三相异步电动机常用的Y-△降压启动
- 格式:doc
- 大小:26.50 KB
- 文档页数:3
简述三相交流异步电动机y-δ降压启动控制原理及特点
1.启动过程
三相交流异步电动机Y-Δ降压启动控制电路在启动过程中,通过控制电路将电动机的定子绕组连接成Y形,即所谓的Y启动。
在Y 启动过程中,每相绕组所承受的电压为正常运行时电压的1/√3,从而达到降压启动的目的。
当电动机启动过程完成后,再通过控制电路将电动机的定子绕组切换到Δ形连接,即所谓的Δ运行。
2.控制原理
三相交流异步电动机Y-Δ降压启动控制电路主要由接触器、时间继电器和热继电器等组成。
其中,接触器用于控制电动机的电源通断,时间继电器用于控制电动机的启动和停止时间,热继电器则用于保护电动机免受过载电流的损害。
在启动过程中,首先接通电源,时间继电器开始计时,当计时达到预定时间时(一般为5秒左右),时间继电器动作,将接触器控制电路中的常闭触点打开,切断电动机的Y形连接,同时将常开触点闭合,接通电动机的Δ形连接。
此时,电动机进入Δ形运行状态。
3.特点
三相交流异步电动机Y-Δ降压启动控制电路具有以下特点:
(1)启动电流小:在Y形启动过程中,电动机的每相绕组所承受的电压仅为正常运行时电压的1/√3,从而降低了启动电流。
这有利于延长电动机的使用寿命。
(2)启动转矩小:由于启动电流减小,电动机的转矩也相应减
小。
这有利于防止电动机在负载较重的情况下启动时发生“闷车”现象。
(3)运行效率高:在Δ形运行状态下,电动机的电压和电流处于额定值,因此运行效率相对较高。
(4)使用范围广:该控制电路适用于容量较大且对启动转矩要求不高的三相交流异步电动机。
三相笼型异步电动机的降压启动笼型异步电动机常用的降压启动方法有:星-三角形降压启动、定子绕组串电阻降压启动、自耦变压器降压启动等。
1.星-三角形(Y-Δ)降压启动星-三角形(Y-Δ)降压启动用于正常工作时定子绕组作三角形连接的电动机。
在电动机启动时将定子绕组接成星形,实现降压启动。
此时加在电动机每相绕组上的电压为额定电压的 1/ 3,从而减小了启动电流。
待启动后过了预先设定的时间,电动机转速接近额定转速,将定子绕组接线方式由星形改接成三角形,使电动机在额定电压下运行。
它的优点是启动设备成本低、方法简单、容易操作,但启动转矩只有额定转矩的1/3,如图所示。
启动运行:按下启动按钮SB2,KM1、KT、KM Y线圈同时得电并自锁,即KM1、KM Y主触点闭合时,绕组接成星形,进行降压启动。
当电动机转速接近额定转速时,时间继电器KT常闭触头断开,KM Y线圈断电,同时时间继电器KT常开触头闭合,KM△线圈得电并自锁,电动机绕组接成三角形全压运行。
两种接线方式的切换要在很短的时间内完成,在控制电路中采用时间继电器定时自动切换。
KM Y、KM△常闭触头为互锁触头,以防同时接通造成电源短路。
停止运行:按下停止按钮SB1,KM1、KM△线圈失电,电动机停止运转。
2.定子绕组串电阻降压启动下图所示为定子绕组串接电阻降压启动控制线路。
在电动机启动时,在三相定子电路串接电阻,使电动机定子绕组电压降低,启动结束后再将电阻短接,电动机在额定电压下正常运行。
启动过程如下:按下启动按钮 SB2,接触器KM1与时间继电器KT的线圈同时通电,KM1主触点闭合,电动机定子绕组串电阻R启动。
时间继电器 KT 延时预定时间后,其延时闭合常开触点闭合,接触器KM2 线圈通电,KM2 主触点闭合,短接R,电动机投入正常运行;KM2常闭辅助触头断开,接触器KM1与时间继电器KT的线圈同时断电。
该电路结构简单、启动功率因数高,缺点是电阻上功率消耗大。
