图2所示,图2根据运算放大器工作在线性区时的分析依据:虚短路和虚开路原则因此得: 1(1)f o i R u u R =+开环电压放大倍数 11o fuf i u R A u R ==+3. 反相输入加法运算电路在反相输入端增加若干输入电路,称为反向输入加法运算电路。
电路如图3所示,图3计算公式如下,1212()o f u u u R R R =-+ 平衡电阻213////f R R R R =,当13f R R R ==时,输出电压012()u u u =-+4. 减法运算电路减法运算电路如图4所示,输入信号1i u 、2i u 分别加至反相输入端和同相输入端,这种形式的电路也称为差分运算电路。
图4输出电压为:2211231(1)f fo i i R R R u u u R R R R =+-+ 当123f R R R R ===时,输出电压21o i i u u u =-5. 微分运算电路微分运算电路如图5所示,图5电路的输出电压为o u 为:21io du u R C dt=- 式中,21R C 为微分电路的时间常数。
若选用集成运放的最大输出电压为OM U ,则21R C 的值必须满足:21max ()OMiU R C du dt<=6. 积分运算电路积分运算电路如图6所示,图6其输出电压o u 为:111o i u u dt R C =-⎰ 式中,11R C 为电路的时间常数。
由于受到集成运放最大输出电压OM U 的限制,选择1R 、1C 参数3,其值必须满足:111i OM R C u dt U >=⎰7. 二阶低通滤波电路二阶低通滤波电路如图7所示,图7滤波电路的传递函数为:22()2uf n s nnA A s s Qωωω=++,n s j ω=通带增益 341uf R A R =+固有角频率 n ω=品质因数 21211()(1)uf Q C R R A R C =++-8.二阶高通滤波电路二阶高通滤波电路如图8所示,图8 滤波电路的传递函数为:22()2usnnA fsAs sQωω=++通带增益341ufRAR=+固有角频率nω=品质因数212221/()(1)nufQR C C A R Cω=++-9.二阶带通滤波电路二阶带通滤波电路如图9所示,图9带通滤波器的中心频率0f 、等效品质因数Q 以及同频带BW 分别为:12o f RCπ=, 1/(3)uf Q A =-,/o BW f Q =式中,11/uf F A R R =+为同相比例放大电路的电压增益。
同样要求uf A 必须小于3,电路才能稳定工作,当o f f =时,带通滤波器具有最大电压增益uo A ,其值为:/(3)uo uf uf A A A =-10. 二阶带阻滤波电路二阶带阻滤波电路如图10所示,图10带阻滤波器的中心频率0f 、等效品质因数Q 以及同频带BW 分别为:12o f RCπ=,12(2)uf Q A =-,/o BW f Q =式中,11/uf F A R R =+,为同相比例放大电路的电压增益。
若1uf A =,则0.5Q =,增加uf A 时,Q 将随之升高。
当uf A 趋近2时,Q 趋向无穷大。
而带阻滤波器的品质因数越大,阻带宽度越窄,其阻带特性越接近理想状态。
11. 过零电压比较电路过零电压比较电路如图11所示,图11令参考电平U=0,则输入信号i U 与零比较,当输入电压i U 过零时,比较器发生翻转。
i U >0,输出则为低电平;而i U <0,输出则为高电平。
这种电路可作为零电平检测器。
该电路也可用于“整形”,将不规则的输入波形整形成规则的矩形波。
12. 滞回比较电路滞回比较电路如图12所示,电路有两个阀值电压,输入电压i U 从小变大过程中使输出电压o U 产生跃变的阀值电压1T U ,不等于从大变小过程中使输出电压o U 产生跃变的阀值电压2T U ,电路具有滞回性。
从集成运放输出端的限幅电路可以看出,o z u U =±。
集成运放反相输入端电位1N u u =,同相输入电位112p Z R u U R R =+令N p u u =,求出的I u 就是阀值电压,得112T Z R U U R R ±=±+图12当输入电压i U 与输出电压o U 在E 点合成的电压过零时,比较器发生翻转。
433434i oE U U U R R R R R R =+++电路翻转时E U =0,代入上式有:34i o R U U R =-13. 音响的音调控制电路音响的音调控制电路如图13所示,500kΩKey=A50%图13其实质是对放音通道频响特性实施控制。
音调的控制不像音量控制,它只对某一段频率的信号进行提升或衰减,不影响其它频段信号的输出,而音量是对整个音频信号频率范围进行同步控制。
14. 半波整流电路半波整流电路如图14所示,图14由反相比例运算电路和二极管的性质可知,电路是通负值的交流电,当输入电压为正值时输出电压为0,当输入电压为正值是输出电压为:21o i R u u R =-15. 全波整流电路全波整流电路如图15所示,图15全波整流电路是一种对交流整流的电路,能够把交流转换成单一方向电流,最少由两个整流器合并而成,一个负责正方向,一个负责负方向,最典型的全波整流电路是由四个二极管组成的整流桥,一般用于电源的整流。
全波整流输出电压的直流成分(较半波)增大,脉动程度减小,但变压器需要中心抽头、制造麻烦,整流二极管需承受的反向电压高,故一般适用于要求输出电压不太高的场合。
16.三运放构成的放大器电路三运放构成的放大器电路如图16所示,R110kΩV212 VV112 VU1ATL082CD32481U1BTL082CD56487R210kΩR310kΩR410kΩU2ATL082CD32481V312 VV412 VR510kΩR610kΩR710kΩXFG1R8100kΩR9100kΩXSC1Tektronix1234TGP图16电路中,46R R R==,57fR R R==,输出电压为:11222(1)()fo i iR Ru u uR R=-+-当12i iu u u==时,2R中电流为零,输出电压为零。
可见,电路放大差模信号,抑制共模信号。
差模放大倍数数值越大,共模抑制比越高。
当输入信号中含有共模噪声时,也将被抑制。
二、仿真结果1.反相比例运算电路按图1接好,仿真结果如图17所示。
图172.同相比例运算电路按图2接好,仿真结果如图18所示。
图183.反相输入加法运算电路按图3接好,仿真结果如图19所示。
图194.减法运算电路按图4接好,仿真结果如图20所示。
图205.微分运算电路按图5接好,输入100Hz/2V的方波,仿真结果如图21所示。
图216. 积分运算电路按图6接好,输入100Hz/2V的方波,仿真结果如图22所示。
图227.二阶低通滤波电路按图7接好,仿真结果如图23所示。
图238.二阶高通滤波电路按图8接好,仿真结果如图24所示。
图249. 二阶带通滤波电路按图9接好,仿真结果如图25所示。
图2510. 二阶带阻滤波电路按图10接好,仿真结果如图26所示。
图2611.过零电压比较电路按图11接好,信号源输入2V/100Hz的正弦波,仿真结果如图27所示。
图2712. 滞回比较电路按图12接好,仿真结果如图28所示。
图2813.音响的音调控制电路按图13接好,输入100Hz,0.71V的信号,仿真结果如图29所示。
图2914.半波整流电路按图14接好,输入一个100Hz/100mV的信号,仿真结果如图30所示。
图3015.全波整流电路按图15接好,输入一个100Hz/100mV的信号,仿真结果如图31所示。
图3116.三运放构成的放大电路按图16接好,输入一个100Hz/100mV信号,仿真结果如图32所示。
图32。