复杂非线性系统中的混沌第二章优秀课件
- 格式:ppt
- 大小:699.50 KB
- 文档页数:74
复杂混沌知识点总结图解一、基本概念1.1 复杂系统复杂系统是由大量相互作用的元素组成的系统,其整体行为不可简单地通过其组成元素的行为来解释。
复杂系统包括自然界和人类社会中的许多对象,如气候系统、生态系统、神经网络、经济系统、交通网络等。
复杂系统的性质包括非线性、动态演化、自组织、敏感依赖于初始条件和边界条件等。
1.2 混沌现象混沌现象是非线性动力学系统中的一种特殊现象,其特征是对初始条件极其敏感,微小的扰动可能导致系统行为的剧烈变化。
混沌现象的典型表现包括轨道的无限分岔、轨道的随机性、轨道的分形特征等。
1.3 复杂混沌系统复杂混沌系统是指那些既具有复杂性又具有混沌性质的系统。
这类系统的行为通常由一系列非线性微分方程描述,其行为表现为非周期性、随机性、敏感依赖于初始条件等。
1.4 分形分形是一类具有自相似性的几何形状,其形状在各个尺度上都具有相似的结构。
分形具有广泛的应用价值,在复杂混沌系统中常常描述系统的分形特征。
二、数学模型2.1 非线性动力学方程复杂混沌系统的行为通常由一系列非线性微分方程描述,典型的非线性动力学方程包括洛伦兹方程、齐次方程、吸引子方程等。
这些方程描述了系统状态随时间的演化规律,是研究复杂混沌系统的重要数学工具。
2.2 分形维数分形维数是描述分形对象维度的概念,常用的分形维数包括分形维数、盒覆盖维数、信息维数等。
分形维数可以有效地描述复杂混沌系统的分形特征。
2.3 动力学系统动力学系统是对自然界中的各种现象进行建模和分析的数学工具,包括连续动力学系统和离散动力学系统。
动力学系统可以描述系统状态随时间的演化规律,分析系统的稳定性、周期性和混沌性质。
2.4 随机过程随机过程是一类描述随机现象演化规律的数学模型,包括马尔可夫链、随机微分方程、随机分形等。
随机过程可以描述复杂混沌系统中的随机性质。
三、分析方法3.1 常微分方程数值解法常微分方程数值解法是研究复杂混沌系统的重要数值方法,包括欧拉方法、隐式方法、龙格-库塔方法等。
文献综述题目复杂非线性系统中的混沌学生姓名孟玉丽专业班级电气07-2班学号2007010229院(系)电气信息工程学院指导教师(职称)完成时间 2011 年 4 月 5日复杂非线性系统中的混沌1混沌理论的产生与发展非线性混沌与分形理论的基本思想起源于20世纪初,形成与20世纪60年代后,发展壮大玉20世纪80年代。
这一理论揭示了有序与无序的统一、确定性与随机性的统一,并成为正确的宇宙观和自然哲学的里程碑。
混沌与分形理论被认为是继相对论、量子力学之后、20世纪在科学领域中人类认识世界和改造世界的最富有创造性的第三次大革命。
1.1混沌理论的产生混沌,通常理解为混乱、无序、未分化,如所谓“混沌者,言万物相混成而未相离”(《易经》),“窈窈冥冥”、“昏昏默默”(《庄子》)。
混沌最初进入科学领域是与以精确著称的数理科学无缘的,混沌主要是一个天文学中与宇宙起源有关的概念,它来源于神话传说与哲学思辨,在现代,混沌被赋予了新的意义,混沌是指在确定性系统中出啊先的类似随即的过程,其来自分先行。
混沌的理论基础可追朔到19世纪末创立的定性理论,但真正得到发展是在20世纪70年代,现在方兴未艾。
300年前,Newton(牛顿)的万有引力定律和他的三大力学定律将天体的运动和地球上物体的运动统一起来,Newton的这一科学贡献曾被视为近代科学的典范,Newton在讨论宇宙起源时就曾使用过混沌概念,他当时的观点与当代有序来源于对称破缺是一致的,18世纪具有彻底牛顿宇宙观的伟大的科学家Laplace(拉普拉斯)曾有传世名言:“如果有以为智慧之神,在给定时刻能够辨别出赋予大自然以生命的全部的力和组成万物的个别位置,而且他有足够深邃的睿智能够分析这些数据,那么他将把禹州中最卫校的院子和庞大的天体的运动都包括在一个公式之中,对他来说,没有什么东西是不确定的,未来就如同过去那样是完全确定无疑的。
” Laplace的这句话可解释为:“如果已知宇宙中每一粒子的位置与速度,那么就可以预测禹州在整个未来中的状况。
非线性电路混沌长期以来,人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动有一个完美确定的解析解.但是自然界在相当多情况下,非线性现象却起着很大的作用。
1963年美国气象学家LORENZ 在分析天气预报模型时,首先发现空气动力学中的混沌现象,该现象只能用非线性动力学来解释。
1975年混沌作为一个新的科学名词首次出现在科学文献中。
此后,非线性动力学迅速发展,并成为有丰富内容的研究领域,该学科涉及非常广泛的科学从电子学到物理学,从气象学到生态学,从数学到经济学等。
混沌通常相应于不规则或非周期性,这是由非线性系统本质产生的。
本实验将引导学生自己建立一个非线性电路,该电路包括有源非线性负阻、LC 振荡器和RC 移相器三部分;采用物理实验方法形容LC 振荡器产生的正弦波与经过RC 移相器三部分;采用物理实验方法研究LC 振荡器产生的正弦波与经过RC 移相器移相的正弦波合成的相图(李萨如图),观测振动周期发生的分岔及混沌现象;测量非线性单元电路的电流—电压特性,从而对非线性电路及混沌现象有一初步了解;学会自己制作和测量一个带铁磁材料介质的电感器以及测量非线性器件伏安特性的方法 [实验原理]1.非线性电路与非线性动力学实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。
