《管理运筹学》复习题及参考答案
- 格式:doc
- 大小:5.08 MB
- 文档页数:23
四、把下列线性规划问题化成标准形式:2、minZ=2x1-x2+2x3五、按各题要求。
建立线性规划数学模型1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。
月销售分别为250,280和120件。
问如何安排生产计划,使总利润最大。
2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋90根,长度为4米的钢筋60根,问怎样下料,才能使所使用的原材料最省?1. 某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示:每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少?五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相当于图解法可行域中的哪一个顶点。
六、用单纯形法求解下列线性规划问题:七、用大M法求解下列线性规划问题。
并指出问题的解属于哪一类。
八、下表为用单纯形法计算时某一步的表格。
已知该线性规划的目标函数为maxZ=5x 1+3x 2,约束形式为“≤”,X 3,X 4为松驰变量.表中解代入目标函数后得Z=10(1)求表中a ~g 的值 (2)表中给出的解是否为最优解?(1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2) 表中给出的解为最优解第四章 线性规划的对偶理论五、写出下列线性规划问题的对偶问题1.minZ=2x 1+2x 2+4x 3六、已知线性规划问题应用对偶理论证明该问题最优解的目标函数值不大于25七、已知线性规划问题maxZ=2x1+x2+5x3+6x4其对偶问题的最优解为Y l﹡=4,Y2﹡=1,试应用对偶问题的性质求原问题的最优解。
七、用对偶单纯形法求解下列线性规划问题:八、已知线性规划问题(1)写出其对偶问题 (2)已知原问题最优解为X﹡=(2,2,4,0)T,试根据对偶理论,直接求出对偶问题的最优解。
《管理运筹学》(第二版)课后习题参考答案第1章 线性规划(复习思考题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(Linear Programming ,LP )是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。
线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。
建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。
决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。
2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解;(3)无界解:可行域无界,目标值无限增大; (4)没有可行解:线性规划问题的可行域是空集。
当无界解和没有可行解时,可能是建模时有错。
3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项0≥i b ,决策变量满足非负性。
如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。
4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。
答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。
基可行解:满足非负性约束的基解,称为基可行解。
可行基:对应于基可行解的基,称为可行基。
最优解:使目标函数最优的可行解,称为最优解。
最优基:最优解对应的基矩阵,称为最优基。
它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。
s .t . ⎪⎩⎪⎨⎧≥≤++≤++0,,86238321321321x x x x x x x x x解:标准化 32124m a xx x x Z ++= s .t . ⎪⎩⎪⎨⎧≥=+++=+++0,,,,862385432153214321x x x x x x x x x x x x x 列出单纯形表故最优解为T X )6,0,2,0,0(*=,即2,0,0321===x x x ,此时最优值为4*)(=X Z . 6.表1—15中给出了求极大化问题的单纯形表,问表中d c c a a ,,,,2121为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以1x 代替基变量5x ;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。
《管理运筹学》(第二版)课后习题参考答案第1章 线性规划(复习思考题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(Linear Programming ,LP )是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。
线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。
建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。
决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。