三相异步电动机的Y—△启动控制实验报告The Standardization Office was revised on the afternoon of December 13, 2020可编程控制器课程设计报告书三相异步电动机的Y—△启动控制学院名称:自动化学院学生姓名:专业名称:班级:时间:2013年5月20日至5月 31日三相异步电动机的Y—△启动控制一、设计目的:1.了解交流继电器、热继电器在电器控制系统中应用。
2.了解对自锁、互锁功能。
3.了解异步电动机Y—△降压启动控制的原理、运行情况及操作方法。
二、设计要求:1、设计电动机Y—△的启动控制系统电路;2、装配电动机Y—△启动控制系统;3、编写s7_300的控制程序;4、软、硬件进行仿真,得出结果。
三、设计设备:1.三相交流电源(输出电压线);2.继电接触控制、交流接触器、按钮、热继电器、熔断器、PLCS300;3.三相鼠笼式电动机。
四、设计原理:对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,如果在启动时将定子绕组接成星形,待起动完毕后再接成三角形,就可以降低启动电流,减轻它对电网的冲击,这样的起动方式称为星三角减压启动,或简称为星三角启动(Y-Δ启动)。
星三角起动法适用于正常运行时绕组为三角形联接的的电动机,电动机的三相绕组的六个出线端都要引出,并接到转换开关上。
起动时,将正常运行时三角形接法的定子绕组改接为星形联接,起动结束后再换为三角形连接。
这种方法只适用于中小型鼠笼式异步电动机.定子绕组星形连接时,定子电压降为三角形连接的1/√3,由电源提供的起动电流仅为定子绕组三角形连接时的1/3。
就是可以较大的降低启动电流,这是它的优点.但是,由于起动转矩与每相绕组电压的平方成正比,星形接法时的绕组电压降低了1/ √3倍,所以起动转矩将降到三角形接法的1/3,这是其缺点。
Y-△降压启动器仅适用于△运行380V的三相鼠笼式电动机作空载或轻载启动。
三相异步电动机Y—△降压起动(1)线路设计思想Y—△降压起动也称为星形—三角形降压起动,简称星三角降压起动。
这一设计思想仍是按时间原则控制起动过程。
所不同的是,在起动时将电动机定子绕组接成星形,每相绕组承受电压为电源的相电压(220V),减小了起动电流对电网的影响。
而在其起动后期则按预先整定的时间换接成三角形接法,每相绕组承受的电压为电源的线电压(380V),电动机进入正常运行。
凡是正常运行时定子绕组接成三角形的鼠笼式异步电动机,均可采用这种线路。
(2)典型线路介绍定子绕组接成Y—△降压起动的自动控制线路如图所示。
工作原理:1、按下起动按钮SB2,接触器KM1线圈得电,电动机M接入电源。
同时,时间继电器KT 及接触器KM2线圈得电。
2、接触器KM2线圈得电,其常开主触点闭合,电动机M定子绕组在星形连接下运行。
KM2的常闭辅助触点断开,保证了接触器KM3不得电。
3、时间继电器KT的常开触点延时闭合;常闭触点延时继开,切断KM2线圈电源,其主触点断开而常闭辅助触点闭合。
4、接触器KM3线圈得电,其主触点闭合,使电动机M由星形起动切换为三角形运行。
停车5、按SB1 辅助电路断电各接触器释放` 电动机断电停车线路在KM2与KM3之间设有辅助触点联锁,防止它们同时动作造成短路;此外,线路转入三角接运行后,KM3的常闭触点分断,切除时间继电器KT、接触器KM2,避免KT、KM2线圈长时间运行而空耗电能,并延长其寿命。
三相鼠笼式异步电动机采用Y—△降压起动优点:定子绕组星形接法时,起动电压为直接采用三角形接法时的1/3,起动电流为三角形接法时的1/3,因而起动电流特性好,线路较简单,投资少。
缺点:起动转矩也相应下降为三角形接法的1/3,转矩特性差。
所以该线路适用于轻载或空载起动的场合。
另外应注意,Y—△联接时要注意其旋转方向的一致性。
三相异步电动机y-△降压启动控制电路工作原理
三相异步电动机Y-Δ降压启动控制电路是一种常见的电动机
启动方式,多用于大功率电动机的启动过程中。