电感器L 和电容C 2组成一个损耗可以忽略的谐振回路;可变电阻R V 和电容器C 1串联将振荡器产生的正弦信号移相输出。
本实验中所用的非线性元件R 是一个三段分段线性元件。
图2所示的是该电阻的伏安特性曲线,从特性曲线显示中加在此非线性元件上电压与通过它的电流极性是相反的。
由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。
图1非线性电路原理图 图2非线性元件伏安特性图1电路的非线性动力学方程为: 1121)(1C C C C U g U U G dtdU C ⋅--⋅= L C C C i U U G dt dU C +-⋅=)(21122 (1)2C L U dtdi L -= 式中,导纳V R G /1=,1C U 和2C U 分别为表示加在电容器C 1和C 2上的电压,L i 表示流过电感器L 的电流,G 表示非线性电阻的导纳。
一、实验目的1.了解混沌的一些基本概念;2.测量有源非线性电阻的伏安特性;3.通过研究一个简单的非线性电路,了解混沌现象和产生混沌的原因。
二、实验原理实验所用电路原理图如图3.7-1所示。
电路中电感L 和电容C 1、C 2并联构成一个振荡电路。
R 是一有源非线性负阻元件,电感L 和电容器C 2组成一损耗可以忽略的谐振回路;可变电阻R 和电容器C 1串联将振荡器产生的正弦信号移相输出。
电路的非线性动力学方程如式(3.7-1)所示2121212d d )(d d )(d d 112C L C C C C L C C C U ti L gU U U G tU C i U U G tU C -=--=+-= (3.7-1)RL图3.7-1 电路原理图 图3.7-2 非线性元件R 的U - I 特性 这里,U C1、U C2是电容C 1、C 2上的电压,i L 是电感L 上的电流,G = 1/R 0是电导,g 为R 的伏安特性函数。
如果R 是线性的,g 是常数,电路就是一般的振荡电路,得到的解是正弦函数。
电阻R 0的作用是调节C 1 和C 2的位相差,把C 1 和C 2两端的电压分别输入到示波器的x ,y 轴,则显示的图形是椭圆。
如果R 是非线性的,它的伏安特性如图3.7-2所示,由于加在此元件上的电压增加时,通过它的电流却减小,因而此元件称为非线性负阻元件。
本实验所用的非线性元件R 是一个三段分段线性元件。
若用计算机编程进行数值计算,当取适当电路参数时,可在显示屏上观察到模拟实验的混沌现象。
除了计算机数学模拟方法之外,更直接的方法是用示波器来观察混沌现象,实验电路如图3.7-3所示。
图中,非线性电阻是电路的关键,它是通过一个双运算放大器和六个电阻组合来实现的。
电路中,LC 并联构成振荡电路,R 0的作用是分相,使A ,B 两处输入示波器的信号产生位相差,可得到x ,y 两个信号的合成图形。
双运放TL082的前级和后级正、负反馈同时存在,正反馈的强弱与比值R 3 /R 0,R 6/R 0有关,负反馈的强弱与比值R 2/R 1,R 5 /R 4有关.当正反馈大于负反馈时,振荡电路才能维持振荡。
1、什么是非线性?“非线性”是指两个变量之间没有象正比例那样的“直线”关系科学上的“非线性” 相比“线性”应该至少存在这样的两个差别:1)体系状态不满足均匀性和叠加性;2)对不同的初始状态条件,体系可有完全不同类型的运动或完全不同的运动结局。
2、乌拉姆:非大象动物3、蝴蝶效应:非线性动力系统中对初始条件的敏感依赖性lorenz蝴蝶效应现象,是指事物发展的结果对初始条件具有极为敏感的依赖性。
初始条件极小的偏差将会引起结果的巨大差异。
“蝴蝶效应”说的是:一只南美洲亚马孙河边热带雨林中的蝴蝶,偶尔扇几下翅膀,就有可能在两周后引起美国得克萨斯的一场龙卷风。
原因在于:蝴蝶翅膀的运动,导致其身边的空气系统发生变化,并引起微弱气流的产生,而微弱气流的产生又会引起它四周空气或其他系统产生相应变化,由此引起连锁反应,最终导致其他系统的极大变化。
4、Logistic映射与洛仑兹系统Logistic映射的方程X n + 1 = (1 + r) X n这一迭代关系常被称做logistic 映射(map) ,这里的“logistic”源于希腊文“logistikos”,与“逻辑”毫无关系(“逻辑”在希腊文是“logike”) ,意为“工于计算”洛伦兹系统是洛伦兹从纳维- 斯托克斯(Navier - Stokes) 定理出发,大胆简化了描述二维对流的方程组,只剩下三个关键变量,得到有名的罗伦兹方程组:d x/dt= - 10x + 10yd y/dt= 28 x - y - xzdz/dt= -8/3 z + xy其中x 、y 、z 均为无量纲量,分别表征对流强度、对流中升流与降流之间的温差和铅直方向上温度分布的非线性度。
有限的确定性非线性常微分方程系统可被设计成表示受迫耗散流体动力学流. 这些方程的解可以等同于相空间φ的轨线. 对于那些有有界解的系统, 非周期解对初始值的小修正而言通常是不稳定的, 以致略微不同的初始状态会演变为显著不同的状态。