2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解;(3)无界解:可行域无界,目标值无限增大; (4)没有可行解:线性规划问题的可行域是空集。
当无界解和没有可行解时,可能是建模时有错。
3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项0≥i b ,决策变量满足非负性。
如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。
4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。
答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。
基可行解:满足非负性约束的基解,称为基可行解。
可行基:对应于基可行解的基,称为可行基。
最优解:使目标函数最优的可行解,称为最优解。
最优基:最优解对应的基矩阵,称为最优基。
它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。
s .t . ⎪⎩⎪⎨⎧≥≤++≤++0,,86238321321321x x x x x x x x x解:标准化 32124max x x x Z ++=s .t . ⎪⎩⎪⎨⎧≥=+++=+++0,,,,862385432153214321x x x x x x x x x x x x x 列出单纯形表故最优解为T X )6,0,2,0,0(*=,即2,0,0321===x x x ,此时最优值为4*)(=X Z . 6.表1—15中给出了求极大化问题的单纯形表,问表中d c c a a ,,,,2121为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以1x 代替基变量5x ;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。
《管理运筹学》考试试卷A,B卷及答案一、选择题(每题2分,共20分)1. 运筹学的英文全称是:A. Operation ResearchB. Operation ManagementC. Operational ResearchD. Operations Management2. 线性规划问题的标准形式中,目标函数是:A. 最大化B. 最小化C. 既可以是最大化也可以是最小化D. 无法确定3. 在线性规划中,约束条件可以用以下哪个符号表示?A. ≤B. ≥C. =D. A、B、C都对4. 简单线性规划问题中,如果一个变量在任何解中都不为零,则称这个变量为:A. 基变量B. 非基变量C. 独立变量D. 依赖变量5. 以下哪个方法可以用来求解线性规划问题?A. 单纯形法B. 拉格朗日乘数法C. 对偶理论D. A、B、C都可以二、填空题(每题3分,共15分)6. 在线性规划中,如果一个约束条件的形式为“≥”,则称这个约束为______约束。
7. 在线性规划问题中,若决策变量为非负整数,则该问题为______规划问题。
8. 在目标规划中,目标函数通常表示为______。
9. 在运输问题中,如果产地和销地的数量相等,则称为______。
10. 在排队论中,顾客到达的平均速率通常表示为______。
三、计算题(每题10分,共30分)11. 某工厂生产甲、乙两种产品,甲产品每件利润为200元,乙产品每件利润为150元。
工厂每月最多生产甲产品100件,乙产品150件。
同时,生产甲产品每件需要3小时,乙产品每件需要2小时,工厂每月最多可利用工时为300小时。
试建立该问题的线性规划模型,并求解。
12. 某公司有三个工厂生产同一种产品,分别供应给四个销售点。
各工厂的产量和各销售点的需求量如下表所示。
求最优的运输方案,并计算最小运输成本。
工厂\销售点 A B C D产量 20 30 50需求量 10 20 30 4013. 设某商店有三个售货员,负责四个收款台。
《管理运筹学》复习题及参考答案一、选择题1. 管理运筹学的研究对象是()A. 生产过程B. 管理活动C. 经济活动D. 运筹问题参考答案:D2. 以下哪个不属于管理运筹学的基本方法?()A. 线性规划B. 整数规划C. 非线性规划D. 人力资源规划参考答案:D3. 在线性规划中,约束条件是()A. 等式B. 不等式C. 方程组D. 矩阵参考答案:B4. 以下哪种方法不属于线性规划的对偶问题求解方法?()A. 单纯形法B. 对偶单纯形法C. 拉格朗日乘数法D. 牛顿法参考答案:D5. 在目标规划中,以下哪个不是目标约束的类型?()A. 等式约束B. 不等式约束C. 目标函数约束D. 线性约束参考答案:C二、填空题1. 管理运筹学的核心思想是______。
参考答案:最优化2. 在线性规划中,最优解存在的条件是______。
参考答案:可行性、有界性3. 整数规划的求解方法主要有______和______。
参考答案:分支定界法、动态规划法4. 在目标规划中,目标函数的求解方法有______、______和______。
参考答案:单纯形法、拉格朗日乘数法、动态规划法5. 非线性规划问题可以分为______、______和______。
参考答案:无约束非线性规划、约束非线性规划、非线性规划的对偶问题三、判断题1. 管理运筹学的研究对象是管理活动。
()参考答案:正确2. 在线性规划中,最优解一定存在。
()参考答案:错误3. 整数规划的求解方法比线性规划复杂。
()参考答案:正确4. 目标规划的求解方法与线性规划相同。
()参考答案:错误5. 非线性规划问题一定比线性规划问题复杂。
()参考答案:错误四、计算题1. 某工厂生产甲、乙两种产品,甲产品每件利润为10元,乙产品每件利润为8元。
