现代优化算法-遗传算法
于是,得到第二代种群 S 2 :
s1 11001 25 , s2 01100 12 , s3 11011 27 , s4 10000 16
第二代种群 S2 中各染色体的情况如表 10-1 所示。 表 10-1 第二代种群 S2 中各染色体的情况 染色体 s1=11001 s2=01100 s3=11011 s4=10000 适应度 625 144 729 256 选择概率 积累概率 估计的选中次数 0.36 0.08 0.41 0.15 0.36 0.44 0.85 1.00 1 0 2 1
0, 1 二进制串。串的长度取决于求解的精度,例如假设解空间为[-1,
因为 221<3106<222,所以编码所用的二进制串至少需要 22 位。
2],求解精度
为保留六位小数,由于解空间[-1, 2]的长度为 3,则必须将该区间分为 3106 等分。
现代优化算法-遗传算法
(1) 采用 5 位二进制数编码染色体,将种群规模设定为 4,取下列个体组成初始 种群 S1 : s1 13(01101), s2 24(11000), s3 8(01000), s4 19(10011) (2) 定义适应度函数为目标函数 f x x 2 (3) 计算各代种群中的各个体的适应度, 并对其染色体进行遗传操作,直到适应 度最高的个体,即 31(11111)出现为止。迭代的过程为: 首先计算种群 S1 中各个体 si 的适应度 f si 如下。
f ( s1 ) f (13) 132 169; f ( s2 ) f (24) 24 2 576; f ( s3 ) f (8) 82 64; f ( s4 ) f (19) 19 2 61