ANSYS用于转子临界转速计算
- 格式:doc
- 大小:20.00 KB
- 文档页数:3
ANSYS 中的转子动力学计算安世亚太 许明财转子动力学是固体力学的一个重要分支,它主要研究旋转机械的“转子-支承”系统在旋转状态下的振动、平衡和稳定性问题,其主要研究内容有几个方面:临界转速、动力响应、稳定性、动平衡技术和支承设计。
在旋转机械研究设计中,转子动力学的性能分析是极其重要的一个方面。
旋转机械广泛应用于以下领域: y 涡轮机械 y 能量站 y 机械工具 y 汽车y 家用器械 y 航空领域 y 船舶推进系统 y 医疗器械 y 计算机设备传统的转子动力学分析采用传递矩阵方法进行,由于将大量的结构信息简化为极为简单的集中质量—梁模型,不能确保模型的完整性和分析的准确度;而有限元在处理转子动力学问题时,可以很好地兼顾模型的完整性和计算的效率,但多年来转子的“陀螺效应”一直是制约转子动力学有限元分析的“瓶颈”问题。
ANSYS 很好地解决了动力特性分析中“陀螺效应”影响的问题,而且陀螺效应的考虑不受计算模型上的限制,使得转子动力学有限元分析变得简单高效。
本文对ANSYS 的转子动力学计算功能进行简要介绍。
1 ANSYS 转子动力学的理论基础ANSYS 转子动力学分析中,两种参考坐标系可供选择:静止坐标系和旋转坐标系。
空间点P 在静止坐标系(其原点在O′)下的位置矢量为r′,在旋转坐标系(其原点在O)下的位置矢量为r。
在静止坐标系下转子的动力方程为:[][][]{}F {u}K }u ]){gyr [C C (}u{M =+++&&& 式中:为陀螺效应矩阵]gyr [C在旋转坐标系下转子的动力方程为:[][][]{}F }r ]){u spin [K K (}ru ]){cor [C C (}r u {M =−+++&&& 式中:为哥氏效应矩阵, 为旋转软化效应刚度矩阵]cor [C ]spin [K 2 ANSYS 转子动力学的计算功能和新技术ANSYS 转子动力学计算包含如下功能:y 无阻尼临界转速分析 y 不平衡响应分析 y 阻尼特征值分析 y 涡动和稳定性预测 典型的应用包括: y 轴的弯曲变形 y 扭转振动 y 转子轴未对准 y 旋转部分的平衡 y 流制振动为了分析时计入哥氏效应、陀螺效应和支承的影响,ANSYS 发展了下列新技术单元:SHELL181 4节点有限应变壳单元 PLANE182 二维4节点结构实体单元 PLANE183 二维8节点结构实体单元 SOLID185 三维8节点结构实体单元 SOLID186 三维20节点结构实体单元 SOLID187 三维10节点四面体结构实体单元BEAM188 三维一次有限应变梁单元 BEAM189 三维二次有限应变梁单元 SOLSH190 三维8节点层合实体-壳单元 COMBIN214二维轴承单元(可变刚度和阻尼)ANSYS 考虑陀螺效应时没有计算模型上的限制,故可选择一维(梁、管)、二维(轴对称)和三维复杂计算模型进行分析。
基于ANSYSWorkbench的飞轮转子临界转速计算分析任正义a,朱健国b,杨立平a(哈尔滨工程大学a.工程训练中心;b.机电工程学院,哈尔滨150001)摘要:以电磁轴承支撑的飞轮转子为研究对象,建立飞轮转子的有限元模型,基于ANSYS Workbench软件对转子系统临界转速进行求解。
分析了阻尼和支撑刚度对飞轮转子系统前三阶临界转速的影响。
结果表明,阻尼对飞轮转子临界转速没有影响,支撑刚度使临界转速增加,并计算出最佳的支撑刚度调整范围。
关键词:飞轮转子;ANSYS Workbench;临界转速;阻尼;支撑刚度中图分类号:TH133.7文献标志码:A文章编号:1002-2333(2019)09-0023-03 Calculation and Analysis on Critical Speed of Flywheel Rotor Based on ANSYS WorkbenchREN Zhengyi a,ZHU Jianguo b,YANG Liping a(a.Engineering Training Center;b.College of Mechanical and Electrical Engineering,Harbin Engineering University,Harbin150001,China) Abstract:Critical speed causes vibrations in the rotating system and affects system operation.The calculation and analysis of critical speed is an important issue.Taking the flywheel rotor supported by the