不定积分和定积分的区别和联系
- 格式:docx
- 大小:11.28 KB
- 文档页数:2
不定积分与定积分的概念一、引言在微积分中,不定积分和定积分是重要的概念。
它们分别可以用来描述函数和计算曲线下的面积。
本文将介绍不定积分与定积分的概念、符号表示以及它们的应用。
二、不定积分的概念不定积分,也称原函数,是指对于给定的函数f(x),在其定义域上存在一个函数F(x),满足F'(x) = f(x)。
不定积分通常用∫f(x)dx表示,其中∫表示积分号,f(x)表示要积分的函数,dx表示积分变量。
三、定积分的概念定积分是对函数在一个闭区间上的积分,表示曲线下的面积。
给定函数f(x)在闭区间[a, b]上,将[a, b]划分成n个小区间,每个小区间长度为Δx,选取每个小区间的一个代表点xi,根据极限的概念,可以将定积分定义为极限值:∫[a, b]f(x)dx = lim(n->∞)Σf(xi)Δx,其中Σ表示求和的意思。
四、不定积分与定积分的关系不定积分与定积分是紧密相关的。
对于它们来说,不定积分可以看作定积分的逆运算。
具体而言,如果F(x)是函数f(x)的一个原函数,则对于闭区间[a, b]上的函数f(x),有以下等式成立:∫[a, b]f(x)dx = F(b) - F(a),其中F(b)和F(a)表示F(x)在点b和点a处的值。
五、不定积分与定积分的性质1. 基本性质:如果F(x)是f(x)的一个原函数,则对于任意常数C,有∫f(x)dx = F(x) + C成立。
2. 线性性质:对于函数f(x)和g(x),以及常数c和d,有∫[a, b](cf(x) + dg(x))dx = c∫[a, b]f(x)dx + d∫[a, b]g(x)dx成立。
3. 区间可加性质:对于闭区间[a, b]和闭区间[b, c]上的函数f(x),有∫[a, c]f(x)dx = ∫[a, b]f(x)dx + ∫[b, c]f(x)dx成立。
六、不定积分与定积分的应用不定积分和定积分在各个科学领域都有广泛的应用。
不定积分与定积分原理在微积分学中,求解函数积分是一个重要的概念。
其中,不定积分和定积分分别是两种常见的方法。
本文将介绍不定积分与定积分原理,并剖析它们的应用。
一、不定积分原理不定积分是求解函数原函数的方法,也叫不定积分。
对于一个函数f(x),如果存在一个函数F(x),使得F'(x) = f(x),则称函数F(x)是f(x)的一个原函数。
不定积分即求解该函数F(x)。
在求解不定积分过程中,我们常使用的符号是∫,表示积分。
例如,对于函数f(x) = 2x,我们可以写出不定积分为:∫f(x)dx =∫2xdx根据不定积分的线性性质,我们可以将上述不定积分写为:∫2xdx = 2∫xdx根据求导的反向运算,我们知道x的导数是1,即(x)' = 1。
所以∫xdx = 1/2x^2。
因此,不定积分∫2xdx = x^2 + C,其中C是一个常数。
不定积分的结果通常是一个含有常数项C的表达式。
这是由于原函数的导数在任意一点上都是相等的,所以不定积分的结果是一个函数族。
二、定积分原理定积分是求解函数在某一区间上的积分值的方法,也叫定积分。
对于一个函数f(x),我们可以将其在区间[a, b]上的积分表示为∫<sub>a</sub><sup>b</sup>f(x)dx。
定积分的计算可以采用“面积法”的思想。
我们将函数f(x)和x轴之间的面积划分为无穷多个矩形的面积,并对每个矩形的面积进行求和,得到最终的积分值。
具体而言,我们可以将区间[a, b]分成n个小区间,每个小区间的长度为Δx。
然后,在每个小区间上选择一个任意点ξ<sub>i</sub>,计算f(ξ<sub>i</sub>)的值,并乘以Δx,即得到该小区间上的矩形面积。
最后,将所有小区间上的矩形面积进行求和,取极限即可得到定积分的值。
定积分的计算可以使用微积分的基本公式和性质,例如分部积分、积分换元等。
不定积分与定积分的联系
定积分与不定积分是积分计算中重要的概念,它们描述不同的积分计算方式。
一、联系
1.它们都属于积分计算的范畴;
