第二十届“希望杯”全国数学邀请赛初二第一试(模拟)及答案201325
- 格式:doc
- 大小:91.50 KB
- 文档页数:3
希望杯第一届(1990)第二试试题 (1)希望杯第二届(1991年)初中二年级第二试试题 (5)希望杯第三届(1992年)初中二年级第二试题 (10)希望杯第四届(1993年)初中二年级第一试试题 (18)希望杯第四届(1993年)初中二年级第二试试题 (24)希望杯第五届(1994年)初中二年级第一试试题 (26)希望杯第五届(1994年)初中二年级第二试试题 (32)第六届(1995年)初中二年级第一试试题 (45)希望杯第六届(1995年)初中二年级第二试试题 (50)希望杯第七届(1996年)初中二年级第一试试题 (56)希望杯第七届(1996年)初中二年级第二试试题 (62)希望杯第八届(1997年)初中二年级第一试试题 (72)希望杯第八届(1997年)初中二年级第二试试题 (79)第九届(1998年)初中二年级第一试试题 (88)希望杯第九届(1998年)初中二年级第二试试题 (98)1999年第十届“希望杯”全国数学邀请赛第二试 (108)2000年第十一届“希望杯”数学竞赛初二第一试 (111)2000年第十一届“希望杯”数学竞赛初二第二试 (114)2001年希望杯第十二届初中二年级第一试试题 (119)2001年希望杯第12届八年级第2试试题 (122)2002年第十三届全国数学邀请赛初二年级第一试 (129)2002年度初二“希望杯”全国数学邀请赛第二试 (132)2003年第十四届“希望杯”全国数学邀请赛初二第1试 (139)2003年第十四届“希望杯”(初二笫2试) (142)2004年第十五届“希望杯”全国数学邀请赛初二 (148)2004年第十五届“希望杯”全国数学邀请赛初二第2试 (151)2005年第十六届希望杯初二第1试试题 (157)2005年第十六届“希望杯”全国数学邀请赛第二试 (159)2006年第十七届“希望杯”全国数学邀请赛第一试 (163)2006年第十七届“希望杯’’数学邀请赛第二试 (166)2007年第十八届”希望杯“全国数学邀请赛第一试 (171)2007年第十八届“希望杯”全国数学邀请赛第二试 (173)2008年第19届“希望杯”全国数学邀请赛初二第2试试题 (179)2009年第二十届“希望杯”全国数学邀请赛第一试 (183)2009年第20届“希望杯”全国数学邀请赛第二试 (186)2010年第二十一届“希望杯”全国数学邀请赛第一试 (193)2010年第二十一届“希望杯”全国数学邀请赛第二试 (195)2011年第二十二届“希望杯”全国数学邀请赛第二试 (201)希望杯第一届(1990)第二试试题一、选择题:(每题1分,共5分)1.等腰三角形周长是24cm,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是[ ]A.7.5 B.12. C.4. D.12或42.已知P=2)1989(11991199019891988-++⨯⨯⨯,那么P 的值是[ ]A .1987B .1988.C .1989D .19903.a >b >c ,x >y >z ,M=ax+by+cz ,N=az+by+cx ,P=ay+bz+cx ,Q=az+bx+cy ,则[ ]A .M >P >N 且M >Q >N.B .N >P >M 且N >Q >MC .P >M >Q 且P >N >Q.D .Q >M >P 且Q >N >P4.凸四边形ABCD 中,∠DAB=∠BCD=900, ∠CDA ∶∠ABC=2∶1,AD ∶CB=1,则∠BDA=[ ]A .30°B .45°.C .60°.D .不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割[ ]A .是不存在的.B .恰有一种.C .有有限多种,但不只是一种.D .有无穷多种二、填空题:(每题1分,共5分)1. △ABC 中,∠∠B=90°,∠C 的平分线与AB 交于L ,∠C 的外角平分线与BA 的延长线交于N .已知CL=3,则CN=______.2. 2(2)0ab -=,那么111(1)(1)(1990)(1990)ab a b a b ++++++的值是_____. 3. 已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4. ΔABC 中, ∠B=300,三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______. 5. 设a,b,c 是非零整数,那么a b c ab ac bc abc a b c ab ac bc abc++++++的值等于_________.三、解答题:(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD 和A 'B 'C 'D ',且正方形A 'B 'C 'D '的顶点A '在正方形ABCD 的中心.当正方形A 'B 'C 'D '绕A '转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n 之和被7除余数都不为1,将所有满足上述条件的自然数n 由小到大排成一列n 1<n 2<n 3<n 4……,试求:n 1·n 2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D).又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.2.如图9,重合部分面积S A'EBF是一个定值.证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C.在△A'FC和△A'EB中,∴S A'EBF=S△A'BC.∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7).而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n.又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n.即 n1=4,n2=7∴ n1×n2=4×7=28.希望杯第二届(1991年)初中二年级第二试试题一、选择题:(每题1分,共10分)1.如图29,已知B是线段AC上的一点,M是线段AB的中点,N为线段AC的中点,P为NA的中点,Q为MA的中点,则MN∶PQ等于( )A.1 ; B.2; C.3; D.42.两个正数m,n的比是t(t>1).若m+n=s,则m,n中较小的数可以表示为( )A.ts; Bs-ts; C.1tss+; D.1st+.3.y>0时( )4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a,b,c的关系可以写成( ) A.a<b<c. B.(a-b)2+(b-c)2=0. C.c<a<b. D.a=b≠c5.如图30,AC=CD=DA=BC=DE.则∠BAE是∠BAC的 ( )A.4倍. B.3倍. C.2倍. D.1倍6.D是等腰锐角三角形ABC的底边BC上一点,则AD,BD,CD满足关系式( )A.AD 2=BD 2+CD 2. B .AD 2>BD 2+CD 2. C .2AD 2=BD 2+CD 2. D .2AD 2>BD 2+CD 27.方程2191()1010x x -=+的实根个数为( ) A .4 B .3. C .2 D .18.能使分式33x y y x-的值为的x 2、y 2的值是( )A.x 2y 22,y 2C. x 2y 22,y 29.在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u .则x+y+z+u 的值为 ( )A .17B .15.C .13D .1110.两个质数a ,b ,恰好是x 的整系数方程x 2-21x+t=0的两个根,则b a a b +等于( ) A.2213; B.5821; C.240249; D.36538. 二、填空题(每题1分,共10分)1.1989×19911991-1991×19891988=______.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]的平方根是______.4.边数为a ,b ,c 的三个正多边形,若在每个正多边形中取一个内角,其和为1800,那么111a b c++=_________. 5.方程组51x ay y x +=⎧⎨-=⎩有正整数解,则正整数a=_______. 6.从一升酒精中倒出13升,再加上等量的水,液体中还有酒精__________升;搅匀后,再倒 出13升混合液,并加入等量的水, 搅匀后,再倒出13升混合液, 并加入等量的水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,则四边形ABCD 的面积是______.8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______.9.2x x +++______.10.已知两数积ab ≠1.且2a2+1234567890a+3=0,3b2+1234567890b+2=0,则ab=______.三、解答题:(每题5分,共10分,要求:写出完整的推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整)1.已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.2.一块四边形的地(如图33)(EO∥FK,OH∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF改成直的.(即两边都是直线)但进水口EF的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.故选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.故选(B).5.△ACD是等边三角形,△BCA和△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上的中点时,有AD2>BD2+CD2,当D为BC边的端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.故选(D).故选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989×19911991-1991×19891988=1989 (1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取的内角和才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC中,三边长分别是10,24,26,由勾股定理的逆定理可△ADC为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角的四边形的4个内角之和.∴和为360°.10.由已知条件可知a是方程2x2+1234567890x+3=0的一个根,b是方程3y2+1234567890y+2=0的一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≤2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≤1,→a>,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≤2.即本题的结论是正确的.2.本题以图33为准.由图34知OK∥AB,延长EO和FK,即得所求新渠.这时,HG=GM(都等于OK),且OK∥AB,故△OHG的面积和△KGM的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH,FG.②过O作EH平行线交AB于N,过K作FG平行线交于AB于M.③连结EN和FM,则EN,FM就是新渠的两条边界线.又:EH∥ON∴△EOH面积=△FNH面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。