其工作原理如下:
1. 电源供电:当三相异步电动机需要启动时,通过主控制开关将电源连接到电动机的三相输入端。
2. Δ连接:在启动过程中,控制电路将电动机的三个定子绕组
分别连接成一个Δ形状,即将每个定子绕组的一个端子与另
一个定子绕组的另一个端子连接在一起。
3. 降压启动:通过一个时间继电器或者其他启动控制器来控制一个对应的继电器,使得在启动过程中,电动机的每个定子绕组通过一个降压启动器,即一个定子绕组与外部电阻串联连接,以降低电动机的电压。
4. 加载转矩:在降压启动的过程中,电动机的电压被降低,电机的转矩也被降低。
这样可以减轻电动机启动时的机械冲击,并且可以避免过大的电流冲击对线路和电机的损坏。
5. 过渡到Y连接:当电动机达到设定的启动时间或者转速后,控制电路将继电器动作,切断降压启动器的连接,在短时间内,使得电动机的三个定子绕组组成Y形状连接,使得电动机能
够正常运行。
总的来说,Y-Δ降压启动控制电路通过降低电动机的电压,减
小启动时的机械冲击,确保电动机的安全启动,并在启动后切换为正常运行状态。
三相异步电动机常用的降压启动法(1)星形-三角形换接启动适用于正常运行时定子绕组接成三角形的电动机。
一般采纳星形-三角形换接启动器实现。
首先合上闸刀引入电源,将启动器扳到启动位置(Y形接法),当n接近额定转速nN,再扳到运行位置,电动机接成Δ接法。
Y→Δ是如何降压启动呢?a、Y形连接启动:;;b、Δ形连接启动:;(这是直接启动时的电流);Y-Δ转接启动,——启动电流是原来的;——启动转矩也是原来的。
(2)自耦降压启动启动时,使电动机绕组接通自耦变压器的副边而降压启动,待电动机的转速接近额定转速nN时,再使电动机定子绕组直接接在三相电源上,在额定电压下运行。
以Y形为例:a、三相异步电动机的直接启动;;b、自耦变压器降压启动:启动电流其中;——定子绕组上的启动电流关系——线路上的启动电流关系变压器上的抽头一般是固定的,抽头的分数是K的倒数,例如用抽头60%的自耦变压器适用范围:容量较大或正常工作是Y形接法。
例1:一台Y225M-4型的三相异步电动机,定子绕组△连接,其额定数据为:=45kW, =1480r/min,=380V,=92.3%,=0.88,=7.0, =1.9,=2.2,求:(1)额定电流?(2)额定转差率?(3)额定转矩、最大转矩、和启动转矩。
解:(1)(2)由nN=1480r/min,可知p=2 (4极电动机)(3)例2:在上例中,(1)采纳Y- D 换接启动时,求启动电流和启动转矩。
(2)假如负载转矩为510.2Nm,当负载转矩为额定转矩的80%和50%时,电动机能否启动?解:(1)(2)在80%额定负载时,,不能启动;在50%负载时,,可以启动。
控制系统综合应用实训报告书专业:电气工程及其自动化班级:电气3班姓名:学号: ************指导教师:李杨清张立明李祥德自动控制与机械工程学院2014年12月第一部分电气线路安装调试技能训练技能训练题目一: 三相异步电动机Y-△降压启动控制一.课题分析星—三角降压启动时常用的方法之一。
凡是正常运行时三相定子绕组为三角形联结的三相笼型异步电动机,都可采用星—三角降压启动。
启动时,先将定子绕组按星型联结,接入/1,因此能减少启动三相交流电源。
此时,由于电动机每相绕组电压只为正常工作电压的3电流,待电动机转速接近额定转速时,再将电动机定子绕组改成三角形联结,各相绕组承受额定工作电压,电动机进入正常运转。
这种启动方法简便、经济,不仅适用于轻载启动,也适用于重负载下的启动。
在该电路中,电动机起动过程的星---三角转换是靠时间继电器自动完成的。
合上三相电源开关QA,按下起动按钮SB2,KM1、KT、KM3线圈同时通电并自锁,KM1主触点闭合,接通电动机三相电源,KM3的主触点闭合,将电动机的尾端连接,电动机接成星形连接,开始减压起动。