2.求出的都是函数的定义域的积分;
3.可以由极限的方法求出;
4.都是Riemann积分的推广。
二、区别
1.定积分是该函数定义域上的积分,即在定义域上的确定的一段积分,而不定积分则是该函数定义域上的一般积分;
2.定积分能够通过对函数定义域上的分段积分,通过极限计算求出,而不定积分则要求在参数化求出积分结果;
3.定积分计算上只要求求出函数定义域上的积分,而不定积分则要求求出各参数下函数的积分。
不定积分与定积分的区别与联系不定积分计算的是原函数(得出的结果是一个式子)定积分计算的是具体的数值(得出的借给是一个具体的数字)不定积分是微分的逆运算,而定积分是建立在不定积分的基础上把值代进去相减积分积分,时一个积累起来的分数,现在网上,有很多的积分活动。
象各种电子邮箱,qq等。
在微积分中,积分是微分的逆运算,即知道了函数的导函数,反求原函数。
在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的.一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。
其中:[F(x) + C]' = f(x)一个实变函数在区间[a,b]上的定积分,是一个实数。
它等于该函数的一个原函数在b的值减去在a的值.定积分就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。
实际上,定积分的上下限就是区间的两个端点a,b.不定积分设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C.其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分.由定义可知:求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C,就得到函数f(x)的不定积分.定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。
把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。
这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是:如果定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。
不定积分与定积分的联系与区别
一、不定积分与定积分的联系
不定积分与定积分是数学中两种主要的积分形式。
它们之间有着密切的联系。
1、定积分和不定积分都是用来计算曲线下方面积的,但定积分用于计算连续函数的面积,而不定积分用于计算离散函数的面积。
2、定积分是求面积的方法,不定积分是求积分函数的方法。
3、定积分只能求函数的面积,而不定积分可以求函数的任何积分。
4、定积分只能求面积,而不定积分可以求任何函数的积分。
5、定积分有时也可以求不定积分,但不定积分不能求定积分。
二、不定积分与定积分的区别
1、求解方法上的不同:定积分用积分定理求解,其中积分定理包括定积分、级数积分和单变量函数的无穷和,它可以用计算机程序代替手工计算,特别是在面积计算中;而不定积分求解更复杂,必须由数学家用一定的步骤来实现。
2、概念上的不同:定积分是指由下限积分上限确定的积分,它的积分区间是有界的;而不定积分指的是把上限取极限,使积分区间变为无界的积分,即积分上限会无限接近某个数,但永远不会达到它;
3、求值上的不同:定积分的结果是一个实数,表示函数在某一个区间内的积分值;而不定积分的结果是一个函数,表示在某一个区间内函数的积分。