初二希望杯试题及答案一、选择题(每题2分,共20分)1. 地球的自转周期是多久?A. 24小时B. 48小时C. 72小时D. 96小时答案:A2. 下列哪种元素的化学符号是“Fe”?A. 铜B. 铁C. 锌D. 铅答案:B3. 以下哪个国家位于亚洲?A. 巴西B. 阿根廷C. 印度D. 澳大利亚答案:C4. 光年是哪种单位?A. 长度B. 质量C. 时间D. 温度答案:A5. 牛顿第一定律描述的是哪种现象?A. 物体的惯性B. 物体的加速度C. 物体的重力D. 物体的浮力答案:A6. 以下哪种植物属于被子植物?A. 蕨类B. 苔藓C. 藻类D. 裸子植物答案:A7. 人体最大的器官是什么?A. 心脏B. 肝脏C. 皮肤D. 肺答案:C8. 以下哪种动物属于哺乳动物?A. 鸟B. 鱼C. 蜥蜴D. 鸭嘴兽答案:D9. 世界上最深的海沟是?A. 马里亚纳海沟B. 亚丁湾C. 红海D. 地中海答案:A10. 以下哪种疾病是由病毒引起的?A. 疟疾B. 破伤风C. 流感D. 肺炎答案:C二、填空题(每题2分,共20分)1. 地球的赤道周长大约是________千米。
答案:400752. 细胞的基本结构包括细胞膜、细胞质和________。
答案:细胞核3. 人体正常体温大约是________摄氏度。
答案:374. 光的三原色是红、绿、________。
答案:蓝5. 世界上最大的淡水湖是________。
答案:苏必利尔湖6. 植物通过________进行光合作用。
答案:叶绿体7. 人体最长的骨头是________。
答案:股骨8. 世界上最大的沙漠是________。
答案:撒哈拉沙漠9. 世界上最深的湖泊是________。
答案:贝加尔湖10. 世界上最大的珊瑚礁是________。
答案:大堡礁三、简答题(每题10分,共40分)1. 请简述光合作用的过程。
答案:光合作用是植物、藻类和某些细菌利用光能将二氧化碳和水转化为有机物(如葡萄糖)和氧气的过程。
希望杯第一届(1990年)初中二年级第一试试题一、选择题:(每题1分,共10分)1.一个角等于它的余角的5倍,那么这个角是 ( )A .45°.B .75°.C .55°.D .65°2.2的平方的平方根是 ( )A .2.B .2. C .±2. D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 的值是( ) A .0B .a 0.C .a 1D .a 0-a 14. ΔABC,若AB=π27则下列式子成立的是( )A .∠A >∠C >∠B;B .∠C >∠B >∠A;C .∠B >∠A >∠C;D .∠C >∠A >∠B 5.平面上有4条直线,它们的交点最多有( ) A .4个B .5个.C .6个.D .76.725-的立方根是[ ](A )12-. (B )21-.(C ))12(-±. (D )12+. 7.把二次根式a a 1-⋅化为最简二次根式是[ ](A) a . (B)a -. (C) a --. (D) a -8.如图1在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( ) A .2组B .3组.C .4组D .5组。
9.已知 1112111222222--÷-+++-⨯--++x y x y xy y y x y xy x 等于一个固定的值, 则这个值是( ) A .0.B .1.C .2.D .4.把f 1990化简后,等于 ( ) A .1-x x . B.1-x. C.x1. D.x.二、填空题(每题1分,共10分) 1..________6613022=-2.().__________125162590196.012133=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+÷- 3.89850-+=________.4.如图2,∠A=60°,∠1=∠2,则∠ABC 的度数是______.5.如图3,O 是直线AB 上一点,∠AOD=117°,∠BOC=123°,则∠COD 的度数是____度. 6.△ABC 中,∠C=90°,∠A 的平分线与∠B 的平分线交于O 点,则∠AOB 的度数是______度.7.计算下面的图形的面积(长度单位都是厘米)(见图4).答:______. 8.方程x 2+px+q=0,当p >0,q <0时,它的正根的个数是______个. 9.x ,y ,z 适合方程组826532113533451x y z x z x yx y z x y x y z -+++⎧=-⎪⎪++-+⎪+=⎨⎪+=-⎪⎪⎩则1989x-y+25z=______.10.已知3x 2+4x-7=0,则6x 4+11x 3-7x 2-3x-7=______.答案与提示一、选择题提示:1.因为所求角α=5(90°-α),解得α=75°.故选(B).2.因为2的平方是4,4的平方根有2个,就是±2.故选(C).3.以x=1代入,得a0-a1+a0-a1-a1+a1-a0+a1-a0+a1=2a0-3a1+3a1-2a0=0.故选(A).<3,根据大边对大角,有∠C>∠B>∠A.5.如图5,数一数即得.又因原式中有一个负号.所以也不可能是(D),只能选(A).7.∵a<0,故选(C).8.有△ABE,△ABM,△ADP,△ABF,△AMF等五种类型.选(D).9.题目说是一个固定的值,就是说:不论x,y取何值,原式的值不变.于是以x=y=0代入,得:故选(B).故选(A).二、填空题提示:4.∠ADC=∠2+∠ADB=∠1+∠ADB=180°--∠A=120° 所以∠ADC 的度数是120度. 5.∠COD 度数的一半是30度.8.∵Δ=p 2-4q >p 2.9.方程组可化简为:解得: x=1,y=-1,z=0. ∴1989x-y+25z=1990.10.∵6x 4+11x 3-7x 2-3x-7=(3x 2+4x-7)(2x 2+x+1)而3x 2+4x-7=0.希望杯第一届(1990)第二试试题一、选择题:(每题1分,共5分)1.等腰三角形周长是24cm ,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是[ ] A .7.5B .12.C .4.D .12或42.已知P=2)1989(11991199019891988-++⨯⨯⨯,那么P 的值是[ ] A .1987B .1988.C .1989D .19903.a >b >c ,x >y >z ,M=ax+by+cz ,N=az+by+cx ,P=ay+bz+cx ,Q=az+bx+cy ,则[ ] A .M >P >N 且M >Q >N. B .N >P >M 且N >Q >MC .P >M >Q 且P >N >Q.D .Q >M >P 且Q >N >P4.凸四边形ABCD 中,∠DAB=∠BCD=900, ∠CDA ∶∠ABC=2∶1,AD ∶CB=1∶3,则∠BDA=[ ] A .30°B .45°.C .60°.D .不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割[ ]A .是不存在的.B .恰有一种.C .有有限多种,但不只是一种.D .有无穷多种 二、填空题:(每题1分,共5分)1. △ABC 中,∠CAB ∠B=90°,∠C 的平分线与AB 交于L ,∠C 的外角平分线与BA的延长线交于N .已知CL=3,则CN=______. 2. 21(2)0a ab -+-=,那么111(1)(1)(1990)(1990)ab a b a b ++++++的值是_____.3. 已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4. ΔABC 中, ∠B=30053三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______.5. 设a,b,c 是非零整数,那么a b c ab ac bc abc a b c ab ac bc abc++++++的值等于_________.三、解答题:(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD 和A 'B 'C 'D ',且正方形A 'B 'C 'D '的顶点A '在正方形ABCD 的中心.当正方形A 'B 'C 'D '绕A '转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n之和被7除余数都不为1,将所有满足上述条件的自然数n由小到大排成一列n1<n2<n3<n4……,试求:n1·n2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D).又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即a b=k×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即a b=177.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.2.如图9,重合部分面积S A'EBF是一个定值.证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C.在△A'FC和△A'EB中,∴S A'EBF=S△A'BC.∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7).而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n.又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n.即 n1=4,n2=7∴ n1×n2=4×7=28.第二届(1991年)初中二年级第一试试题一、选择题:(每题1分,共15分)1.如图1,已知AB=8,AP=5,OB=6,则OP的长是[ ]A.2; B.3; C.4; D.52.方程x2-5x+6=0的两个根是[ ]A.1,6 ; B.2,3; C.2,3; D.1,63.已知△ABC是等腰三角形,则[ ]A.AB=AC;B.AB=BC;C.AB=AC或AB=BC;D.AB=AC或AB=BC或AC=BC344134b c-==+,则a,b,c的大小关系是[ ]A.a>b>c B.a=b=c C.a=c>b D.a=b>c5.若a≠b,则[ ]6.已知x,y都是正整数,那么三边是x,y和10的三角形有[ ]A.3个B.4个; C.5个D.无数多个7.两条直线相交所成的各角中,[ ]A.必有一个钝角;B.必有一个锐角;C.必有一个不是钝角;D.必有两个锐角8.已知两个角的和组成的角与这两个角的差组成的角互补,则这两个角 [ ]A.一个是锐角另一个是钝角;B.都是钝角;C.都是直角;D.必有一个角是直角9.方程x2+|x|+1=0有[ ]个实数根.A.4; B.2; C.1; D.010.一个两位数,用它的个位、十位上的两个数之和的3倍减去-2,仍得原数,这个两位数是[ ]A.26; B.28; C.36; D.3811.若11个连续奇数的和是1991,把这些数按大小顺序排列起来,第六个数是[ ] A.179; B.181; C.183; D.18512.1,>+等于[ ]A.2x+5 B.2x-5; C.1 D.113.方程2x5+x4-20x3-10x2+2x+1=0有一个实数根是[ ]14.当a<-1时,方程(a3+1)x2+(a2+1)x-(a+1)=0的根的情况是 [ ]A.两负根;B.一正根、一负根且负根的绝对值大(1)BOC .一正根、一负根且负根的绝对值小;D .没有实数根15.甲乙二人,从M 地同时出发去N 地.甲用一半时间以每小时a 公里的速度行走,另一半时间以每小时b 公里的速度行走;乙以每小时a 公里的速度行走一半路程,另一半路程以每小时b 公里的速度行走.若a ≠b 时,则[ ]到达N 地. A . 二人同时; B .甲先;C .乙先;D .若a >b 时,甲先到达,若a <b 时,乙先 二、填空题:(每题1分,共15分)1.一个角的补角减去这个角的余角,所得的角等于______度. 2.有理化分母=______________.3.0x =的解是x=________. 4.分解因式:x 3+2x 2y+2xy 2+y 3=______.5.若方程x 2+(k 2-9)x+k+2=0的两个实数根互为相反数,则k 的值是______.6.如果2x 2-3x-1与a(x-1)2+b(x-1)+c 是同一个多项式的不同形式,那么a bc+=__.7.方程x 2-y 2=1991有______个整数解.8.当m______时,方程(m-1)x 2+2mx+m-3=0有两个实数根.9.