超硬材料磨具用耐高温树脂结合剂的研究
- 格式:doc
- 大小:11.92 KB
- 文档页数:1
树脂结合剂金刚石工具的影响因素经混合后热压固化而成。
其性能也直接受树脂结合剂、填料和金刚石磨料的影响。
1 结合剂的影响,主要包括结合剂种类和含量的影响等(1)各种树脂结合剂金刚石工具的共同特点是耐热性较差,在加工工件的过程中,金刚石工具和工件之间产生的热量容易使局部温度过高,一旦达到临界值,树脂结合剂对金刚石的把持失效,金刚石在没有完全磨钝的条件下就会脱落,从而使加工费用大幅提升。
目前主要是通过对树脂结合剂进行改性来提高其耐热性能的。
高良倡采用方烷基醚改性酚醛树脂,其耐热性能够达到180℃以上。
杜杨等以有机硅预聚合物、硼酸、苯酚和甲醛为原料合成的新型含硼硅酚醛树脂BSP,由于酚醛树脂结构中引入B—O 键和有机硅链,BSP 树脂具有优良的耐热性和韧性,同时也改善了树脂的耐水性和储存稳定性。
肖东政等采用BMI( 双马来酰亚胺) 改性酚醛树脂获得了耐热性较好的双马来酰亚胺改性酚醛树脂。
(2)树脂结合剂含量的影响。
树脂结合剂含量对金刚石工具加工性能有较大的影响。
文献介绍了在单晶硅片减薄砂轮中,树脂结合剂含量增加,砂轮的硬度、抗压强度逐渐增大,当树脂结合剂含量增加到一定程度时,砂轮磨耗比的提高趋于缓慢,同时砂轮表面容易出现堵塞现象,同时含量越高,堵塞现象越严重。
(3)树脂结合剂粒度的影响。
国内用作金刚石磨具生产的树脂粉粒度大多在80~180目之间,这样的粒度范围存在两个缺陷,一是影响磨具的压制成形性能,二是可能影响结合剂的性能。
在压制过程中,树脂粉虽可受热软化,并有一定流动性,达到包覆磨粒的目的,但在压制过程中,结合剂料是在模具内受压的,空间有限,树脂的流动范围也有限,当树脂粉粒度粗时,就会有部分磨料粘结不牢固,从而过快脱落。
有研究表明当树脂粒度细化后,可改善成形料的流动性,有利于磨具的热压成形。
2填充料的影响,主要包括填料种类和含量的影响等填充料是金刚石磨具的一个重要组成部分,加入适量的填充料不仅可以大大降低成本,还可提高磨具的机械强度,延长使用寿命。
树脂结合剂金刚石工具性能的研究树脂结合剂金刚石磨具是金刚石磨具中使用量最大的一类。
和金属结合剂金刚石磨具和陶瓷结合剂金刚石磨具相比,树脂结合剂金刚石磨具有磨具硬化温度低,只需200℃左右,远远低于金属结合剂和陶瓷结合剂金刚石磨具的热压成型温度;生产周期短,生产设备简单,生产能耗少,规模生产可降低成本;形成自锐性,提高磨具锋利性;被加工工件的表面光洁度高,适用于镜面磨削;其缺点是寿命短,耐热性差,易老化。
其中最根本原因是:树脂结合剂胎体对金刚石的把持力小。
为了提升树脂结合剂磨具的寿命,通常采用两种方法进行改进。
一种方法是尝试新型树脂或者对现有树脂进行改性,提高树脂的耐热性;另一种方法是对金刚石进行镀覆,提高树脂对金刚石的把持力。
镀覆金刚石在金属结合剂和陶瓷结合剂的磨具中应用的相应研究较多,但镀覆金刚石在树脂结合剂中的研究却鲜有报道。
本文通过采用对无镀层金刚石、镀覆刚玉金刚石和金属镀层金刚石制备的金刚石树脂结合剂磨具性能进行对比分析,研究镀覆种类对两种树脂结合剂磨具的锋利性、耐用性、力学性能以及对树脂结合剂的结构和致密度的影响,获得如下结论:(1)采用聚酰亚胺树脂(PI)作为结合剂,在金刚石、聚酰亚胺(PI)、氧化铬等组分确定的前提下,实验填料的最佳配比为碳化硅微粉30(vol)%,合金粉4(vol)%,冰晶石4(vol)%,此时,树脂金刚石磨具磨削比最大,达到2.286,具备良好的磨削性能,使用性价比较高。