生产甲产品每件需消耗2小时机器工作时间,3小时人工工作时间;生产乙产品每件需消耗1小时机器工作时间,2小时人工工作时间。
工厂每周最多可利用机器工作时间100小时,人工工作时间150小时。
《管理运筹学》习题11.永久机械厂生产Ⅰ、Ⅱ、Ⅲ三种产品,均要经过A、B两道工序加工。
设有两种规格的设备A1、A2能完成A工序;有三种规格的设备B1、B2、B3能完成B工序。
Ⅰ可在A、B 的任何规格的设备上加工;Ⅱ可在任意规格的A设备上加工,但对B工序,只能在B1设备上加工;Ⅲ只能在A2与B2设备上加工。
加工单位产品所需的工序时间及其他各项数据如表所示。
问:为使该厂获得最大利润,应如何制定产品加工方案?(只建模,不求解。
)表12.某快餐店坐落在一个旅游景点中,雇佣了两名正式职工,两人都是每天工作8小时。
其余工作由临时工来担任。
在星期六,该快餐店从上午11时开始营业到夜晚10时关门。
根据游客就餐情况,在星期六每个营业小时所需职工数(包括正式工和临时工)如表2所示。
已知一名正式职工11点开始上班,工作4个小时后,休息1个小时,而后再工作4个小时;另一名正式职工13点开始上班,工作4个小时后,休息1个小时,而后再工作4个小时。
临时工每班连续工作时间存在3小时、4小时两种情况,前者每小时工资为4元但每班人数不超过5人,后者每小时工资为5元但每班人数不受限制。
那么应如何安排临时工的班次,使得使用临时工的总成本最小?(只建模,不求解。
)3.某公司生产Ⅰ,Ⅱ两种产品,市场对Ⅰ,Ⅱ两种产品的需求量为:产品Ⅰ在1—4月每月需10000件,5—9月每月30000件,10—12月每月需100000件;产品Ⅱ在3—9月每月15000件,其他月每月50000件。
该公司生产这两种产品成本为:产品Ⅰ在1—5月内生产每件5元,6—12月内生产每件4.5元;产品Ⅱ在1—5月内生产每件8元,6—12月内生产每件7元。
该公司每月生产这两种产品的总和不超过120000件。
产品Ⅰ容积为每件0.2立方米,产品Ⅱ容积为每件0.4立方米,该公司仓库容积为15000立方米,占用公司每月每立方米库容需1元,如该公司仓库不足时,可从外面仓库租借,租用外面仓库每月没立方米库容需1.5元。
《管理运筹学》(第二版)课后习题参考答案第1章线性规划(复习思考题)1.什么是线性规划线性规划的三要素是什么答:线性规划(Linear Programming,LP)是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。
线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。
建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。
决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。
2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误答:(1)唯一最优解:只有一个最优点;(2)多重最优解:无穷多个最优解;(3)无界解:可行域无界,目标值无限增大;(4)没有可行解:线性规划问题的可行域是空集。
当无界解和没有可行解时,可能是建模时有错。
3.什么是线性规划的标准型松弛变量和剩余变量的管理含义是什么答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项,决策变量满足非负性。
如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。
4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。
答:可行解:满足约束条件的解,称为可行解。
基可行解:满足非负性约束的基解,称为基可行解。
可行基:对应于基可行解的基,称为可行基。
最优解:使目标函数最优的可行解,称为最优解。
最优基:最优解对应的基矩阵,称为最优基。
它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。
.解:标准化.列出单纯形表412b02[8]2 /80868 /641241/41/81/8]/8(1/4/(1/813/265/4/43/4(13/2/(1/4 0-1/23/21/222806-221-12-502故最优解为,即,此时最优值为.6.表1—15中给出了求极大化问题的单纯形表,问表中为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以代替基变量;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。
《管理运筹学》考试试卷(A)一、( 20 分)下述线性规划问题Max z=-5x1+5x2+13x3ST-x1+x2+3x3 ≤ 20 ——①12x1+4x2+10x3 ≤ 90 ——②x1,x2,x3 ≥ 0先用单纯形法求出最优解,然后分析在下列条件下,最优解分别有什么变化?( 1 )约束条件①的右端常数由 20 变为 30 ;( 2 )约束条件②的右端常数由 90 变为 70 ;( 3 )目标函数中的 x3 的系数由 13 变为 8 ;( 4 )增加一个约束条件③2x1+3x2+5x3 ≤ 50( 5 )将原有约束条件②变为10x1+5x2+10x3 ≤ 100二、( 10 分)已知线性规划问题Max z= 2x1+x2+5x3+6x4 对偶变量2x1 +x3+x4 ≤ 8 y12x1+2x2+x3+2x4 ≤ 12 y2x1,x2,x3,x4 ≥ 0其对偶问题的最优解为 y1*=4 , y2*=1 ,试用对偶问题的性质,求原问题的最优解。