如图2,在直角△ABC 中,AD 平分∠A ,且BD ∶DC=2∶1,则∠B 等于______度.CBAFFEDCBA(2) (3) (4)10.如图3,在圆上有7个点,A ,B ,C ,D ,E ,F ,和G ,连结每两个点的线段共可作出__条. 11.D ,E 分别是等边△ABC 两边AB ,AC 上的点,且AD=CE ,BE 与CD 交于F ,则∠BFC 等于__度. 12.如图4,△ABC 中,AB=AC=9,∠BAC=120°,AD 是△ABC 的中线,AE 是△ABD 的角平分线,DF ∥AB 交AE 延长线于F ,则DF 的长为______.13.在△ABC 中,AB=5,AC=9,则BC 边上的中线AD 的长的取值范围是______.14.等腰三角形的一腰上的高为10cm ,这条高与底边的夹角为45°,则这个三角形的面积是______.15.已知方程x 2+px+q=0有两个不相等的整数根,p ,q 是自然数,且是质数,这个方程的根是______.答案与提示一、选择题提示:1.∵OP=OB-PB=OB-(AB-AP)=6-(8-5)=3.∴选(B).2.∵以2,3代入方程,适合.故选(B).3.∵有两条边相等的三角形是等腰三角形.∴选(D).4.∵a=1,b=-1,c=1.∴选(C).6.∵x=y>5的任何正整数,都可以和10作为三角形的三条边.∴选(D).7.两直线相交所成角可以是直角,故而(A),(D)均不能成立.∴选(C).8.设两个角为α,β.则(α+β)+(α-β)=180°,即α=90°.故选(D).9.∵不论x为何实数,x2+|x|+1总是大于零的.∴选(D).即7a=2b+2,可见a只能为偶数,b+1是7的倍数.故取(A).11.设这11个连续奇数为:2n+1,2n+3,2n+5,…,2n+21.则(2n+1)+(2n+3)+(2n+5)+…+(2n+21)=1991.即 11(2n+11)=1991.解得n=85.∴第六个数是2×85+11=181.故选(B).∴选(A).13.原方程可化为(2x5-20x3+2x)+(x4-10x2+1)=0.即 (2x+1)(x4-10x2+1)=0.即 x4-10x2+1=0.故取(C).14.a<-1时,a3+1<0,a2+1>0,a+1<0.而若方程的两根为x1,x2,则有15.设M,N两地距离为S,甲需时间t1,乙需时间t2,则有∴t1<t2,即甲先.另外:设a=1,b=2,则甲走6小时,共走了9公里,这时乙走的时间为从这个计算中,可以看到,a,b的值互换,不影响结果.故取(B).二、填空题提示:1.设所求角为α,则有(180°-α)-(90°-α)=90°.4.x3+2x2y+2xy3+y3=(x3+y3)+(2x2y+2xy2)=(x+y)(x2-xy+y2)+2xy(x+y)=(x+y)(x2+xy+y2)5.设二根为x1,-x1,则x1+(-x1)=-(k2-9).即k2-9=0.即k=±3.又,要有实数根,必须有△≥0.即 (k2-9)2-4(k+2)>0.显然 k=3不适合上面的不等式,∴k=-3.6.由2x2-3x-1=a(x+1)2+b(x-1)+c是恒等式,故由x=1代入,得c=-2;x2项的系数相等,有a=2,这时再以x=0代入,得-1=a-b+c.即b=1.7.x2-y2=1991,(x-y)(y+x)=11×181可以是9.BD∶DC=2∶1,故有AB∶AC=2∶1,直角三角形斜边与直角边之比为2∶1,则有∠B=30°.10.从A出发可连6条,从B出发可连5条,(因为BA就是AB),从C出发可连4条,…,从F出发可连一条.共计1+2+3+4+5+6=21(条).另法:每个点出发均可连6条,共有42条.但每条都重复过一次,11.如图28.∠F=∠1+∠A+∠2.又:△ADC≌△CEB.∴∠1=∠3.∴∠F=∠3+∠A+∠2=∠B+∠A=120°.12.△ABC是等腰三角形,D为底边的中点,故AD又是垂线,又是分角线,故∠BAD=60°,∠ADB=90°.又:AE是分角线,故∠DAE=∠EAB=30°.又:DF∥AB,∴∠F=∠BAE=30°.在△ADF中,∠DAF=∠F=30°.∴AD=DF.而在△ADB中,AB=9,∠B=30°.13.∵4<BC<14.∴当BC为4时,BD=CD=2,AD<7.当BC=14时,BC=CD=7,有AD>2.∴2<AD<7.14.等腰三角形一腰上的高与底边的夹角是45°,则顶角是90°,高就是腰,其长为10cm.15.设两根为x1,x2.则x1+x2=-p① x1x2=q②由题设及①,②可知,x1,x2均为负整数.q为质数,若q为奇数,则x1,x2均为奇数.从而p为偶数,而偶质数只有2,两个负整数之和为-2,且不相等,这是不可能的.若q为偶数(只能是2),两个负整数之积为2,且不相等,只能是-1和-2.∴方程的根是-1和-2.希望杯第二届(1991年)初中二年级第二试试题一、选择题:(每题1分,共10分)1.如图29,已知B是线段AC上的一点,M是线段AB的中点,N为线段AC的中点,P为NA的中点,Q为MA的中点,则MN∶PQ等于( )A.1 ; B.2; C.3; D.42.两个正数m,n的比是t(t>1).若m+n=s,则m,n中较小的数可以表示为( )A.ts; Bs-ts; C.1tss+; D.1st+.3.y>0时,3x y-等于( )4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a ,b ,c 的关系可以写成( ) A .a <b <c. B .(a-b)2+(b-c)2=0. C .c <a <b. D .a=b ≠c 5.如图30,AC=CD=DA=BC=DE .则∠BAE 是∠BAC 的 ( ) A .4倍.B .3倍.C .2倍.D .1倍6.D 是等腰锐角三角形ABC 的底边BC 上一点,则AD ,BD ,CD 满足关系式( ) A.AD 2=BD 2+CD 2. B .AD 2>BD 2+CD 2. C .2AD 2=BD 2+CD 2. D .2AD 2>BD 2+CD 2 7.方程2191()1010x x -=+的实根个数为( ) A .4 B .3. C .2 D .18.能使分式33x y y x-的值为x 2、y 2的值是( )A.x 2,y 22y 2;C. x 2,y 2; D. x 2y 2.9.在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u .则x+y+z+u 的值为 ( ) A .17B .15.C .13D .1110.两个质数a ,b ,恰好是x 的整系数方程x 2-21x+t=0的两个根,则b aa b+等于( ) A.2213; B.5821; C.240249; D.36538.二、填空题(每题1分,共10分)1.1989×19911991-1991×19891988=______.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]的平方根是______.4.边数为a ,b ,c 的三个正多边形,若在每个正多边形中取一个内角,其和为1800,那么111a b c++=_________. 5.方程组51x ay y x +=⎧⎨-=⎩有正整数解,则正整数a=_______.6.从一升酒精中倒出13升,再加上等量的水,液体中还有酒精__________升;搅匀后,再倒 出13升混合液,并加入等量的水, 搅匀后,再倒出13升混合液, 并加入等量的水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,则四边形ABCD 的面积是______. 8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______. 9.2243x x +++的最小值的整数部分是______.10.已知两数积ab ≠1.且2a 2+1234567890a+3=0,3b 2+1234567890b+2=0,则ab=______. 三、解答题:(每题5分,共10分,要求:写出完整的推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整)1. 已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.2.一块四边形的地(如图33)(EO ∥FK ,OH ∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF 改成直的.(即两边都是直线)但进水口EF 的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.故选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.故选(B).5.△ACD是等边三角形,△BCA和△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上的中点时,有AD2>BD2+CD2,当D为BC边的端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.故选(D).故选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989×19911991-1991×19891988=1989(1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取的内角和才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC中,三边长分别是10,24,26,由勾股定理的逆定理可△ADC为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角的四边形的4个内角之和.∴和为360°.10.由已知条件可知a是方程2x2+1234567890x+3=0的一个根,b是方程3y2+1234567890y+2=0的一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≤2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≤1,→a>2b,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≤2.即本题的结论是正确的.2.本题以图33为准.由图34知OK∥AB,延长EO和FK,即得所求新渠.这时,HG=GM(都等于OK),且OK ∥AB,故△OHG的面积和△KGM的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH,FG.②过O作EH平行线交AB于N,过K作FG平行线交于AB于M.③连结EN和FM,则EN,FM就是新渠的两条边界线.又:EH∥ON∴△EOH面积=△FNH面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。
希望杯初二上试题及答案一、选择题(每题2分,共10分)1. 下列哪项不是中国四大名著之一?A. 《红楼梦》B. 《西游记》C. 《水浒传》D. 《聊斋志异》2. 地球自转一周的时间是多久?A. 12小时B. 24小时C. 48小时D. 72小时3. 人体最大的器官是什么?A. 心脏B. 肝脏C. 皮肤D. 肺4. 以下哪个选项是正确的化学方程式?A. H2 + O2 → H2OB. 2H2 + O2 → 2H2OC. H2 + O2 → 2H2OD. 2H2 + O2 → H2O5. 光年是长度单位,表示光在一年内传播的距离,那么光年的数值是多少?A. 9.46万亿公里B. 9.46亿公里C. 9.46万公里D. 9.46公里二、填空题(每题2分,共10分)1. 圆周率π的近似值是_______。
2. 牛顿第一定律也被称为_______。
3. 世界上最高的山峰是_______。
4. 人体内含量最多的元素是_______。
5. 光合作用的主要产物是_______。
三、解答题(每题10分,共20分)1. 已知一个直角三角形的两条直角边长分别为3cm和4cm,求该直角三角形的斜边长。
2. 一个物体从静止开始做匀加速直线运动,经过5秒后的速度为10m/s,求物体的加速度。
四、简答题(每题15分,共30分)1. 请简述牛顿三大运动定律的内容。
2. 描述光合作用的过程及其对生态系统的重要性。
五、实验题(每题20分,共20分)1. 根据实验数据,绘制出小车在斜面上下滑时的速度-时间图,并分析小车的运动情况。