(2)按照最佳填料配方,采用无镀层金刚石、镀覆金属(钛、铜、镍)镀层金刚石和镀覆刚玉镀层金刚石压制两组平行实验试样进行性能对比分析。
结果表明:在其他组分含量保持不变的前提下,对金刚石进行表面镀覆处理可以明显提高磨具的磨削比,提高磨具的磨削效率,并且可以提高试样的抗弯强度、硬度等力学性能。
三种金属镀层(钛、铜、镍)中,钛镀层的镀覆效果最好,对树脂磨具的磨削性能和力学性能提升明显,无机物刚玉镀层镀覆效果优于金属镀层。
耐高温环氧树脂胶黏剂研究进展作者:苏江来源:《建材发展导向》2014年第01期摘要:耐高温环氧树脂具有很强的结胶性、制作工艺简单、综合性能很好,被广泛应用于生活和工业的各个领域。
耐高温环氧树脂胶黏剂的耐高温性能主要取决于固化物的热氧化稳定性和热变形温度,固化物的基团结构距离越短,其交联密度就越大,分子链上的脂环、芳环、杂环等耐高温基团就会也多其热变形温度也会随之增加,文章通过对耐高温环氧树脂胶黏剂的制备方法、影响因素等问题,对耐高温环氧树脂进行深入研究。
关键词:耐高温环氧树脂;胶黏剂;研究进展1 耐高温环氧树脂发展现状分析1.1 耐高温环氧树脂概述耐高温环氧树脂是的化学添加剂有很多,改性剂和固化剂都是添加剂中最为常用的固态胶黏剂,在高温条件下,耐高温环氧树脂胶黏剂的稳定性很好,其环氧基团和极性基团的结构非常稳定,应用在工业材料当中,可以使工业材料具有很高的粘结力,同时耐高温环氧树脂的内环结构还具有很强的胶结强度。
1.2 耐高温环氧树脂应用范围耐高温环氧树脂胶黏剂以其优异的性能被广泛应用在航天、航空、电力、核电、电子等现代技术要求高的发展领域,例如:核电站的重要构件组成部位都要使用耐高温200度以上的环氧树脂胶黏剂;车辆离合器、制动带等设备粘结也需要能在260~320℃工作的环氧树脂胶黏剂;火箭发动机的部件连接其瞬间温度会高达450~550℃的高温,所以在部件连接过程中也会用到耐高温环氧树脂胶黏剂。
与其他耐高温胶黏剂相比,环氧树脂胶黏剂具有制作工艺简单、综合性能好、结交强度高、收缩率小、固化挥发物少等性能优点。
因此,要满足我国现代工业对胶黏剂的耐高温要求就必须加强环氧树脂胶黏剂的研究。
2 环氧树脂胶黏剂耐温性的影响因素目前,我国对胶黏剂的定义依据仍然没有确定,对其分类的办法没有统一标准,所以耐高温环氧树脂胶黏剂在一定的时间内、其介质、温度中保持要求的胶结结构强度,或强度保持率来测定的。
环氧树脂胶黏剂的耐高温性主要取决于固化物的热氧化稳定性和热变形稳定性。
环氧树脂基耐高温胶粘剂的制备及性能研究的开题报告一、研究背景和意义环氧树脂是一种常见的高分子材料,其应用领域非常广泛。
在胶粘剂领域中,环氧树脂也是一种重要的原料。
但是,传统的环氧树脂胶粘剂往往不能满足一些特殊条件下的使用要求,比如高温环境下的粘接需求。
因此,研究环氧树脂基耐高温胶粘剂的制备及性能具有重要的现实意义。
二、研究内容和方法本研究的主要内容是制备环氧树脂基耐高温胶粘剂,并对其性能进行研究。
具体地,将环氧树脂和多功能醇胺固化剂进行混合反应,制备出胶粘剂;然后对其进行性能测试,包括耐热性、粘接强度等指标的测试。