时间继电器KT延时时间设定为电动机起动过程时间(一般为6~8s),当电动机转速接近额定转速时,时间继电器整定时间到,KT动作,其对应的常闭触点断开,常开触点闭合,前者使KM3线圈断电释放,KM3的辅助常闭触点闭合,为KM2的线圈通电做好准备,后者使KM2线圈通电吸合,电动机由星形联结改成三角形联结,进入正常运行。
而KM2常闭触点断开,,使时间继电器KT在电动机星形联结/三角形联结起动完成后断电,电路中实现了KM2与KM3的电气互锁。
二.实训电气原理图如图1.1.1为三相异步电动机Y-△降压启动控制的原理图:其工作原理如下:当QF闭合,主电路及控制电路均接通。
按下SB2,电流由FU4进入,分两路:一路经FR、SB1、KM1线圈,从FU5流出,当KM1线圈得电时,常开触点闭合,电路自保持,另一路经FR、SB1、KM1、KM2、KT线圈或KM3线圈,从FU5流出。
控制系统综合应用实训报告书专业:电气工程及其自动化班级:电气3班姓名:学号: ************指导教师:李杨清张立明李祥德自动控制与机械工程学院2014年12月第一部分电气线路安装调试技能训练技能训练题目一: 三相异步电动机Y-△降压启动控制一.课题分析星—三角降压启动时常用的方法之一。
凡是正常运行时三相定子绕组为三角形联结的三相笼型异步电动机,都可采用星—三角降压启动。
启动时,先将定子绕组按星型联结,接入/1,因此能减少启动三相交流电源。
此时,由于电动机每相绕组电压只为正常工作电压的3电流,待电动机转速接近额定转速时,再将电动机定子绕组改成三角形联结,各相绕组承受额定工作电压,电动机进入正常运转。
这种启动方法简便、经济,不仅适用于轻载启动,也适用于重负载下的启动。
在该电路中,电动机起动过程的星---三角转换是靠时间继电器自动完成的。
合上三相电源开关QA,按下起动按钮SB2,KM1、KT、KM3线圈同时通电并自锁,KM1主触点闭合,接通电动机三相电源,KM3的主触点闭合,将电动机的尾端连接,电动机接成星形连接,开始减压起动。
时间继电器KT延时时间设定为电动机起动过程时间(一般为6~8s),当电动机转速接近额定转速时,时间继电器整定时间到,KT动作,其对应的常闭触点断开,常开触点闭合,前者使KM3线圈断电释放,KM3的辅助常闭触点闭合,为KM2的线圈通电做好准备,后者使KM2线圈通电吸合,电动机由星形联结改成三角形联结,进入正常运行。
而KM2常闭触点断开,,使时间继电器KT在电动机星形联结/三角形联结起动完成后断电,电路中实现了KM2与KM3的电气互锁。
二.实训电气原理图如图1.1.1为三相异步电动机Y-△降压启动控制的原理图:其工作原理如下:当QF闭合,主电路及控制电路均接通。
按下SB2,电流由FU4进入,分两路:一路经FR、SB1、KM1线圈,从FU5流出,当KM1线圈得电时,常开触点闭合,电路自保持,另一路经FR、SB1、KM1、KM2、KT线圈或KM3线圈,从FU5流出。
课程:西门子S7-200PLC定时器、计数器的应用课题:三相异步电动机Y-△降压启动控制线路2、断开延时定时器(TOF)输入端(IN)接通时,定时器位立即为“1”,并把当前值设为0。
输入端(IN)断开时,定时器开始计时,当断开延时定时器(TOF)的计时当前值等于设定时间时,定时器位断开为“0”,并且停止计时。
TOF指令必须用负跳变(由on到off)的输入信号启动计时。
3、有记忆功能的接通延时型定时器(TONR)输入端(IN)接通时,接通有记忆接通延时定时器(TONR),并开始计时,当定时器(TONR)的当前值等于或大于设定值时,该定时器位被置位为“1”。
定时器(TONR)累计值达到设定值后,定时器(TONR)继续计时,一直计到最大值32767。
查阅STEP7-MicroWin软件中有关TOF指令的内容。