浅谈定积分与不定积分的联系与区别摘要本文主要从概念和性质两方面分别讨论了不定积分、定积分之间的联系与区别.它们“形式”相像,相互之间又存在内在的联系,但如果忽视他们本质上的不同之处,将会导致很多错误.为此,本文就他们之间在定义上和性质上的联系与区别展开讨论,这将会有助于正确理解和掌握这类积分. 关键字 不定积分 定积分 性质 区别本文所涉及的包括不定积分、定积分的内容.主要讨论这两类积分在概念和性质两方面的联系与区别.能够比较系统地分析和总结这两类积分关系,便于解决实际问题.1概念1.1不定积分正如加法有其逆运算减法,乘法有其逆运算除法一样,微分法也有它的逆运算——积分法.我们知道,微分法的基本问题是研究如何从已知函数求出它的导函数,那么与之相反的问题是:求一个未知函数,使其导函数恰好是某一已知函数.定义1 设函数f 与F 在区间I 上都有定义,若()()I x x f x F ∈=',, 则称F 为f 在区间I 上的一个原函数.定义2 函数f 在区间I 上的全体原函数称为f 在I 上的不定积分,记作dx x f ⎰)(,其中⎰称为积分号,)(x f 称为被积函数,dx x f )(称为被积表达式,x 称为被积变量.由定义2可见,不定积分与原函数是总体与个体的关系,即若F 是f 的一个原函数,则f 的不定积分是一个原函数族{}C F +,其中C 是任意常数.为方便起见,通常写作⎰+=C x F dx x f )()(.这时又称C 为积分常数,它可以任取一实数值. 1.2定积分定义1 设闭区间[]b a ,上有1-n 个点,依次为0121-=<<<<<=n n a x x x x x b ,它们把[]b a ,分成个n 小区间[]i i i x x ,1-=∆,n i ,,2,1⋅⋅⋅=.这些分点或这些闭子区间构成对[]b a ,的一个分割,记为 01{,,}=n T x x x 或12{,,}∆∆∆n .小区间∆i 的长度为1i i i x x x -∆=-,并记 {}i ni x T ∆=≤≤1max , 称为分割T 的模.注 由于n i T x i ,,2,1,⋅⋅⋅=≤∆,因此T 可用来反映[]b a ,被分割的细密程度.另外,分割一旦给出,T 就随之而确定;但是,具有同一细度T 的分割T 却又无限多个.定义2 设f 是定义在[]b a ,上的一个函数,J 是一个确定的实数.若对任给的正数ε,总存在某一正数δ,使得对[]b a ,的任何分割T ,以及在其上任意选取的点集{}i ξ,只要δ<T ,就有εξ<-∆∑=ni iiJx f 1)(,则称函数f 在区间[]b a ,上可积;数J 称为f 在区间[]b a ,上的定积分,记作⎰=b adxx f J )(.其中,f 称为被积函数,x 称为积分变量,[]b a ,称为积分区间,a 、b 分别称为这个定积分的上限和下限. 2不定积分与定积分的联系与区别 2.1定义上求定积分⎰badx x f )(,即是在闭区间[]b a ,上对某个量进行分割、累积的过程.英文短语definite integral 恰好反映了这个计算过程的本质.而不定积分⎰dx x f )(表示的是)(x f 的全体原函数,既没有分割,也没有积累,为什么也称为“积分”呢?下面将通过重新定义不定积分,证明把“不定积分”称为“积分”也是合理的.设)(x f 是闭区间[]b a ,上的连续函数,不妨设[]),(0)(b a x x f ∈≥.一方面,变上限定积分[]),()()(b a x dt t f x xa∈=Φ⎰是)(x f 在[]b a ,上的一个原函数.另一方面,把)(x f 连续延拓到()+∞∞-,,得到)(x F ,使)(x F 满足条件:0)(≥x F ,+∞=⎰∞-dt t F a)(,-∞=⎰∞+adt t F )(.让下限变动到s ,得到变动上限与变动下限的定积分⎰xsdt t F )(,()+∞∞-∈,s .则⎰⎰⎰⎰+Φ=+=asxaasxsdt t F x dt t F dt t F dt t F )()()()()(.因为⎰asdt t F )(是s 的连续函数,且+∞=⎰∞-dt t F a )(,-∞=⎰∞+adt t F )(,所以,对于任意常数c ,根据连续函数的介值性定理,存在s ',使得c dt t F a s =⎰')(.以上的分析结果可以总结为:令变动上限x 为自变量,变动下限s 为参数,则形式定积分⎰xsdt t F )(就是)(x f 在[]b a ,上的不定积分.也就是说,不定积分是一种特殊形式的定积分,是上限与下限都不定的定积分.