答案:一、选择题1. D2. B3. C4. B5. A二、填空题1. 3.141592. 惯性定律3. 珠穆朗玛峰4. 氧5. 氧气和葡萄糖三、解答题1. 根据勾股定理,斜边长为√(3²+4²) = √(9+16) = √25 = 5cm。
2. 物体的加速度为10m/s² ÷ 5s = 2m/s²。
希望杯第一届(1990年)初中二年级第一试试题 (2)希望杯第一届(1990年)初中二年级第二试试题 (6)希望杯第二届(1991年)初中二年级第一试试题 (10)希望杯第二届(1991年)初中二年级第二试试题 (17)希望杯第三届(1992年)初中二年级第一试试题 (23)希望杯第三届(1992年)初中二年级第二试试题 (28)希望杯第四届(1993年)初中二年级第一试试题 (37)希望杯第四届(1993年)初中二年级第二试试题 (45)希望杯第五届(1994年)初中二年级第一试试题 (53)希望杯第五届(1994年)初中二年级第二试试题 (60)希望杯第六届(1995年)初中二年级第一试试题 (69)希望杯第六届(1995年)初中二年级第二试试题 (71)希望杯第七届(1996年)初中二年级第一试试题 (78)希望杯第七届(1996年)初中二年级第二试试题 (86)希望杯第八届(1997年)初中二年级第一试试题 (97)希望杯第八届(1997年)初中二年级第二试试题 (105)希望杯第九届(1998年)初中二年级第一试试题 (115)希望杯第九届(1998年)初中二年级第二试试题 (118)希望杯第十届(1999年)初中二年级第一试试题 (129)希望杯第十届(1999年)初中二年级第二试试题 (133)希望杯第十一届(2000年)初中二年级第一试试题 (137)希望杯第十一届(2000年)初中二年级第二试试题 (140)希望杯第十二届(2001年)初中二年级第一试试题 (145)希望杯第十二届(2001年)初中二年级第二试试题 (150)希望杯第十三届(2002年)初中二年级第一试试题 (156)希望杯第十三届(2002年)初中二年级第二试试题 (158)希望杯第十四届(2003年)初中二年级第一试试题 (167)希望杯第十四届(2003年)初中二年级第二试试题 (169)希望杯第十五届(2004年)初中二年级第一试试题 (174)希望杯第十五届(2004年)初中二年级第二试试题 (177)第十六届“希望杯”全国数学邀请赛初一第1试 (180)第十六届“希望杯”全国数学邀请赛初一第2试 (184)第十六届“希望杯”全国数学邀请赛初二第1试 (188)第十六届“希望杯”全国数学邀请赛初二第2试 (192)希望杯第一届(1990年)初中二年级第一试试题一、选择题(每题1分,共10分)以下每个题目里列出的A ,B ,C ,D ,四个结论中,有且仅有一个是正确的,请你在括号内填上你认为是正确的那个结论的英文字母代号.1.一个角等于它的余角的5倍,那么这个角是 ( )A .45°B .75°C .55°D .65°2.2的平方的平方根是 ( )A .2B . 2C .±2D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 的值是( )A .0B .a 0.C .a 1D .a 0-a 1 4. ΔABC,若AB=π27,则下列式子成立的是( )A .∠A >∠C >∠B B .∠C >∠B >∠AC .∠B >∠A >∠CD .∠C >∠A >∠B5.平面上有4条直线,它们的交点最多有( )A .4个B .5个C .6个D .76.725-的立方根是[ ](A )12-. (B )21-.(C ))12(-±. (D )12+.7.把二次根式aa 1-⋅化为最简二次根式是[ ] (A) a . (B)a -. (C) a --. (D) a -8.如图在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( )A .2组B .3组C .4组D .5组9.已知 1112111222222--÷-+++-⨯--++x y x y xy y y x y xy x 等于一个固定的值,则这个值是( )A .0.B .1.C .2D .4.把f 1990化简后,等于 ( )A .1-x x . B.1-x. C.x 1. D.x. 二、填空题(每题1分,共10分) 1..________6613022=-2.().__________125162590196.012133=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+÷- 3.89850-+=________.4.如图2,∠A=60°,∠1=∠2,则∠ABC 的度数是______.5.如图3,O 是直线AB 上一点,∠AOD=117°,∠BOC=123°,则∠COD 的度数是____度.6.△ABC 中,∠C=90°,∠A 的平分线与∠B 的平分线交于O 点,则∠AOB 的度数是______度.7.计算下面的图形的面积(长度单位都是厘米)(见图4).答:______.8.方程x 2+px+q=0,当p >0,q <0时,它的正根的个数是______个.9.x ,y ,z 适合方程组 826532113533451x y z x z x y x y z x y x y z -+++⎧=-⎪⎪++-+⎪+=⎨⎪+=-⎪⎪⎩则1989x-y+25z=______.10.已知3x 2+4x-7=0,则6x 4+11x 3-7x 2-3x-7=______.答案与提示一、选择题提示:1.因为所求角α=5(90°-α),解得α=75°.故选(B).2.因为2的平方是4,4的平方根有2个,就是±2.故选(C).3.以x=1代入,得a0-a1+a0-a1-a1+a1-a0+a1-a0+a1=2a0-3a1+3a1-2a0=0.故选(A).<3,根据大边对大角,有∠C>∠B>∠A.5.如图5,数一数即得.又因原式中有一个负号.所以也不可能是(D),只能选(A).7.∵a<0,故选(C).8.有△ABE,△ABM,△ADP,△ABF,△AMF等五种类型.选(D).9.题目说是一个固定的值,就是说:不论x,y取何值,原式的值不变.于是以x=y=0代入,得:故选(B).故选(A).二、填空题提示:4.∠ADC=∠2+∠ADB=∠1+∠ADB=180°--∠A=120°所以∠ADC的度数是120度.5.∠COD度数的一半是30度.8.∵Δ=p2-4q>p2.9.方程组可化简为:解得: x=1,y=-1,z=0.∴1989x-y+25z=1990.10.∵6x4+11x3-7x2-3x-7=(3x2+4x-7)(2x2+x+1)而3x2+4x-7=0.希望杯第一届(1990年)初中二年级第二试试题一、选择题(每题1分,共5分)以下每个题目里给出的A ,B ,C ,D 四个结论中,有且仅有一个是正确的.请你将正确结论的英文字母代号填到括号内.1.等腰三角形周长是24cm ,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是( )A .7.5B .12C .4D .12或42.已知P=2)1989(11991199019891988-++⨯⨯⨯,那么P 的值是[ ]A .1987B .1988.C .1989D .19903.a >b >c ,x >y >z ,M=ax+by+cz ,N=az+by+cx ,P=ay+bz+cx ,Q=az+bx+cy ,则有( )A .M >P >N 且M >Q >NB .N >P >M 且N >Q >MC .P >M >Q 且P >N >QD .Q >M >P 且Q >N >P4.凸四边形ABCD 中,∠DAB=∠BCD=900, ∠CDA ∶∠ABC=2∶1,AD ∶CB=1∶3,则∠BDA=[ ]A .30°B .45°C .60°D .不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割( )A .是不存在的B .恰有一种C .有有限多种,但不只是一种D .有无穷多种二、填空题(每题1分,共5分)1.△ABC 中,∠CAB ∠B=90°,∠C 的平分线与AB 交于L ,∠C 的外角平分线与BA 的延长线交于N .已知CL=3,则CN=______.2.21(2)0a ab --=,那么111(1)(1)(1990)(1990)ab a b a b ++++++L L 的值是_____.3.已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4.ΔABC 中, ∠B=30053三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______.5.设a,b,c 是非零整数,那么a bcabacbc abca b c ab ac bc abc ++++++的值等于_________.三、解答题(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD和A'B'C'D',且正方形A'B'C'D'的顶点A'在正方形ABCD的中心.当正方形A'B'C'D'绕A'转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n之和被7除余数都不为1,将所有满足上述条件的自然数n由小到大排成一列n1<n2<n3<n4……,试求:n1·n2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D).又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即a b=k×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即a b=177.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.2.如图9,重合部分面积S A'EBF是一个定值.证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C.在△A'FC和△A'EB中,∴S A'EBF=S△A'BC.∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7). 而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n . 又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n .即 n 1=4,n 2=7∴ n 1×n 2=4×7=28.希望杯第二届(1991年)初中二年级第一试试题一、选择题(每题1分,共15分)以下每个题目的A ,B ,C ,D 四个结论中,仅有一个是正确的.请在括号内填上正确的那个结论的英文字母代号.1.如图24,已知AB=8,AP=5,OB=6,则OP 的长是( )A .2B .3C .4D .52.方程x 25x+6=0的两个根是( )A .1,6B .2,3C .2, 3D .1, 63.已知△ABC 是等腰三角形,则( )A .AB=ACB .AB=BCC .AB=AC 或AB=BCD .AB=AC 或AB=BC 或AC=BC 22345(13)41(5)34b c ---==-+,则a,b,c 的大小关系是( ) A .a >b >c B .a=b=c C .a=c >b D .a=b >c(1)BO5.若a ≠b,则(b-a)a b -等于[ ]A.33()a b -;B.33()a b ---;C.33()a b --;D.33()b a --6.已知x ,y 都是正整数,那么三边是x ,y 和10的三角形有( ) A .3个 B .4个 C .5个 D .无数多个 7.两条直线相交所成的各角中, ( )A .必有一个钝角B .必有一个锐角C .必有一个不是钝角D .必有两个锐角8.已知两个角的和组成的角与这两个角的差组成的角互补,则这两个角( )A .一个是锐角另一个是钝角B .都是钝角C .都是直角D .必有一个角是直角 9.方程x 2+|x|+1=0有( )个实数根.( )A .4B .2C .1D .010.一个两位数,用它的个位、十位上的两个数之和的3倍减去2,仍得原数,这个两位数是( )A .26B .28C .36D .3811.若11个连续奇数的和是1991,把这些数按大小顺序排列起来,第六个数是 ( )A .179B .181C .183D .185 12.