查阅STEP7-MicroWin软件中有关TONR指令的内容。
结合STEP7-MicroWin软件的帮助文件,讲解TOF定时器的特点。
结合STEP7-MicroWin软件的帮助文件,讲解TONR定时器的特点。
写出TOF指令的主要特点。
写出TONR指令的主要特点。
输入端(IN)断开时,定时器(TONR)的当前值保持不变,定时器位不变。
输入端(IN)再次接通,定时器当前值从原保持值开始再往上累计时间,继续计时。
可以用定时器(TONR)累计多次输入信号的接通时间。
上电周期或首次扫描时,定时器(TONR)的定时器位为“0”,当前值保持,可利用复位指令(R)清除定时器(TONR)的当前值。
4、应用定时器的注意事项1)不能把一个定时器号同时用作断开延时定时器(TOF)和接通延时定时器(TON)(相当于同一定时器号既用作模拟断电延时型的物理时间继电器功能,又用作模拟通电延时型的物理时间继电器功能)。
2)使用复位(R)指令对定时器复位后,定时器位为“0”,定时器当前值为0。
3)有记忆接通延时定时器(TONR)只能通过复位指仿照教师演示的简单应用程序,自行编程调试,理解三种定时器的工作原理和特点。
三相异步电动机常用的Y-△降压启动
本文分析了三相异步电动机的由来、启动进程与启动方式,并针对星-三角降压启动进行了探讨。
标签:三相异步发动机降压启动
1 三相异步电动机的由来
三相异步电动机的旋转是由于其定子绕组中通入三相交流电后,在定子绕组周围产生一个旋转的磁场,当转子处于该旋转磁场中时,相当于导体在磁场中作切割磁力线运动,从而产生感应电流和感应电动势,促使转子不断地旋转运动。
但是三相异步电动机的转子转速不会与旋转磁场同步,更不会超过旋转磁场的速度。
因为三相异步电动机转子线圈中的感应电流是由于转子导体与磁场有相对运动而产生的,如果三相异步电动机转子的转速与旋转磁场的转速大小相等,那么,磁场与转子之间就没有相对运动,导体不能切割磁力线,转子线圈中也就不会产生感应电流和感应电动势,三相异步电动机转子导体在磁场中也就不会受到电磁力的作用而使转子转动——三相异步电动机因此而得名。
2 电动机的启动过程和启动方式
电动机的启起动过程是指电动机从接入电网开始到正常运转的这一过程。
三相异步电动机的启动方式有两种,即在额定电压下的全压(直接)启动和降低启动电压的减压启动。
电动机的直接启动是一种简单、可靠、经济的启动方法,但由于直接启动电流可达电动机额定电流的4~7倍,过大的启动电流会造成电网电压显著下降,直接影响在同一电网工作的其他电动机,甚至使它们停转或无法启动,故直接启动电动机的容量受到一定的限制。
对容量较大的电动机的启动,为了不造成电网电压的大幅度降落,从而导致电动机启动困难或不能启动,也不影响电网内其他用电设备的正常供电,在生产技术上,多采用降压启动措施。
所谓降压启动是将电网电压适当降低后加到电动机定子绕组上进行启动,待电动机启动后,再将绕组电压恢复到额定值。
降压启动的目的是减小电动机启动电流,从而减小电网供电的负荷。
但由于启动电流的减小,必然导致电动机启动转矩下降,因此凡采用降压启动措施的电动机,只适合空载或轻载启动。
在实际生产中的电机,广泛采用的降压启动措施是星-三角降压启动。
3 星-三角降压启动
3.1 星-三角降压启动的理论依据星-三角降压启动一般用Y-△符号表示,这种降压启动方式只适用于正常运行时定子绕组为三角形连接的三相异步电动机。
在启动时,将绕组连接成星形,使每相绕组电压降至原电压的1/√3,启动结
束后再将绕组切换成三角形连接,使三相绕组在额定电压下正常运行。
这种启动方式的优点是启动设备成本较低,使用方法简便易操作,但启动转矩只有额定转矩的1/3,即启动较慢。