三、( 10 分)某地区有三个化肥厂,除供应外地区需要外,估计每年可供应本地区的数字为:化肥厂 A —— 7 万吨, B —— 8 万吨, C —— 3 万吨。
有四个产粮区需要该种化肥,需要量为:甲地区—— 6 万吨,乙地区—— 6 万吨,丙地区—— 3 万吨,丁地区—— 3 万吨。
已知从各化肥厂到各产粮区的每吨化肥的运价如下表所示(单位:元 / 吨):产粮区甲乙丙丁化肥厂A 5 8 7 3B 4 9 10 7C 8 4 2 9根据上述资料指定一个使总的运费最小的化肥调拨方案。
四、( 10 分)需要分配 5 人去做 5 项工作,每人做各项工作的能力评分见下表。
应如何分派,才能使总的得分最大?B1 B2 B3 B4 B5 A1 1.3 0.8 0 0 1.0 A2 0 1.2 1.3 1.3 0A3 1.0 0 0 1.2 0A4 0 1.05 0 0.2 1.4 A5 1.0 0.9 0.6 0 1.1五、( 10 分)用动态规划方法求解:Max F=4x 1 2 -x 2 2 +2x 3 2 +123x 1 +2x 2 +x 3 =9x1,x2,x3 ≥ 0六、( 10 分)公司决定使用 1000 万元开发 A 、 B 、 C 三种产品,。
《管理运筹学》(第二版)课后习题参考答案第1章线性规划(复习思考题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(Linear Programming,LP)是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。
线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。
建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。
决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。
2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误?答:(1)唯一最优解:只有一个最优点;(2)多重最优解:无穷多个最优解;(3)无界解:可行域无界,目标值无限增大;(4)没有可行解:线性规划问题的可行域是空集。
当无界解和没有可行解时,可能是建模时有错。
3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项,决策变量满足非负性。
如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。
4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。
答:可行解:满足约束条件的解,称为可行解。
基可行解:满足非负性约束的基解,称为基可行解。
可行基:对应于基可行解的基,称为可行基。
最优解:使目标函数最优的可行解,称为最优解。
最优基:最优解对应的基矩阵,称为最优基。
它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。
s.t.解:标准化s.t .列出单纯形表4 12b0 2 [8]2/80 8 68/64 1 241/41/8 1/8] /8(1/4/(1/813/265/4 /4 3/4(13/2/(1/4-1/23/21/22 2 80 6 -22 1-12-52故最优解为,即,此时最优值为.6.表1—15中给出了求极大化问题的单纯形表,问表中为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以代替基变量;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。
《管理运筹学》(第二版)课后习题参考答案第1章 线性规划(复习思考题)1.什么就是线性规划?线性规划的三要素就是什么?答:线性规划(Linear Programming,LP)就是运筹学中最成熟的一个分支,并且就是应用最广泛的一个运筹学分支。
线性规划属于规划论中的静态规划,就是一种重要的优化工具,能够解决有限资源的最佳分配问题。
建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。
决策变量就是决策问题待定的量值,取值一般为非负;约束条件就是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数就是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。
2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解; (3)无界解:可行域无界,目标值无限增大;(4)没有可行解:线性规划问题的可行域就是空集。
当无界解与没有可行解时,可能就是建模时有错。
3.什么就是线性规划的标准型?松弛变量与剩余变量的管理含义就是什么? 答:线性规划的标准型就是:目标函数极大化,约束条件为等式,右端常数项0≥i b ,决策变量满足非负性。
如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不就是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。
4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。
答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。
基可行解:满足非负性约束的基解,称为基可行解。
可行基:对应于基可行解的基,称为可行基。
最优解:使目标函数最优的可行解,称为最优解。
最优基:最优解对应的基矩阵,称为最优基。