如果231,x x >+那么323(2)(3)x x +-+等于[ ]A .2x+5B .2x5 C .1D .113.方程2x 5+x 4-20x 3-10x 2+2x+1=0有一个实数根是 ( ) A.53+; B.52+; C.32+; D.53-14.当a <1时,方程(a 3+1)x 2+(a 2+1)x (a+1)=0的根的情况是 ( ) A .两负根 B .一正根、一负根且负根的绝对值大 C .一正根、一负根且负根的绝对值小 D .没有实数根15.甲乙二人,从M 地同时出发去N 地.甲用一半时间以每小时a 公里的速度行走,另一半时间以每小时b 公里的速度行走;乙以每小时a 公里的速度行走一半路程,另一半路程以每小时b 公里的速度行走.若a ≠b 时,则( )到达N 地.( )A . 二人同时B .甲先C .乙先D .若a >b 时,甲先到达,若a <b 时,乙先二、填空题(每题1分,共15分)1.一个角的补角减去这个角的余角,所得的角等于______度.2.有理化分母:5757-+=______________.3.方程10x x ++=的解是x=________.4.分解因式:x 3+2x 2y+2xy 2+y 3=______.5.若方程x 2+(k 29)x+k+2=0的两个实数根互为相反数,则k 的值是______.6.如果2x 2-3x-1与a(x-1)2+b(x-1)+c 是同一个多项式的不同形式,那么a bc+=__.7.方程x 2y 2=1991有______个整数解.8.当m______时,方程(m 1)x 2+2mx+m 3=0有两个实数根.9.如图25,在直角△ABC 中,AD 平分∠A ,且BD ∶DC=2∶1,则∠B 等于______度.DCBAGEDCFEDCBA10.如图26,在圆上有7个点,A ,B ,C ,D ,E ,F ,和G ,连结每两个点的线段共可作出______条.11.D ,E 分别是等边△ABC 两边AB ,AC 上的点,且AD=CE ,BE 与CD 交于F ,则∠BFC 等于______度.12.如图27,△ABC 中,AB=AC=9,∠BAC=120°,AD 是△ABC 的中线,AE 是△ABD 的角平分线,DF ∥AB 交AE 延长线于F ,则DF 的长为______.13.在△ABC 中,AB=5,AC=9,则BC 边上的中线AD 的长的取值范围是______. 14.等腰三角形的一腰上的高为10cm ,这条高与底边的夹角为45°,则这个三角形的面积是______.15.已知方程x 2+px+q=0有两个不相等的整数根,p ,q 是自然数,且是质数,这个方程的根是______.答案与提示一、选择题提示:1.∵OP=OB-PB=OB-(AB-AP)=6-(8-5)=3.∴选(B).2.∵以2,3代入方程,适合.故选(B).3.∵有两条边相等的三角形是等腰三角形.∴选(D).4.∵a=1,b=-1,c=1.∴选(C).6.∵x=y>5的任何正整数,都可以和10作为三角形的三条边.∴选(D).7.两直线相交所成角可以是直角,故而(A),(D)均不能成立.∴选(C).8.设两个角为α,β.则(α+β)+(α-β)=180°,即α=90°.故选(D).9.∵不论x为何实数,x2+|x|+1总是大于零的.∴选(D).即7a=2b+2,可见a只能为偶数,b+1是7的倍数.故取(A).11.设这11个连续奇数为:2n+1,2n+3,2n+5,…,2n+21.则(2n+1)+(2n+3)+(2n+5)+…+(2n+21)=1991.即 11(2n+11)=1991.解得n=85.∴第六个数是2×85+11=181.故选(B).∴选(A).13.原方程可化为(2x5-20x3+2x)+(x4-10x2+1)=0.即 (2x+1)(x4-10x2+1)=0.即 x4-10x2+1=0.故取(C).14.a<-1时,a3+1<0,a2+1>0,a+1<0.而若方程的两根为x1,x2,则有15.设M,N两地距离为S,甲需时间t1,乙需时间t2,则有∴t1<t2,即甲先.另外:设a=1,b=2,则甲走6小时,共走了9公里,这时乙走的时间为从这个计算中,可以看到,a,b的值互换,不影响结果.故取(B).二、填空题提示:1.设所求角为α,则有(180°-α)-(90°-α)=90°.4.x3+2x2y+2xy3+y3=(x3+y3)+(2x2y+2xy2)=(x+y)(x2-xy+y2)+2xy(x+y)=(x+y)(x2+xy+y2)5.设二根为x1,-x1,则x1+(-x1)=-(k2-9).即k2-9=0.即k=±3.又,要有实数根,必须有△≥0.即 (k2-9)2-4(k+2)>0.显然 k=3不适合上面的不等式,∴k=-3.6.由2x2-3x-1=a(x+1)2+b(x-1)+c是恒等式,故由x=1代入,得c=-2;x2项的系数相等,有a=2,这时再以x=0代入,得-1=a-b+c.即b=1.7.x2-y2=1991,(x-y)(y+x)=11×181可以是9.BD∶DC=2∶1,故有AB∶AC=2∶1,直角三角形斜边与直角边之比为2∶1,则有∠B=30°.10.从A出发可连6条,从B出发可连5条,(因为BA就是AB),从C出发可连4条,…,从F出发可连一条.共计1+2+3+4+5+6=21(条).另法:每个点出发均可连6条,共有42条.但每条都重复过一次,11.如图28.∠F=∠1+∠A+∠2.又:△ADC≌△CEB.∴∠1=∠3.∴∠F=∠3+∠A+∠2=∠B+∠A=120°.12.△ABC是等腰三角形,D为底边的中点,故AD又是垂线,又是分角线,故∠BAD=60°,∠ADB=90°.又:AE是分角线,故∠DAE=∠EAB=30°.又:DF∥AB,∴∠F=∠BAE=30°.在△ADF中,∠DAF=∠F=30°.∴AD=DF.而在△ADB中,AB=9,∠B=30°.13.∵4<BC<14.∴当BC为4时,BD=CD=2,AD<7.当BC=14时,BC=CD=7,有AD>2.∴2<AD<7.14.等腰三角形一腰上的高与底边的夹角是45°,则顶角是90°,高就是腰,其长为10cm.15.设两根为x1,x2.则x1+x2=-p① x1x2=q②由题设及①,②可知,x1,x2均为负整数.q为质数,若q为奇数,则x1,x2均为奇数.从而p为偶数,而偶质数只有2,两个负整数之和为-2,且不相等,这是不可能的.若q 为偶数(只能是2),两个负整数之积为2,且不相等,只能是-1和-2. ∴方程的根是-1和-2.希望杯第二届(1991年)初中二年级第二试试题一、选择题(每题1分,共10分)以下每个题目里给出的A ,B ,C ,D 四个结论中,有且仅有一个是正确的.请你在括号内填上你认为是正确的那个结论的英文字母代号.1.如图29,已知B 是线段AC 上的一点,M 是线段AB 的中点,N 为线段AC 的中点,P 为NA 的中点,Q 为MA 的中点,则MN ∶PQ 等于( ) A .1 B .2 C .3 D .42.两个正数m ,n 的比是t(t >1).若m+n=s ,则m ,n 中较小的数可以表示为 ( ) A.ts; Bs-ts; C.1ts s +; D.1s t+. 3.y>0时,3x y -等于( )A.-x xy ;B.x xy ;C.-x xy -;D.x xy -.4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a ,b ,c 的关系可以写成 ( )A .a <b <cB .(a b)2+(b c)2=0C .c <a <bD .a=b ≠c5.如图30,AC=CD=DA=BC=DE .则∠BAE 是∠BAC 的 ( ) A .4倍 B .3倍 C .2倍 D .1倍6.D 是等腰锐角三角形ABC 的底边BC 上一点,则AD ,BD ,CD 满足关系式( )A .AD 2=BD 2+CD 2B .AD 2>BD 2+CD 2C .2AD 2=BD 2+CD 2 D .2AD 2>BD 2+CD 2( ) 7.方程2191()1010x x -=+的实根个数为( ) A .4 B .3 C .2 D .18.能使分式33x y y x-的值为1123的x 2、y 2的值是( ) A.x 2=1+3,y 2=2+3; B. x 2=2+3,y 2=2-3; C. x 2=7+43,y 2=7-43; D. x 2=1+23,y 2=2-3.9.在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u .则x+y+z+u 的值为( )A .17B .15C .13D .11 10.两个质数a ,b ,恰好是x 的整系数方程x 2-21x+t=0的两个根,则b aa b+等于( ) A.2213; B.5821; C.240249; D.36538.二、填空题(每题1分,共10分)1.1989×199119911991×19891988=______.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]的平方根是______.4.边数为a ,b ,c 的三个正多边形,若在每个正多边形中取一个内角,其和为1800,那么111a b c++=_________.5.方程组51x ay y x +=⎧⎨-=⎩有正整数解,则正整数a=_______.6.从一升酒精中倒出13升,再加上等量的水,液体中还有酒精__________升;搅匀后,再倒出13升混合液,并加入等量的水, 搅匀后,再倒出13升混合液, 并加入等量的水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,则四边形ABCD 的面积是______. 8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______. 9.2243x x +++的最小值的整数部分是______.10.已知两数积ab≠1.且 2a2+1234567890a+3=0,3b2+1234567890b+2=0,则a=______.b三、解答题(每题5分,共10分,要求:写出完整的推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整)1.已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.2.一块四边形的地(如图33)(EO∥FK,OH∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF改成直的.(即两边都是直线)但进水口EF的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.故选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.故选(B).5.△ACD是等边三角形,△BCA和△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上的中点时,有AD2>BD2+CD2,当D为BC边的端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.故选(D).故选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989×19911991-1991×19891988=1989(1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取的内角和才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC中,三边长分别是10,24,26,由勾股定理的逆定理可△ADC为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角的四边形的4个内角之和.∴和为360°.10.由已知条件可知a是方程2x2+1234567890x+3=0的一个根,b是方程3y2+1234567890y+2=0的一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≤2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≤1,→a>2b,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≤2.即本题的结论是正确的.2.本题以图33为准.由图34知OK∥AB,延长EO和FK,即得所求新渠.这时,HG=GM(都等于OK),且OK ∥AB,故△OHG的面积和△KGM的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH,FG.②过O作EH平行线交AB于N,过K作FG平行线交于AB于M.③连结EN和FM,则EN,FM就是新渠的两条边界线.又:EH∥ON∴△EOH面积=△FNH面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。