因此可以说明,把不定积分称为积分是合理的.当[]b a x x f ,,0)(∈≤时,或当)(x f 在[]b a ,上不定号时,也可以类似讨论,并得到同样的结果.注:这里说形式定积分⎰xsdt t F )(就是)(x f 在[]b a ,上的不定积分,此时被积函数是)(t F ,而不是原来的函数)(x f .在很多教科书中,对不定积分的定义是强加的,并没有说明为什么能够将⎰+=c x F dx x f )()(称为“积分”,就更谈不上不定了.这里揭示了这两种积分的内在联系:定积分就是积分上、下限都确定的积分,不定积分就是积分上、下限都不定的积分.因此,两种积分在本质上是相似的.虽然,不定积分与定积分本质相似,不定积分是一种特殊形式的定积分,但是,在概念上,两种积分是根本不同的.)(x f 的不定积分就是它的全体原函数,而在区间[]b a ,上的定积分是一个极限值,即为是一个常数,这个常数仅仅依赖于被积函数)(x f 和积分区间[]b a ,,与积分变量的字母表示无关.不定积分与定积分所分别表示的几何意义也是不同的.)(x f 的不定积分的几何意义是以c x F y +=)(为其方程的一簇积分曲线.而)(x f 在区间[]b a ,上的定积分的几何意义是由曲线)(x f y =在直线b x a x ==,以及x 轴所围成的曲边梯形的面积. 2.2性质上定理2.1 若函数f 在[]b a ,上连续,且存在原函数F ,即)()(x f x F =',[]b a x ,∈,则f 在[]b a ,上可积,且)()()(a F b F dx x f ba-=⎰.则称为牛顿—莱布尼茨公式.定积分⎰badx x f )(,原为求函数的极限,计算复杂.牛顿—莱布尼茨公式的意义就在于把不定积分与定积分联系起来了,为求定积分提供了一个很有效的方法,实质上是将定积分的求解归结为求不定积分的原函数.只要求出)(x f 的一个原函数,那么定积分⎰badx x f )(就等于)(x f 的原函数)(x F 在区间[]b a ,上的增量)()(a F b F -.牛顿—莱布尼茨公式体现了原函数与定积分的关系,但是原函数存在与函数可积并非充分条件,因此,运用牛顿—莱布尼茨公式时必须注意条件.例 函数⎪⎩⎪⎨⎧=≠-=0,00,1cos 21sin 2)(2x x xx x x x f 存在原函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(22x x x x x F ,但)(x f 在[]1,1-上不可积,因为21cos 2xx 在[]1,1-上无界. 此外,对于定积分的计算,不定积分的换元积分法和分部积分法也适用. 换元积分法定理2.2 设)(u g 在[]βα,上有定义,)(x u ϕ=在[]b a ,上可导,且)()(x x βϕα≤≤,[]b a x ,∈,并记 )())(()(x x g x f ϕϕ'=,[]b a x ,∈.(i)若)(u g 在[]βα,上存在原函数)(u G ,则)(x f 在[]b a ,上也存在原函数)(x F ,c x G x F +=))(()(ϕ,即C x G C u G du u g dx x x g dx x f +=+=='=⎰⎰⎰))(()()()())(()(ϕϕϕ.(ii)又若0)(≠'x ϕ,[]b a x ,∈,则上述命题(i )可逆,即当)(x f 在[]b a ,上存在原函数)(x F 时,)(u g 在[]βα,上也存在原函数)(u G ,且C u F u G +=-))(()(1ϕ,即⎰⎰⎰+=+=='=-C u F C x F dx x f dx x x g du u g ))(()()()())(()(1ϕϕϕ. 定理2.2' 若函数f 在[]b a ,上连续,ϕ在[]βα,上连续可微,且满足a =)(αϕ,b =)(βϕ,b t a ≤≤)(ϕ,[]βα,∈t , 则有定积分换元公式:⎰⎰'=βαϕϕdt t t f dx x f ba)())(()(. (1)所以在用还原法计算定积分时,一旦得到了新变量表示的原函数后,不必作变量还原而只要用新的积分限带入并求其差就可以了,这就是定积分换元积分法与不定积分换元法的区别,这一原因在于不定积分所求的是被积函数式的原函数,理应保留与原来相同的自变量;而定积分的计算结果是一个确定的数,如果式一边的定积分计算出来了,那么另一边的定积分自然也求得了. 