electromagnetic bearing as the research object,the finite element model of the flywheel rotor is established,and the critical speed of the rotor system is solved based on ANSYS Workbench software.The influence of damping and supporting stiffness on the first three critical speeds of the flywheel rotor system is analyzed.The results show that the damping has no effect on the critical speed of the flywheel rotor,and the support stiffness increases the critical speed.The adjustment range of the optimum support stiffness is calculated.Keywords:flywheel rotor;ANSYS Workbench;critical speed;damping;support stiffness0引言能源问题如今已经成为全球瞩目的关键性问题,开发新能源成为各国研究的重点。
ANSYS用于转子临界转速计算ANSYS是一种流体力学仿真软件,可以用于转子临界转速的计算。
转子临界转速是指转子在超临界转速时,由于离心力的作用下,形成的由于离心力和负载产生的振动达到最大值的转速。
转子临界转速是一个非常重要的参数,它决定了转子的最大可运行速度,超过这个速度,转子可能发生不稳定振动、失稳并可能引发严重的事故。
在进行转子临界转速计算时,首先需要建立转子的几何模型。
ANSYS 提供了多种几何建模工具,可以根据转子的实际形状和尺寸,创建合适的几何模型。
接下来,需要定义转子材料的力学性质。
ANSYS可以通过确定材料的弹性模量、泊松比等力学参数,来描述转子在受力时的行为。
然后,需要设置边界条件和加载条件。
边界条件包括转子的固定支承位置和方向,加载条件则包括外部的离心力和负载力等。
这些条件将影响到转子的振动和应力分布。
在完成几何建模和边界条件设置后,可以开始进行转子临界转速的计算。
ANSYS提供了多种求解器和求解算法,可以根据实际情况选择适合的求解方法。
通过对转子的几何模型、边界条件和加载条件进行离散化和数值求解,得到转子在不同转速下的振动和应力分布结果。
转子临界转速计算的结果包括转子的固有频率、振型和应力分布等。
可以通过分析这些结果,确定转子的临界转速。
除了临界转速计算,ANSYS还可以进行其他与转子振动相关的模拟和优化。
例如,可以通过模拟转子在不同条件下的振动响应,来评估转子的结构强度和刚度,以及寻找优化设计方案。
总之,ANSYS是一种功能强大的流体力学仿真软件,可以用于转子临界转速的计算。
通过建立几何模型、定义材料性质、设置边界条件和加载条件,并使用合适的求解方法,可以模拟并计算转子的振动和应力分布,得到转子的临界转速。
这对于转子的安全运行和设计优化具有重要意义。
基于ANSYS的转子临界转速计算
王宁峰;王桂红
【期刊名称】《青海大学学报(自然科学版)》
【年(卷),期】2007(025)005
【摘要】利用ANSYS自带的编程语言APDL,参数化有限元模型和快速求解临界转速,在ANSYS平台上完成离心机临界转速分析.
【总页数】5页(P18-21,31)
【作者】王宁峰;王桂红
【作者单位】青海大学化工学院,青海,西宁,810016;青海大学化工学院,青海,西宁,810016
【正文语种】中文
【中图分类】TB532
【相关文献】
1.基于ANSYS的发动机转子临界转速计算 [J], 王海朋;戴勇;张志清;张逊
2.利用ANSYS和坎贝尔图对燃气轮机压气机转子模态及临界转速的分析计算 [J], 龚建政;钟芳明;贺星;汤华涛
3.ANSYS模态分析在螺杆压缩机转子临界转速计算上的应用 [J], 岳平
4.基于ANSYS轴承试验台转子轴承系统临界转速计算 [J], 冯贺;王建梅;王生龙;孟凡宁
5.基于ANSYS Workbench的飞轮转子临界转速计算分析 [J], 任正义; 朱健国; 杨立平
因版权原因,仅展示原文概要,查看原文内容请购买。
ANSYS模态分析在电机转子临界转速计算上的应用概述:电机转子的临界转速是指电机转子在运行过程中出现共振或失稳的临界转速。
为了保证电机的稳定运行,需要对其临界转速进行计算和分析。
ANSYS(工程仿真软件)的模态分析是一种常用的方法,可以用于计算电机转子的临界转速。