“希望杯”数学邀请赛培训题初中二年级选择题(以下每个题的四个选择支中,仅有一个是正确的)1,已知,0〉-a b 且0≥a ,那么||222b a b ab a +-+- ( ) (A )化简为0 (B )化简为-b 2(C )化简为-a 2 (D )不能再化简2.已知a 是任意实数,有4个不等式:①a a 〉2;②a a 〉2;③22〉+a a ;④a a 〉+12,那么不等式关系一定成立的有( )个。
(A )1 (B )2 (C )3 (D )43.已知关于x 的方程4)2(3)32(2-++=++m x x m m 有唯一解,那么m 的值的情况是( )。
(A )2-=m (B )0=m (C )2-≠m 或0≠m (D )2-≠m 且0≠m4.已知关于x 的方程22)1(a ax x a -=+的解是负数,那么a 的值的情况是( )(A )1-≠a (B )1〈a (C )1〈a 且0≠a (D )1〉a5.已知寻于任意有理数b a ,,关于y x ,的二元一次方程b a y b a x b a +=+--)()(都有一组公共解,则公共解为( ) (A )⎩⎨⎧==00y x (B )⎩⎨⎧-==10y x (C )⎩⎨⎧=-=01y x (D )⎩⎨⎧==11y x6.设,2002200120012002,2001200020002001==N M 则N M 与的关系是( )(A )N M = (B )N M 〉 (C )N M 〈 (D )1=MN7.若b a ,为有理数且满足,322〈b a 那么22)()3(b a b a ++与3的大小关系是( )(A )3)()3(22〈++b a b a (B )3)()3(22〉++b a b a(C )3)()3(22=++b a b a (D )无法确定的8.已知a 为正数,且[],1)(=+++b b b a a a 则b a +的值是( ) (A )43 (B )2 (C )1 (D )219.5个有理数中,若其中任意4个数的和都大于另一个数,那么这5个有理数中( )(A )最多有4个是0 (B )最多有2个是0(C )最多有3个是0 (D )最多有1个是010.把自然数n 的各位数字之和记为),(n S如++===+===42)(,247;1183)(,38n S n n S n 7=13,若对于某些自然数满足 ,2007)(=-n S n 则n 的最大值是( )(A )2025 (B )2023 (C )2021 (D )201911.已知四个方程①0232=++x ;②0234=-x ;③03514=-+-x x ;④24=+-x x ,其中有实数解的方程的个数是( )个。
第十五届希望杯初二第1试试题一、选择题:(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在下面的表格内。
1、小伟自制了一个孔成像演示仪,如图1所示,在一个圆纸筒的两端分别用半秀明纸和黑纸封住,并用针在黑纸的中心刺出一个小孔。
小伟将有黑纸的一端正对着竖直放置的“”形状的光源,则他在半透明纸上观察到的像的形状是( )(A)(B)(C)(D)2、代数式的化简结果是( )(A)(B)(C)(D)3、已知是实数,且,那么( )(A)31(B)21(C)13(D)13或21或314、已知(>)是两个任意质数,那么下列四个分数( )①;②;③;④中总是最简分数的有( )(A)1个(B)2个(C)3个(D)4个5、Given are real numbers, and , then the valueof is ( )(A)4(B)6(C)3(D)4or66、某出版社计划出版一套百科全书,固定成本为8万元,每印制一套需增加成本20元。
如果每套定价100元,卖出后有3成给承销商,出版社要盈利10%,那么该书至少应发行(精确到千位)( )(A)2千套(B)3千套(C)4千套(D)5千套7、△ABC的三个内角∠A、∠B、∠C,满足3∠A>5∠B,3∠C≤∠B,则这个三角形是( )(A)锐角三角形(B)直角三角形(C)钝角三角形(D)等边三角形8、如图2,正方形ABCD的面积为256,点E在AD上,点F在AB的延长线上,EC⊥FC,△CEF的面积是200,则BF的长是( )(A)15(B)12(C)11(D)109、如图3,在四边形ABCD中,∠ABC=∠ADC=90°,点E、F分别是对角线AC、BD的中点,则( )(A)(B)(C)(D)10、表示不大于的最大整数,如[3.15]=3,[-2.7]=-3,[4]=4,则( )( )(A)1001(B)2003(C)2004(D)1002二、A组填空题(每小题4分,共40分。
第二十一届“希望杯”全国数学邀请赛初二 第1试2010年3月14日 上午8:30至10:00 得分一、选择题 (每小题4分,共40分) 以下每题的四个选项中,仅有一个是正确的,请将正确答 案前的英文字母写在下面的表格内。
1. 下列图案都是由字母m 组合而成的,其中不是中心对称图形的是2. 若a 2≥a 3≥0,则 (A) a ≥3a (B) a ≤3a (C) a ≥1 (D) 0<a <1 。
3. 若代数式2009||2010--x x 有意义,则x 的取值范围是 (A) x ≤2010 (B) x ≤2010,且x ≠±2009 (C) x ≤2010,且x ≠2009 (D) x ≤2010,且x ≠ -20092 。
4. 正整数a ,b ,c 是等腰三角形三边的长,并且a +bc +b +ca =24,则这样的三角形有 (A) 1个(B) 2个 (C) 3个 (D) 4个 。
5. 顺次连接一个凸四边形各边的中点,得到一个菱形,则这个四边形一定是 (A) 任意的四边 形 (B) 两条对角线等长的四边形 (C) 矩形 (D) 平行四边形 。
6. 设p =317+a +317+b +317+c +317+d ,其中a ,b ,c ,d 是正实数,并且a +b +c +d =1,则(A) p >5 (B) p <5 (C) p <4 (D) p =5 。
7. Given a ,b ,c satisfy c <b <a and ac <0,then which one is not sure to be correct in the followinginequalities ? (A ) a b >a c (B ) c a b ->0 (C ) c b 2>c a 2 (D ) acc a -<0 。
(英汉词典:be sure to 确定;correct 正确的;inequality 不等式)8. 某公司的员工分别住在A 、B 、C 三个小区,A 区住员 工30人,B 区住员工15人,C 区住员工10人,三个 小区在一条直线上,位置如图所示。
1、第一届希望杯初二第1试试题2、第一届希望杯初二第2试试题3、第二届希望杯初二第1试试题4、第二届希望杯初二第2试试题5、第三届希望杯初二第1试试题6、第三届希望杯初二第2试试题7、第四届希望杯初二第1试试题8、第四届希望杯初二第2试试题9、第五届希望杯初二第1试试题10、第五届希望杯初二第2试试题11、第六届希望杯初二第1试试题12、第六届希望杯初二第2试试题13、第七届希望杯初二第1试试题14、第七届希望杯初二第2试试题15、第八届希望杯初二第1试试题16、第八届希望杯初二第2试试题17、第九届希望杯初二第1试试题18、第九届希望杯初二第2试试题19、第十届希望杯初二第1试试题20、第十届希望杯初二第2试试题21、第十一届希望杯初二第1试试题22、第十一届希望杯初二第2试试题23、第十二届希望杯初二第1试试题24、第十二届希望杯初二第2试试题25、第十三届希望杯初二第1试试题26、第十三届希望杯初二第2试试题27、第十四届希望杯初二第1试试题28、第十四届希望杯初二第2试试题28、第十五届希望杯初二第1试试题30、第十五届希望杯初二第2试试题31、第十六届希望杯初二第1试试题32、第十六届希望杯初二第2试试题33、第十七届希望杯初二第1试试题34、第十七届希望杯初二第2试试题35、第十八届希望杯初二第1试试题36、第十八届希望杯初二第2试试题37、第十九届希望杯初二第1试试题38、第十九届希望杯初二第2试试题39、第二十届希望杯初二第1试试题40、第二十届希望杯初二第2试试题41、第二十一届希望杯初二第1试试题42、第二十一届希望杯初二第2试试题43、第二十二届希望杯初二第1试试题44、第二十二届希望杯初二第2试试题45、第二十三届希望杯初二第1试试题46、第二十三届希望杯初二第2试试题希望杯第一届(1990年)初中二年级第一试试题一、选择题:(每题1分,共10分)1.一个角等于它的余角的5倍,那么这个角是 ( )A .45°.B .75°.C .55°.D .65°2.2的平方的平方根是 ( )A .2.B .2. C .±2. D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 的值是( ) A .0B .a 0.C .a 1D .a 0-a 14. ΔABC,若AB=π27则下列式子成立的是( )A .∠A >∠C >∠B;B .∠C >∠B >∠A;C .∠B >∠A >∠C;D .∠C >∠A >∠B 5.平面上有4条直线,它们的交点最多有( ) A .4个B .5个.C .6个.D .76.725-的立方根是[ ] (A )12-. (B )21-.(C ))12(-±. (D )12+.7.把二次根式a a 1-⋅化为最简二次根式是[ ](A) a . (B)a -. (C) a --. (D) a -8.如图1在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( ) A .2组B .3组.C .4组D .5组。
希望杯第一届〔1990年〕初中二年级第一试试题一、选择题:〔每题1分,共10分〕1.一个角等于它余角5倍,那么这个角是 ( )A .45°.B .75°.C .55°.D .65°2.2平方平方根是 ( )A .2.B . 2.C .±2.D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 值是( )A .0B .a 0.C .a 1D .a 0-a 14. ΔABC,假设AB=π27那么以下式子成立是( )A .∠A >∠C >∠B;B .∠C >∠B >∠A;C .∠B >∠A >∠C;D .∠C >∠A >∠B5.平面上有4条直线,它们交点最多有( )A .4个B .5个.C .6个.D .76.725-立方根是[ ]〔A 〕12-. 〔B 〕21-.〔C 〕)12(-±. 〔D 〕12+.7.把二次根式a a 1-⋅化为最简二次根式是[ ] (A) a . (B)a -. (C) a --. (D) a -8.如图1在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( )A .2组B .3组.C .4组D .5组。