三、预期研究结果本研究预期可以制备出具有一定耐高温能力的环氧树脂基胶粘剂,并对其性能进行深入了解。
同时,还可以探索出一种具有较好性价比的耐高温胶粘剂制备方法,为环氧树脂胶粘剂的应用拓展提供技术支持。
四、研究难点本研究的难点主要在于如何在环氧树脂基胶粘剂中实现耐高温的特性。
在实验过程中需要考虑如何控制反应的时间和温度,以最大限度地提高耐高温的性能。
同时,还需要对于不同条件下胶粘剂的性能变化做出深入探究。
五、研究计划第一年工作计划:1.研究文献阅读和资料收集,了解目前环氧树脂胶粘剂的制备及应用情况;2.确定合适的实验方案,准备实验所需的试剂和设备;3.进行实验,初步探究环氧树脂基耐高温胶粘剂的制备条件和性能。
第二年工作计划:1.继续进行实验,对制备出的胶粘剂进行进一步的性能测试;2.对实验数据进行分析和统计,确定环氧树脂基耐高温胶粘剂的最佳制备条件和性能表现;3.进行环境适应性测试,考虑如何优化胶粘剂的性能。
第三年工作计划:1.进一步改进胶粘剂的制备方法,优化其性能;2.对胶粘剂进行大量应用实验,评估其实际应用价值;3.完成论文撰写和答辩工作。
耐高温环氧树脂胶粘剂的研究进展介绍了提高环氧胶粘剂耐温性的改性方法,主要包括:加入耐高温树脂改性、引入耐高温基团或耐热材料改性、通过固化剂提高耐高温性等,并对其发展进行了展望。
标签:耐高温;环氧树脂;胶粘剂随着社会的进步,耐高温胶粘剂在航空航天、汽车、电子、军工和机械制造业等技术领域应用越来越广泛[1]。
关于胶粘剂耐高温性的定义、分类及评价标准国内外尚未统一,一般来说,耐高温性应按照在特定的温度、时间和介质中能保持设计所要求的胶接强度,或具有一定的强度保持率来评定。
即耐高温胶粘剂必须满足以下要求:①热失重温度较高、热变形温度及分解温度较高,有良好的热物理和热化学性能;②在较高温度的工作条件下,有较好的物理机械性能和较高的粘接强度,并能在规定的时间内保持这种性能;③良好的加工性能;④温度周期变化下的耐热性较好,且能够在短时间内承受高温的考验。
环氧树脂以其优异的粘接性能、高耐热性及良好的工艺性能得到广泛的应用,但是固化后的环氧树脂胶中C—C键、C—H键键能较小且带有羟基等结构,使得环氧固化物一般都很脆,抗剥离、抗冲击等能力较差,易受水影响,耐高温性能较差。
因此,对耐高温胶粘剂的研究是满足现代工业对胶粘剂耐高温性要求的重要途径,是科研工作者的一项重要课题。
1 影响环氧胶粘剂耐温性的主要因素影响环氧胶粘剂耐高温性的因素有2方面,一是固化物的热变形温度,二是固化物的热氧化稳定性。
固化物的交联密度越大,芳环等耐热性基团的热变形温度也越高,耐热性能越优异。
环氧树脂胶粘剂的耐高温性主要取决于环氧树脂本身的分子结构和固化剂的耐热性,同时,添加改性剂对提高耐热性能也具有很大的影响。
首先,选用耐高温的环氧树脂,通过增加交联密度来提高环氧树脂胶粘剂耐热性;其次,选用耐高温的固化剂,固化剂具有多官能度和稳定的化学结构,与环氧树脂反应后可增加环氧树脂的交联密度,从而提高环氧树脂的耐热稳定性,其主要结构有芳香族多胺、改性胺或酸酐等;最后,通过添加改性剂来提高环氧树脂的耐热性,如橡胶弹性体改性、热塑性树脂改性、有机硅改性和无机填料改性等均能有效提高胶粘剂的强度和耐热性。