它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。
《运筹学》复习题及参考答案第一章运筹学概念一、填空题1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。
2.运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。
3.模型是一件实际事物或现实情况的代表或抽象。
4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。
5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。
运筹学研究和解决问题的效果具有连续性。
6.运筹学用系统的观点研究功能之间的关系。
7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。
8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。
9.运筹学解决问题时首先要观察待决策问题所处的环境。
10.用运筹学分析与解决问题,是一个科学决策的过程。
11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。
12.运筹学中所使用的模型是数学模型。
用运筹学解决问题的核心是建立数学模型,并对模型求解。
13用运筹学解决问题时,要分析,定议待决策的问题。
14.运筹学的系统特征之一是用系统的观点研究功能关系。
15.数学模型中,“s·t”表示约束。
16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。
17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。
18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。
二、单选题1.建立数学模型时,考虑可以由决策者控制的因素是( A )A.销售数量 B.销售价格 C.顾客的需求 D.竞争价格2.我们可以通过(C)来验证模型最优解。
A.观察 B.应用 C.实验 D.调查3.建立运筹学模型的过程不包括( A )阶段。
A.观察环境 B.数据分析 C.模型设计 D.模型实施4.建立模型的一个基本理由是去揭晓那些重要的或有关的( B )A数量B变量 C 约束条件 D 目标函数5.模型中要求变量取值(D )A可正B可负C非正D非负6.运筹学研究和解决问题的效果具有( A )A 连续性B 整体性C 阶段性D 再生性7.运筹学运用数学方法分析与解决问题,以达到系统的最优目标。
可以说这个过程是一个(C)A解决问题过程B分析问题过程C科学决策过程D前期预策过程8.从趋势上看,运筹学的进一步发展依赖于一些外部条件及手段,其中最主要的是( C )A数理统计B概率论C计算机D管理科学9.用运筹学解决问题时,要对问题进行(B )A 分析与考察B 分析和定义C 分析和判断D 分析和实验三、多选1模型中目标可能为(ABCDE )A输入最少B输出最大 C 成本最小D收益最大E时间最短2运筹学的主要分支包括(ABDE )A图论B线性规划 C 非线性规划 D 整数规划E目标规划四、简答1.运筹学的计划法包括的步骤。
答:观察、建立可选择的解、用实验选择最优解、确定实际问题2.运筹学分析与解决问题一般要经过哪些步骤? 答:一、观察待决策问题所处的环境二、分析和定义待决策的问题三、拟订模型四、选择输入数据五、求解并验证解的合理性六、实施最优解3.运筹学的数学模型有哪些优缺点? 答:优点:(1).通过模型可以为所要考虑的问题提供一个参考轮廓,指出不能直接看出的结果。
(2).花节省时间和费用。
(3).模型使人们可以根据过去和现在的信息进行预测,可用于教育训练,训练人们看到他们决策的结果,而不必作出实际的决策。
( 4).数学模型有能力揭示一个问题的抽象概念,从而能更简明地揭示出问题的本质。
(5).数学模型便于利用计算机处理一个模型的主要变量和因素,并易于了解一个变量对其他变量的影响。
模型的缺点(1).数学模型的缺点之一是模型可能过分简化,因而不能正确反映实际情况。
(2).模型受设计人员的水平的限制,模型无法超越设计人员对问题的理解。
(3).创造模型有时需要付出较高的代价。
4.运筹学的系统特征是什么? 答:运筹学的系统特征可以概括为以下四点:一、用系统的观点研究功能关系二、应用各学科交叉的方法三、采用计划方法四、为进一步研究揭露新问题5、线性规划数学模型具备哪几个要素?答:(1).求一组决策变量x i或x ij的值(i =1,2,…m j=1,2…n)使目标函数达到极大或极小;(2).表示约束条件的数学式都是线性等式或不等式;(3).表示问题最优化指标的目标函数都是决策变量的线性函数第二章线性规划的基本概念一、填空题1.线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。
2.图解法适用于含有两个变量的线性规划问题。
3.线性规划问题的可行解是指满足所有约束条件的解。
4.在线性规划问题的基本解中,所有的非基变量等于零。
5.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
7.线性规划问题有可行解,则必有基可行解。
8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。
9.满足非负条件的基本解称为基本可行解。
10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。
11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。