9. 1112111222222--÷-+++-⨯--++x y x y xy y y x y xy x 等于一个固定值, 那么这个值是( )A .0.B .1.C .2.D .4.把f 1990化简后,等于 ( )A .1-x x . B.1-x. C.x1. D.x. 二、填空题〔每题1分,共10分〕 1..________6613022=-2.().__________125162590196.012133=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+÷-+4.如图2,∠A=60°,∠1=∠2,那么∠ABC 度数是______.5.如图3,O 是直线AB 上一点,∠AOD=117°,∠BOC=123°,那么∠COD 度数是____度.6.△ABC 中,∠C=90°,∠A 平分线与∠B 平分线交于O 点,那么∠AOB 度数是______度.7.计算下面图形面积〔长度单位都是厘米〕〔见图4〕.答:______.8.方程x 2+px+q=0,当p >0,q <0时,它正根个数是______个.9.x,y,z适合方程组那么1989x-y+25z=______.10.3x2+4x-7=0,那么6x4+11x3-7x2-3x-7=______.答案与提示一、选择题提示:1.因为所求角α=5(90°-α),解得α=75°.应选(B).2.因为2平方是4,4平方根有2个,就是±2.应选(C).3.以x=1代入,得a0-a1+a0-a1-a1+a1-a0+a1-a0+a1=2a0-3a1+3a1-2a0=0.应选(A).<3,根据大边对大角,有∠C >∠B>∠A.5.如图5,数一数即得.又因原式中有一个负号.所以也不可能是(D),只能选(A).7.∵a<0,应选(C).8.有△ABE,△ABM,△ADP,△ABF,△AMF等五种类型.选(D).9.题目说是一个固定值,就是说:不管x,y取何值,原式值不变.于是以x=y=0代入,得:应选(B).应选(A).二、填空题提示:4.∠ADC=∠2+∠ADB=∠1+∠ADB=180°--∠A=120°所以∠ADC度数是120度.5.∠COD度数一半是30度.8.∵Δ=p2-4q>p2.9.方程组可化简为:解得:x=1,y=-1,z=0.∴1989x-y+25z=1990.10.∵6x4+11x3-7x2-3x-7=(3x2+4x-7)(2x2+x+1)而3x2+4x-7=0.希望杯第一届〔1990〕第二试试题一、选择题:〔每题1分,共5分〕1.等腰三角形周长是24cm,一腰中线将周长分成5∶3两局部,那么这个三角形底边长是[ ] A.7.5 B.12. C.4. D.12或42.P=2)+⨯⨯⨯,那么P值是[ ]1988-+198919891(19901991A.1987 B.1988. C.1989 D.19903.a>b>c,x>y>z,M=ax+by+cz,N=az+by+cx,P=ay+bz+cx,Q=az+bx+cy,那么[ ] A.M>P>N且M>Q>N. B.N>P>M且N>Q>MC .P >M >Q 且P >N >Q.D .Q >M >P 且Q >N >P4.凸四边形ABCD 中,∠DAB=∠BCD=900, ∠CDA ∶∠ABC=2∶1,AD ∶CB=1∶3,那么∠BDA=[ ]A .30°B .45°.C .60°.D .不能确定5.把一个边长为1正方形分割成面积相等四局部,使得在其中一局部内存在三个点,以这三个点为顶点可以组成一个边长大于1正三角形,满足上述性质分割[ ]A .是不存在.B .恰有一种.C .有有限多种,但不只是一种.D .有无穷多种 二、填空题:〔每题1分,共5分〕1. △ABC 中,∠CAB ∠B=90°,∠C 平分线与AB 交于L ,∠C 外角平分线与BA 延长线交于N .CL=3,那么CN=______.2. 21(2)0a ab -+-=,那么111(1)(1)(1990)(1990)ab a b a b ++++++值是_____. 3. a ,b ,c 满足a+b+c=0,abc=8,那么c 取值范围是______. 4. ΔABC 中, ∠B=30053,三个两两互相外切圆全在△ABC 中,这三个圆面积之与最大值整数局部是______.5. 设a,b,c 是非零整数,那么a b c ab ac bc abc a b c ab ac bc abc ++++++值等于_________.三、解答题:〔每题5分,共15分〕1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们差是177.2.平面上有两个边长相等正方形ABCD与A'B'C'D',且正方形A'B'C'D'顶点A'在正方形ABCD中心.当正方形A'B'C'D'绕A'转动时,两个正方形重合局部面积必然是一个定值.这个结论对吗?证明你判断.3.用1,9,9,0四个数码组成所有可能四位数中,每一个这样四位数与自然数n之与被7除余数都不为1,将所有满足上述条件自然数n由小到大排成一列n1<n2<n3<n4……,试求:n1·n2之值.答案与提示一、选择题提示:1.假设底边长为12.那么其他二边之与也是12,矛盾.故不可能是(B)或(D).又:底为4时,腰长是10.符合题意.应选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等四局部.在最外面一局部中显然可以找到三个点,组成边长大于1正三角形.如果三个圆换成任意封闭曲线,只要符合分成四局部面积相等,那么最外面局部中,仍然可以找到三个点,使得组成边长大于1正三角形.应选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样组中,任一组内两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取178个数中,必有两个数,它们差是177.证法二从1到354自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b余数一样,也即至少有两个数a,b之差是177倍数,即a b=k×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等数a,b之差必为177.即a b=177.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们差是177.2.如图9,重合局部面积S A'EBF是一个定值.证明:连A'B,A'C,由A'为正方形ABCD中心,知∠A'BE=∠A'CF=45°.又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C.在△A'FC与△A'EB中,∴S A'EBF=S△A'BC.∴两个正方形重合局部面积必然是一个定值.3.可能四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2, 9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1情形出现.如0+1≡1,6+2≡1,5+3≡(mod7).而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小n.又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小n.即n1=4,n2=7∴n1×n2=4×7=28.第二届〔1991年〕初中二年级第一试试题一、选择题:〔每题1分,共15分〕1.如图1,AB=8,AP=5,OB=6,那么OP长是[ ]A.2; B.3; C.4; D.52.方程x2-5x+6=0两个根是[ ]A.1,6 ; B.2,3; C.2,3; D.1,63.△ABC是等腰三角形,那么[ ]A.AB=AC;B.AB=BC;C.AB=AC或AB=BC;D.AB=AC或AB=BC或AC=BC344134b c-==+,那么a,b,c大小关系是[ ]A.a>b>c B.a=b=c C.a=c>b D.a=b>c≠b,那么[ ](1)BOB. C.6.x,y都是正整数,那么三边是x,y与10三角形有[ ] A.3个B.4个; C.5个D.无数多个7.两条直线相交所成各角中,[ ]A.必有一个钝角;B.必有一个锐角;C.必有一个不是钝角;D.必有两个锐角8.两个角与组成角与这两个角差组成角互补,那么这两个角[ ]A.一个是锐角另一个是钝角;B.都是钝角;C.都是直角;D.必有一个角是直角9.方程x2+|x|+1=0有[ ]个实数根.A.4; B.2; C.1; D.010.一个两位数,用它个位、十位上两个数之与3倍减去-2,仍得原数,这个两位数是[ ]A.26; B.28; C.36; D.3811.假设11个连续奇数与是1991,把这些数按大小顺序排列起来,第六个数是[ ]A.179; B.181; C.183; D.185>+[ ]1,A.2x+5 B.2x-5; C.1 D.113.方程2x5+x4-20x3-10x2+2x+1=0有一个实数根是[ ]14.当a<-1时,方程(a3+1)x2+(a2+1)x-(a+1)=0根情况是[ ]A.两负根;B.一正根、一负根且负根绝对值大C.一正根、一负根且负根绝对值小;D.没有实数根15.甲乙二人,从M地同时出发去N地.甲用一半时间以每小时a公里速度行走,另一半时间以每小时b公里速度行走;乙以每小时a公里速度行走一半路程,另一半路程以每小时b公里速度行走.假设a≠b时,那么[ ]到达N地.A.二人同时; B.甲先;C.乙先; D.假设a>b时,甲先到达,假设a<b时,乙先二、填空题:〔每题1分,共15分〕1.一个角补角减去这个角余角,所得角等于______度.2.有理化分母=______________.3.x=解是x=________.4.分解因式:x3+2x2y+2xy2+y3=______.5.假设方程x2+(k2-9)x+k+2=0两个实数根互为相反数,那么k值是______.6.如果2x2-3x-1与a(x-1)2+b(x-1)+c是同一个多项式不同形式,那么a b+=__.c7.方程x2-y2=1991有______个整数解.8.当m______时,方程(m-1)x2+2mx+m-3=0有两个实数根.9.如图2,在直角△ABC中,AD平分∠A,且BD∶DC=2∶1,那么∠B等于______度.(2) (3)(4)10.如图3,在圆上有7个点,A,B,C,D,E,F,与G,连结每两个点线段共可作出__条.11.D,E分别是等边△ABC两边AB,AC上点,且AD=CE,BE与CD交于F,那么∠BFC等于__度.12.如图4,△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC中线,AE是△ABD角平分线,DF∥AB交AE延长线于F,那么DF长为______.13.在△ABC中,AB=5,AC=9,那么BC边上中线AD长取值范围是______.14.等腰三角形一腰上高为10cm,这条高与底边夹角为45°,那么这个三角形面积是______.15.方程x2+px+q=0有两个不相等整数根,p,q是自然数,且是质数,这个方程根是______.答案与提示一、选择题提示:1.∵OP=OB-PB=OB-(AB-AP)=6-(8-5)=3.∴选(B).2.∵以2,3代入方程,适合.应选(B).3.∵有两条边相等三角形是等腰三角形.∴选(D).4.∵a=1,b=-1,c=1.∴选(C).6.∵x=y>5任何正整数,都可以与10作为三角形三条边.∴选(D).7.两直线相交所成角可以是直角,故而(A),(D)均不能成立.∴选(C).8.设两个角为α,β.那么(α+β)+(α-β)=180°,即α=90°.应选(D).9.∵不管x为何实数,x2+|x|+1总是大于零.∴选(D).即7a=2b+2,可见a只能为偶数,b+1是7倍数.故取(A).11.设这11个连续奇数为:2n+1,2n+3,2n+5,…,2n+21.那么(2n+1)+(2n+3)+(2n+5)+…+(2n+21)=1991.即11(2n+11)=1991.解得n=85.∴第六个数是2×85+11=181.应选(B).∴选(A).13.原方程可化为(2x5-20x3+2x)+(x4-10x2+1)=0.即(2x+1)(x4-10x2+1)=0.即x4-10x2+1=0.故取(C).14.a<-1时,a3+1<0,a2+1>0,a+1<0.而假设方程两根为x1,x2,那么有15.设M,N两地距离为S,甲需时间t1,乙需时间t2,那么有∴t1<t2,即甲先.另外:设a=1,b=2,那么甲走6小时,共走了9公里,这时乙走时间为从这个计算中,可以看到,a,b值互换,不影响结果.故取(B).二、填空题提示:1.设所求角为α,那么有(180°-α)-(90°-α)=90°.4.x3+2x2y+2xy3+y3=(x3+y3)+(2x2y+2xy2)=(x+y)(x2-xy+y2)+2xy(x+y)=(x+y)(x2+xy+y2)5.设二根为x1,-x1,那么x1+(-x1)=-(k2-9).即k2-9=0.即k=±3.又,要有实数根,必须有△≥0.即(k2-9)2-4(k+2)>0.显然k=3不适合上面不等式,∴k=-3.6.由2x2-3x-1=a(x+1)2+b(x-1)+c是恒等式,故由x=1代入,得c=-2;x2项系数相等,有a=2,这时再以x=0代入,得-1=a-b+c.即b=1.7.x2-y2=1991,(x-y)(y+x)=11×181可以是9.BD∶DC=2∶1,故有AB∶AC=2∶1,直角三角形斜边与直角边之比为2∶1,那么有∠B=30°.10.从A出发可连6条,从B出发可连5条,〔因为BA就是AB〕,从C出发可连4条,…,从F出发可连一条.共计1+2+3+4+5+6=21〔条〕.另法:每个点出发均可连6条,共有42条.但每条都重复过一次,11.如图28.∠F=∠1+∠A+∠2.又:△ADC≌△CEB.∴∠1=∠3.