树脂结合剂金刚石砂轮设计及应用刘伟;刘一波;尹翔;葛科【摘要】树脂结合剂金刚石砂轮(resin bond diamond grinding wheel)由于具有自锐性好、胎体柔性和易于修整等特点而广泛用于各种难加工材料精密加工.文章主要就树脂结合剂金刚石砂轮的设计思路、性能影响因素以及加工应用进行简单综述,最后对提高我国树脂结合剂金刚石砂轮性能提出了几点建议.【期刊名称】《超硬材料工程》【年(卷),期】2016(028)004【总页数】4页(P47-50)【关键词】树脂结合剂;金刚石砂轮;精密加工;修整【作者】刘伟;刘一波;尹翔;葛科【作者单位】安泰科技股份有限公司,北京100081;北京安泰钢研超硬材料制品有限责任公司,北京 102200【正文语种】中文【中图分类】TQ164树脂结合剂超硬材料工具主要是以金刚石或cBN为磨料,以树脂粉为粘接剂,加入适当的填充材料,经过配方设计、称混料、热压成型、二次固化、后续加工处理等工艺过程制成的适用于不同磨削要求的超硬工具[1]。
与陶瓷结合剂或金属结合剂超硬磨具相比,它具有制造工艺简单,原材料易得,成本低等特点,且能够大量适用低品质超硬磨料,加工对象广泛,如各种难加工钢材、硬质合金、玻璃、陶瓷、石材等。
由于树脂超硬磨具在磨削过程中具有较好的自锐性,不易堵塞,磨出的工件具有表面质量好,砂轮易于修整等优点而得到广泛的应用。
树脂金刚石工具所用的树脂结合剂主要分为酚醛树脂和聚酰亚胺树脂两大类,其种酚醛树脂金刚石工具实际工作温度不超过120℃,聚酰亚胺树脂耐热性稍好,可在260℃下长期使用。
由于聚酰亚胺树脂的价格相对昂贵,尤其是近年来科学家对酚醛树脂进行改性使其实际工作温度也能到达200℃以上,如英国Advanced Resins Limited 公司的939P,故酚醛树脂的使用日益广泛。
本文将主要介绍树脂金刚石工具的设计思路及影响因素。
树脂结合剂金刚石工具的设计主要基于如下五个方面[2]:(1)粘结性必须好。
超硬材料磨具用耐高温树脂结合剂的研究本文对超硬材料磨具用树脂结合剂进行了研究。
以双马来酰亚胺树脂(BMI)为基体,用烯丙基化酚醛树脂对其改性。
首先合成酚醛树脂,然后将其烯丙基化,最后将烯丙基化的酚醛树脂与双马来酰亚胺共聚。
用红外光谱(FTIR)、液体核磁共振氢谱(1H-NMR)和综合热分析(DSC-TG)对其结构和性能进行了表征。
结果表明:仅烯丙基的双键与马来酰亚胺环中的双键发生了反应。
当分子量大或烯丙基化程度高时,改性体系的耐热性好。
改性树脂的热降解是由烯丙基基团中亚甲基和马来酰亚胺环的降解造成的。
将合成的AN/BMI体系与碳化硅复合,通过比较热处理前后的抗弯强度来分析复合材料的机械性能和耐热性,并借助扫描电子显微镜(SEM)观察分析复合材料的断裂面状况和碳化硅/AN/BMI树脂的结合状态。
结果表明:复合材料中树脂结合剂的含量、成型密度、改性剂中酚醛树脂的分子量和烯丙基化程度以及磨粒的表面状态是影响其力学性能的重要因素。
在一定范围内,复合材料的抗弯强度随着树脂结合剂AN/BMI的含量和成型密度的增加而增强,但是当树脂含量或成型密度过高时,复合材料的强度反而降低。
随着改性剂中酚醛树脂的分子量或烯丙基化程度的增加,复合材料的抗弯强度降低。
增加磨粒的表面粗糙度可以改善树脂结合剂与磨粒的结合强度,从而提高复合材料的强度。
对比实验结果表明自制的改性体系的耐热性和力学性能均比未改性的双马来酰亚胺和聚酰亚胺好。