模态分析是指通过对电机转子进行振型计算和分析,得出其共振频率和临界转速。
模态分析通常包括以下几个步骤:1.建立电机转子的有限元模型:将电机转子抽象为由多个节点和弹簧组成的有限元模型,用来描述转子的振动特性。
2.定义边界条件:根据实际情况,定义电机转子的支撑方式和边界条件,以确定转子振动时的约束条件。
3.计算振型和共振频率:通过对有限元模型进行模态分析,得到电机转子的各个振型及其共振频率。
共振频率即为电机转子的临界转速。
4.分析振型特性:根据电机转子的振型,可以分析其频率、振幅、相对位移等特性,以确定可能出现共振或失稳的原因。
5.优化设计:根据分析结果,对电机转子的结构和材料进行优化设计,以提高其临界转速和稳定性。
模态分析在电机转子临界转速计算上的应用:1.临界转速计算:通过模态分析,可以直接得到电机转子的临界转速,从而提前预知电机在哪种转速下容易产生共振或失稳现象。
2.优化设计:模态分析可以帮助发现电机转子结构和材料的问题,通过对振型和共振频率的分析,提供改进和优化设计的参考,以增加电机转子的临界转速。
3.故障诊断:模态分析提供了电机转子振动特性的详细信息,可以用来识别电机转子的故障类型和位置,比如不平衡、轴承损坏等。
从而可以采取相应的维修和维护措施,以避免临界转速的问题。
4.建立安全边界:通过模态分析,可以确定电机转子的临界转速范围,并建立相应的安全边界。
在实际运行中,可以在安全边界内调整转速,以避免共振和失稳问题。
总结:ANSYS的模态分析是一种有效的方法,可以用于电机转子临界转速的计算和分析。
通过模态分析,可以提前预知电机转子在哪种转速下容易出现共振或失稳现象,为电机的优化设计和故障诊断提供依据,从而提高电机的稳定性和可靠性。
ansys workbench临界转速计算
在ANSYS Workbench中计算临界转速的方法如下:
1. 导入几何模型:使用DesignModeler或者直接导入几何模型
文件(例如.stp或者.step格式)。
2. 设定材料属性:在Engineering Data下的Material中,选择
合适的材料,并设定材料的力学属性,如弹性模量、泊松比等。
3. 设定边界条件:在模型中选择合适的边界条件,以模拟实际工况。
例如,在机械分析中选择Displacement或者Fixed Support。
4. 创建网格:使用Meshing工具生成合适的网格,确保几何模型的准确性和适当的单元密度。
5. 设定求解器设置:在Solution中选择适当的求解器,如静力
分析或者非线性分析,并设定相应的设置,包括求解算法、收敛准则等。
6. 定义扭转边界条件:在Static Structural或者Mechanical中,选择合适的Interface边界条件,以模拟顶盖或者底部固定边界。
7. 进行分析:点击Solve按钮开始求解,等待分析完成。
8. 获取结果:在Results中查看分析结果,根据需要查看位移、
应力等结果。
9. 转速增加:逐步增加转速,重新进行分析,直到发现临界转速。
值得注意的是,临界转速的计算可能需要进行模态分析。
可以使用Modal或者Harmonic Analysis模块来计算模态频率和模
态振型,然后根据临界转速的定义找到与模态频率相等的转速。
基于ANSYS轴承试验台转子轴承系统临界转速计算冯贺;王建梅;王生龙;孟凡宁【摘要】基于ANSYS动力学模块对轴系高速旋转机构进行了模态分析,得到了模态频率随自转速度变化的坎贝尔图,进而获得了临界转速,并分析了不同类型联轴器对转子-轴承系统的临界转速和各阶模态的影响.结果分析表明:处于刚性联轴器下的转子-轴承系统一阶临界转速高于弹性联轴器系统,影响幅度为6%;不同类型联轴器对转子-轴承系统的高阶特征频率影响较大;刚性联轴器对转子-轴承系统的各阶正反进动模态的影响是线性的,而弹性联轴器的影响是非线性的;弹性联轴器一定程度上降低了由于转子弯曲振动而造成油膜轴承损坏的可能性.【期刊名称】《太原科技大学学报》【年(卷),期】2017(038)004【总页数】6页(P296-301)【关键词】转子-轴承系统;联轴器;有限元;模态分析;坎贝尔图;临界转速【作者】冯贺;王建梅;王生龙;孟凡宁【作者单位】太原科技大学冶金设备设计理论及技术山西省重点实验室,太原030024;太原科技大学冶金设备设计理论及技术山西省重点实验室,太原 030024;太原科技大学冶金设备设计理论及技术山西省重点实验室,太原 030024;太原科技大学冶金设备设计理论及技术山西省重点实验室,太原 030024【正文语种】中文【中图分类】TH133.4油膜轴承试验台属于大型旋转机械,临界转速计算是转子动力学特性的重要分析内容之一。
转子轴承系统在达到临界转速时,转子在不平衡质量等因素的激励下会产生很大的振动,严重的会导致机组破坏,影响油膜测试参数的准确度。