12.线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。
13.线性规划问题可分为目标函数求极大值和极小_值两类。
14.线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。
15.线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16.在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。
17.求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。
18.如果某个约束条件是“≤”情形,若化为标准形式,需要引入一松弛变量。
19.如果某个变量X j为自由变量,则应引进两个非负变量X j′,X j〞,同时令X j=X j′-X j。
20.表达线性规划的简式中目标函数为max(min)Z=∑c ij x ij。
21..(2.1 P5))线性规划一般表达式中,a ij表示该元素位置在i行j列。
二、单选题1.如果一个线性规划问题有n个变量,m个约束方程(m<n),系数矩阵的数为m,则基可行解的个数最为_C_。
A.m个 B.n个 C.C n m D.C m n个2.下列图形中阴影部分构成的集合是凸集的是 A3.线性规划模型不包括下列_ D要素。
A.目标函数 B.约束条件 C.决策变量 D.状态变量4.线性规划模型中增加一个约束条件,可行域的范围一般将_B_。
A.增大 B.缩小 C.不变 D.不定5.若针对实际问题建立的线性规划模型的解是无界的,不可能的原因是B__。
A.出现矛盾的条件 B.缺乏必要的条件 C.有多余的条件 D.有相同的条件6.在下列线性规划问题的基本解中,属于基可行解的是 DA.(一1,0,O)T B.(1,0,3,0)T C.(一4,0,0,3)T D.(0,一1,0,5)T7.关于线性规划模型的可行域,下面_B_的叙述正确。
A.可行域内必有无穷多个点B.可行域必有界C.可行域内必然包括原点D.可行域必是凸的8.下列关于可行解,基本解,基可行解的说法错误的是_D__.A.可行解中包含基可行解 B.可行解与基本解之间无交集C.线性规划问题有可行解必有基可行解 D.满足非负约束条件的基本解为基可行解9.线性规划问题有可行解,则 AA 必有基可行解B 必有唯一最优解C 无基可行解 D无唯一最优解10.线性规划问题有可行解且凸多边形无界,这时 CA没有无界解 B 没有可行解 C 有无界解 D 有有限最优解11.若目标函数为求max,一个基可行解比另一个基可行解更好的标志是 AA使Z更大 B 使Z更小 C 绝对值更大 D Z绝对值更小12.如果线性规划问题有可行解,那么该解必须满足 DA 所有约束条件B 变量取值非负C 所有等式要求D 所有不等式要求13.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在D集合中进行搜索即可得到最优解。
A 基B 基本解C 基可行解D 可行域14.线性规划问题是针对 D求极值问题.A约束 B决策变量 C 秩 D目标函数15如果第K个约束条件是“≤”情形,若化为标准形式,需要 BA左边增加一个变量 B右边增加一个变量 C左边减去一个变量D右边减去一个变量16.若某个b k≤0, 化为标准形式时原不等式 DA 不变B 左端乘负1C 右端乘负1D 两边乘负117.为化为标准形式而引入的松弛变量在目标函数中的系数应为 AA 0B 1C 2D 312.若线性规划问题没有可行解,可行解集是空集,则此问题 BA 没有无穷多最优解B 没有最优解C 有无界解D 有无界解三、多选题1.在线性规划问题的标准形式中,不可能存在的变量是D .A.可控变量B.松驰变量c.剩余变量D.人工变量2.下列选项中符合线性规划模型标准形式要求的有BCDA.目标函数求极小值B.右端常数非负C.变量非负D.约束条件为等式E.约束条件为“≤”的不等式3.某线性规划问题,n个变量,m个约束方程,系数矩阵的秩为m(m<n)则下列说法正确的是ABDE。
A.基可行解的非零分量的个数不大于mB.基本解的个数不会超过C m n个C.该问题不会出现退化现象D.基可行解的个数不超过基本解的个数E.该问题的基是一个m×m阶方阵4.若线性规划问题的可行域是无界的,则该问题可能ABCDA.无有限最优解B.有有限最优解C.有唯一最优解D.有无穷多个最优解E.有有限多个最优解5.判断下列数学模型,哪些为线性规划模型(模型中a.b.c为常数;θ为可取某一常数值的参变量,x,Y为变量) ACDE6.下列模型中,属于线性规划问题的标准形式的是ACD7.下列说法错误的有_ABD_。
A.基本解是大于零的解 B.极点与基解一一对应C.线性规划问题的最优解是唯一的 D.满足约束条件的解就是线性规划的可行解8.在线性规划的一般表达式中,变量x ij为 ABEA 大于等于0B 小于等于0C 大于0D 小于0E 等于09.在线性规划的一般表达式中,线性约束的表现有 CDEA <B >C ≤D ≥E =10.若某线性规划问题有无界解,应满足的条件有ADA P k<0 B非基变量检验数为零C基变量中没有人工变量Dδj>O E所有δj≤011.在线性规划问题中a23表示 AEA i =2B i =3C i =5D j=2E j=343.线性规划问题若有最优解,则最优解 ADA定在其可行域顶点达到 B只有一个 C会有无穷多个 D 唯一或无穷多个 E其值为042.线性规划模型包括的要素有 CDEA.目标函数 B.约束条件 C.决策变量 D 状态变量 E 环境变量四、名词1基:在线性规划问题中,约束方程组的系数矩阵A的任意一个m×m阶的非奇异子方阵B,称为线性规划问题的一个基。