∴∠F=∠3+∠A+∠2=∠B+∠A=120°.12.△ABC是等腰三角形,D为底边中点,故AD又是垂线,又是分角线,故∠BAD=60°,∠ADB=90°.又:AE是分角线,故∠DAE=∠EAB=30°.又:DF∥AB,∴∠F=∠BAE=30°.在△ADF中,∠DAF=∠F=30°.∴AD=DF.而在△ADB中,AB=9,∠B=30°.13.∵4<BC<14.∴当BC为4时,BD=CD=2,AD<7.当BC=14时,BC=CD=7,有AD>2.∴2<AD<7.14.等腰三角形一腰上高与底边夹角是45°,那么顶角是90°,高就是腰,其长为10cm.15.设两根为x1,x2.那么x1+x2=-p①x1x2=q②由题设及①,②可知,x1,x2均为负整数.q为质数,假设q为奇数,那么x1,x2均为奇数.从而p为偶数,而偶质数只有2,两个负整数之与为-2,且不相等,这是不可能.假设q为偶数〔只能是2〕,两个负整数之积为2,且不相等,只能是-1与-2.∴方程根是-1与-2.希望杯第二届〔1991年〕初中二年级第二试试题一、选择题:〔每题1分,共10分〕1.如图29,B是线段AC上一点,M是线段AB中点,N为线段AC 中点,P为NA中点,Q为MA中点,那么MN∶PQ等于( ) A.1 ; B.2; C.3; D.42.两个正数m,n比是t(t>1).假设m+n=s,那么m,n中较小数可以表示为( )A.ts; Bs-ts; C.1tss+; D.1st+.3.y>0时,3x y-等于( )4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,那么a,b,c关系可以写成( )A.a<b<c. B.(a-b)2+(b-c)2=0. C.c<a<b. D.a=b ≠c5.如图30,AC=CD=DA=BC=DE.那么∠BAE是∠BAC ( )A.4倍. B.3倍. C.2倍. D.1倍6.D是等腰锐角三角形ABC底边BC上一点,那么AD,BD,CD 满足关系式( )A.AD2=BD2+CD2. B.AD2>BD2+CD2.C.2AD2=BD2+CD2. D.2AD2>BD2+CD2219 1()1010x x-=+实根个数为( )A.4 B.3. C.2 D.133x yy x-值为x2、y2值是( )2,y2 B. x2,y2;C. x2y2; D. x2y29.在整数0,1,2,3,4,5,6,7,8,9中,设质数个数为x,偶数个数为y,完全平方数个数为z,合数个数为u.那么x+y+z+u 值为( )A.17 B.15. C.13 D.1110.两个质数a,b,恰好是x整系数方程x2-21x+t=0两个根,那么b aa b+等于( )A.2213;B.5821;C.240249;D.36538. 二、填空题〔每题1分,共10分〕×19911991-1991×19891988=______.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]平方根是______.4.边数为a ,b ,c 三个正多边形,假设在每个正多边形中取一个内角,其与为1800,那么111a b c++=_________.51x ay y x +=⎧⎨-=⎩有正整数解,那么正整数a=_______. 13升,再加上等量水,液体中还有酒精__________升;搅匀后,再倒 出13升混合液,并参加等量水, 搅匀后,再倒出13升混合液, 并参加等量水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,那么四边形ABCD 面积是______.8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______.9.2x x +++最小值整数局部是______.10.两数积ab ≠1.且2a 2+1234567890a+3=0,3b 2+1234567890b+2=0,那么a b=______. 三、解答题:〔每题5分,共10分,要求:写出完整推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整〕1.两个正数立方与是最小质数.求证:这两个数之与不大于2.2.一块四边形地〔如图33〕(EO∥FK,OH∥KG)内有一段曲折水渠,现在要把这段水渠EOHGKF改成直.〔即两边都是直线〕但进水口EF宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.应选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.应选(B).5.△ACD是等边三角形,△BCA与△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上中点时,有AD2>BD2+CD2,当D为BC边端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.应选(D).应选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989×19911991-1991×19891988=1989(1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取内角与才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC 中,三边长分别是10,24,26,由勾股定理逆定理可△ADC 为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角四边形4个内角之与.∴与为360°.10.由条件可知a是方程2x2+1234567890x+3=0一个根,b是方程3y2+1234567890y+2=0一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.那么原题成为a3+b3=2,求证a+b≤2.证明〔反证法〕:假设a+b>2由于a3+b3=2,必有一数小于或等于1,设为b ≤1,→a>2b,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≤2.即此题结论是正确.2.此题以图33为准.由图34知OK∥AB,延长EO与FK,即得所求新渠.这时,HG=GM〔都等于OK〕,且OK∥AB,故△OHG面积与△KGM 面积一样.即新渠占地面积与原渠面积相等.而且只挖了△KGM这么大一块地.我们再看另一种方法,如图35.作法:①连结EH ,FG .②过O 作EH 平行线交AB 于N ,过K 作FG 平行线交于AB 于M . ③连结EN 与FM ,那么EN ,FM 就是新渠两条边界限. 又:EH ∥ON∴△EOH 面积=△FNH 面积.从而可知左半局部挖去与填出地一样多,同理,右半局部挖去与填出地也一样多.即新渠面积与原渠面积相等.由图35可知,第二种作法用工较多〔∵要挖面积较大〕. 故应选第一种方法。
第二十届“希望杯”全国数学邀请赛初二第一试(模拟)
一、选择题(每小题4分,共40分)
1.在一次视力检查中,初二(1)班的50人中只有8人的视力达标.用扇形图表示视力检查结果,则表示视力达标的扇形的圆心角是()
A.64.8ºB.57.6ºC.48ºD.16º
2.如图,已知点B在反比例函数y=
k
x的图象上.从点B分别作x轴和y轴的垂线,垂足分别为A、C.若△ABC的面积是4,则反比例函数的解析式是()
A.y=-
8
x B.y=
8
x C.y=-
4
x D.y=
4
x
3.如果a+2ab+b=2,且b是有理数,那么()
A.a是整数B.a是有理数
C.a是无理数D.a可能是有理数,也可能是无理数
4.复印纸的型号有A0、A1、A2、A3、A4等,它们有如下的关系:将上一个型号(例如A3)的复印纸在长的方向对折后得到两张下一型号(A4)的复印纸,且各种型号的复印纸的长与宽的比相等,那么这些型号的复印纸的长与宽的比约为()
A.1.141∶1 B.1∶1 C.1∶0.618 D.1.732∶1
5.The number of integer solutions for the syetem of inequalities
⎩
⎨
⎧x-2a≥0,
3-2x>-1
about x is just 6,then the range of value for real number a is ()
A.-2.5<a≤-2 B.-2.5≤a≤-2 C.-5<a≤-4 D.-5≤a≤-4
(integer solutions 整数解syetem of inequalities 不等式组the range of value 取值范围)
6.若分式
|x|-2
3x-2
的值是负数,则x的取值范围是()
A.
2
3<x<2 B.x>
2
3或x<-2
C.-2<x<2且x≠
2
3D.
2
3<x<2或x<-2
7.在100到1000的整数中(含100和1000),既不是完全平方数,也不是完全立方数的有()A.890个B.884个C.874个D.864个
8.如图,在正方形ABCD中,E是CD边的中点,点F在BC上,
∠EAF=∠DAE,则下列结论中正确的是()
A.∠EAF=∠F AB B.BC=3FC
C.AF=AE+FC D.AF=BC+FC
9.计算:3
3)7
4
11
(
)7
4
11
(-
+
+,结果等于()
A.58 B.387C.247D.327
10.已知在代数式a+bx+cx2中,a、b、c都是整数,当x=3时,该式的值是2008;当x=7时,该式的值是2009,这样的代数式有()
A.0个B.1个C.10个D.无穷多个
二、A组填空题(每小题4分,共40分)
A C
B D 11.某地区有20000户居民,从中随机抽取200户,调查是否已安装
电话,结果如右表所示,则该地区已安装电话的户数大约
是 .
12.若14x +5-21x 2=-2,则6x 2-4x +5= . 13.不等式x -1>2 x 的最大整数解是 .
14.已知m 是整数,以4m +5、2m -1、20-m 这三个数作为同一个三角形三边的长,则这样的三角形有
个.
15.当x 依次取1,2,3, (2009)
1 2, 1 3, 1 4,…, 1 2009时,代数式 x
2 1+x 2的值的和等于 . 16.由直线y =x +2、y =-x +2和x 轴围成的三角形与圆心在点(1,1)、半径为1的圆构成的图形覆盖的
面积等于 .
17.在Rt △ABC 中,∠C =90º,斜边AB 边上的高为h ,则两直角边的和a +b 与斜边及其高的和c +h 的
大小关系是a +b c +h (填“>”、“=”、“<”).
18.The figure on the right is composed of square ABCD and triangle BCE ,where ∠BEC is right angle .Suppose
the length of CE is a ,and the length of BE is b ,then the distance between point A and line CE equals
to .
(be composed of 由…组成 right angle 直角 length 长度 distance 距离)
19.如图,在△ABC 中,AB >BC ,BD 平分∠ABC ,若BD 将△ABC 的周长分为4∶3的两部分,则△ABD
与△BCD 的面积比等于 .
20.如果将n 个棋子放入10个盒子内,可以找到一种放法,使每个盒子内都有棋子,且这10个盒子内的
棋子数都不同;若将(n +1)个棋子放入11个盒子内,却找不到一种放法,能使每个盒子内都有棋子,
并且这11个盒子内的棋子数都不同,那么整数n 的最大值等于 ,最小值等于 .
三、B 组填空题(每小题8分,共40分)
21.如果自然数a 与b (a >b )的和、差、积、商相加得27,那么a = ,b = .
22.若 a b +c = b c +a = c a +b ,则2a +2b +c a +b -3c
= 或 . 23.若关于x 的方程 1 x -1- a 2-x = 2(a +1) x 2-3x +2
无解,则a = 或 或 . 24.对于正整数k ,记直线y =-
k k +1x + 1 k +1与坐标轴所围成的直角三角形的面积为S k ,则S k = ,S 1+S 2+S 3+S 4= .
25.将 1 2, 1 3, 1 4,…, 1 100
这99个分数化成小数,则其中的有限小数有 个,纯循环小数有 个(纯循环小数是指从小数点后第一位开始循环的小数).。