因此,在计算临界转速后,合理的设计和调整试验台所需运转工况;或者改变试验台的机械结构,使轴承试验台的运行处在一个相对稳定的状态下,增加转子轴承系统的稳定性,从而保证轴承参数测试的准确度显得至关重要。
联轴器是旋转机械的核心部件,广泛应用于航空航天、重型机械和矿山机械等诸多领域,也是轴承试验台机械结构的重要组成部分。
ANSYS用于转子临界转速计算
1 转子临界转速概念
转子的固有频率除了与转子结构(和支承结构)参数有关外,它还随转子涡动转速和转子自转转速的变化而变化。
在转子不平衡力驱动下,转子一般作正同步涡动,当转子涡动转速等于转子固有频率时,转子出现共振,相应转速就称为该转子的临界转速。
2 转子临界转速计算对程序的要求
计算转子临界转速必须能够考虑旋转结构涡动时产生的陀螺效应对转子临界转速的影响,这是转子临界转速计算同其他非旋转结构固有频率计算的差异所在。
一般有限元程序不具备计算转子临界转速的功能。
3 ANSYS的临界转速计算功能
1) 计算转子临界转速可用单元
BEAM4;
PIPE16。
COBIN14(用于模拟带阻尼的弹性支撑)
2) 单元特性及实常数
BEAM4和PIPE16:
Keyoption(7)=1
实常数Spin=转子自转角速度(ω) rad/s。
3) 特征值求解方法
选取DAMP方法求解特征值。
4) 计算结果处理
采用有限元方法计算转子临界转速时,转子会出现正进动和反进动。
由于陀螺效应的作用,随着转子自转角速度的提高,反进动固有频率将降低,而正进动固有频率将提高。
根据临界转速的定义,应只对正进动固有频率(Ωc)进行分析。
在后处理中首先剔除负固有频率,然后分析各阶模态振型,确定同一阶振型的正进动和反进动固有频率。
改变转子自转角速度(ω),计算出新的Ωc,最后画出Ωc~ω曲线,根据临界转速的定义,当Ωc=ω时,Ωc即所求临界转速。
需注意:由于Ωc的单位为Hz,而ω为rad/s,计算时应转换单位。
4 算例
单转子结构如图1所示,转子轴近似无质量,轮盘密度8*104Kg/m3,其余材料参数为:
E=200Gpa μ=0.3
图1 模型转子结构(mm)
理论临界转速:
式中,m:轮盘质量;
k11:轮盘处转子横向刚度;
k22:轮盘处转子弯曲刚度;
k12:轮盘处转子横向与弯曲耦合刚度;
Jd:轮盘直径转动惯量
Jp:轮盘极转动惯量
图1所示模型转子的理论临界转速、ANSYS计算结果和一般传递矩阵方法计算的临界转速对比见表1。
表1 计算结果对比
计算方法理论值(Hz) ANSYS(HZ)传递矩阵法(Hz)
转子一阶临界转速 339.8 346.3 324.9
误差 - 1.9% 4.4%
算例命令流文件如下:
[Copy to clipboard][ - ]
CODE:
/PREP7
ET,1,BEAM4
!*
KEYOPT,1,2,0
KEYOPT,1,6,0
KEYOPT,1,7,1
KEYOPT,1,9,0
KEYOPT,1,10,0
*SET,p,acos(-1)
*SET,R1,5
*SET,R2,60
R,1,p*R1**2,p*R1**4/4,p*R1**4/4,2*R1,2*R1, ,
RMORE, ,p*R1**4/2, , ,2175, ,
R,2,p*R2**2,p*R2**4/4,p*R2**4/4,2*R2,2*R2, ,
RMORE, ,p*R2**4/2, , ,2175, ,
!*
MPTEMP,,,,,,,,
MPTEMP,1,0
MPDATA,EX,1,,2e5
MPDATA,PRXY,1,,.3
MPTEMP,,,,,,,,
MPTEMP,1,0
MPDATA,DENS,1,,1e-10
MPTEMP,,,,,,,,
MPTEMP,1,0
MPDATA,EX,2,,2E5
MPDATA,PRXY,2,,.3 MPTEMP,,,,,,,,
MPTEMP,1,0
MPDATA,DENS,2,,8E-8
K, ,,,,
K, ,100,,,
TYPE, 1
MAT, 1
REAL, 1
ESYS, 0
LSTR, 1, 2
LESIZE,ALL, , ,200, ,1, , ,1, LMESH, 1
D,1,UX
D,1,UY
D,1,UZ
D,102,UY
D,102,UZ
FLST,2,1,2,ORDE,1
FITEM,2,200
EMODIF,P51X,MAT,2,
FLST,2,1,2,ORDE,1
FITEM,2,200
EMODIF,P51X,REAL,2,
FINISH
/SOLU
!*
ANTYPE,2
!*
MODOPT,DAMP,40
EQSLV,FRONT
MXPAND,40, , ,0
LUMPM,0
PSTRES,0
!*
MODOPT,DAMP,40,10,40000, ,OFF /STATUS,SOLU
SOLVE
FINISH。