3.2 星-三角降压启动所用电气控制器材Y-△启动器,接触器(三个,KM1,KM2,KM3,根据电机容量选择型号),控制按钮(SB红绿黑三联按钮),热继电器(FR,根据电机大小选择其型号),主电路和控制电路熔断器(FU1,主电路熔断器根据电机容量大小选择,FU2,控制电路一般用5A的熔断器就可以了),时间继电器(KT),隔离开关(QS,根据电机大小选择型号),绕组为三角形连接的电机(M),接线排,导线适量。
3.3 星-三角降压启动控制电路原理图
3.3.1 接触器切换控制的Y-△降压启动控制电路。
①电路原理图(如图1所示)。
②电路动作过程分析。
图1为接触器切换的Y-△降压起动控制电路。
电路工作过程如下:
电动机Y接法启动:先合上电源开关QS,按下启动按钮SB2(绿色,此处接其常开触点),接触器KM1线圈通电,KM1自锁触点(接其常开触点)闭合,同时KM2线圈通电,KM2主触点闭合,电动机Y接法启动,此时,KM2常闭互锁触点(串接在KM3线圈的控制回路中)断开,使得KM3线圈不能得电,实现电气互锁。
电动机Δ接法运行:当电动机转速升高到一定值(一般到其额定转速的70%左右)时,按下SB3(黑色,其常闭触头和常开触头均接入电路中)后,SB3的常闭触头先断开,KM2线圈断电,KM2主触点断开,电动机暂时失电,KM2常闭互锁触点恢复闭合;接着SB3的常开触点闭合,使得KM3线圈通电,KM3自锁触点闭合,同时KM3主触点闭合,电动机Δ接法运行;KM3常闭互锁触点(串接在KM2线圈的控制回路中)断开,使得KM2线圈不能得电,实现电气互锁。
③该电路优缺点分析。
该电路采用了接触器KM2和KM3的动断辅助触点做电气连锁,能保证启动和运行两种状态的准确性与可靠性,也避免了误按启动按钮造成相间短路。
该连锁装置的保护原理如下:与黑色切换按钮SB3常闭触点串联的运行接触器KM3的辅助触点在电机运行过程中由于KM3线圈通电吸合而处于分断状态,即使误按SB2,也不能使启动接触器KM2吸合导致电路接通,一方面防止了运行中接通星形电路造成误动作,另一方面也避免了故障的发生。
它的另一个作用是需要停车时,万一运行接触器KM3主触点粘连或有其它原因分不开,但因KM3的连锁触点串联在启动控制电路中处于断开状态,按下SB2也不能启动,同样避免了误动作和短路。
但该电路在切换的过程中始终靠操作人员来控制其切换时间,有时很难准确把握切换时间的准确性,一旦启动时间过长,电机绕组会因很大的启动电流而发热,影响电机的使用寿命,而且对操作人员的劳动强度也是一种考验,所以用时间继电器来控制其切换时间将会是一种较合理的控制方式。
3.3.2 时间继电器自动控制的Y-△降压启动控制电路
①电路原理图(如图2所示)
②电路动作过程分析。
图2是采用时间继电器控制的Y-△降压启动控制电路,合上QS,按下SB2,接触器KM1线圈通电,KM1常开主触点闭合,KM1辅助触点闭合并自锁。
同时Y形控制接触器KM2和时间继电器KT的线圈通电,KM2主触点闭合,电动机作Y连接启动。
KM2常闭互锁触点断开,使Δ形控制接触器KM3线圈不能得电,实现电气互锁。
经过一定时间后,时间继电器KT 的常闭延时触点打开,常开延时触点闭合,使KM2线圈断电,其常开主触点断开,常闭互锁触点闭合,使KM3线圈通电,KM3常开触点闭合并自锁,电动机恢复Δ连接全压运行。
KM3的常闭互锁触点分断,切断KT线圈电路,并使KM2不能得电,实现电气互锁。
③该电路优缺点分析。
该自动控制线路中,主电路结构和接触器切换控制的Y-△启动电路相同。
在控制电路中多了一个时间继电器控制支路,并用时间继电器的动断触点对启动接触器KM2的控制电路进行连锁,既实现了电气连锁的安全,又减轻了操作人员的劳动强度,因而在企业实际生产中得到广泛的应用。
当然,该电路中多了时间继电器,就增添了又一个维修环节,而且时间继电器在具体使用中往往由于电机的频繁启动很容易损坏,所以对维修人员又提出另外一种技术上的考验。