分部积分法定理2.3 若)(x u 与)(x v 可导,不定积分dx x v x u )()(⎰'存在,则dx x v x u )()('⎰也存在,并有dx x v x u x v x u x v x u )()()()()()(⎰⎰'-='. (2)定理2.3' 若)(x u ,)(x v 为上[]b a ,的连续可微函数,则有定积分分部积分公式:dx x v x u a b x v x u dx x v x u baba ⎰⎰'-=')()()()()()(.不定积分的性质性质1 不为0的常数因子可以移到积分号前.性质2 不定积分的线性性质 []dx x g dx x f dx x g x f ⎰⎰⎰±=±)()()()(.推广:[]⎰⎰⎰±=±dx x g n dx x f m dx x ng x mf )()()()(,其中m 、n 为常数,且022≠+n m.定积分的性质性质1 被积函数的常数因子可以提到定积分符号前,即⎰⎰=babadx x f A dx x Af )()((A 为常数).性质2 函数的代数和的定积分等于他们的定积分的代数和,即[]⎰⎰⎰±=±babab a dx x g dx x f dx x g x f )()()()(.这个性质对有限个函数代数和也成立.性质3 积分的上下限对换则定积分变号,即⎰⎰-=abbadx x f dx x f )()(.性质4 如果将区间[]b a ,分成两个子区间[]c a ,及[]b c ,,那这子区间分成有限个的情形也成立. 性质5 如果在区间[]b a ,上,)()(x g x f ≤,则⎰⎰≤babadx x g dx x f )()(,()b a <.通过对比可以看出,不定积分与定积分有相同性质1与性质2.即,不定积分的两个性质对定积分都适用. 4总结本文从积分的定义入手,用定积分的形式来重新定义不定积分,揭示不定积分与定积分的内在联系,同时证明了不定积分也称为积分的合理性.又根据概念和性质上的不同,将不定积分与定积分区分开来. 参考文献[1]华东师范大学数学系.数学分析 (第三版) 上册 [M],北京:高等教育出版社,2006. [2]陈小平 无穷积分与定积分、瑕积分的区别[J] 北京:中国科技信息2010年第23期. [3]崔信 试论数学积分的几种性质[J] 北京:中国商界2010年第10期.[4]孙宝法用定积分形式定义的不定积分[J] 南京:大学数学第24卷第5期.[5]熊国敏定积分与瑕积分[J] 贵州:安顺师专学报(自然科学版)1994年第2期.[6]范君好Riemann积分和Lebesgue积分的联系和本质区别[J] 广西:桂林师范高等专科学校学报第24卷第3期.。
定积分和不定积分举例定积分和不定积分是微积分的重要概念,它们在实际问题的建模和求解中具有重要的应用。
定积分和不定积分有着密切的关系,但又有着不同的性质和意义。
下面,我们将分别从概念、计算方法和应用角度对定积分和不定积分进行详细介绍。
首先,我们来介绍定积分。
定积分是对函数在一个区间上的“面积”或“积累”进行求解的操作。
它可以用于计算曲线下的面积、函数的平均值以及物理问题中的总量等。
定积分的定义涉及到区间、函数和极限,它表示一个函数在区间上的“累加效应”。
定积分的符号表示为∫,被积函数写在符号的右边,后面紧跟被积区间。
举一个简单的例子,我们考虑求解函数f(x) = x^2在区间[0,2]上的定积分。
根据定积分的定义,我们可以将区间[0,2]分成许多小的区间,并且在每个小区间上计算函数值与x轴之间的“高度×宽度”的面积,并将所有的小面积加和。
通过不断增加小区间的个数,我们可以使得这个和逐渐逼近函数在整个区间上的积累效应。
最终,我们可以得到函数f(x) = x^2在区间[0,2]上的定积分的值为8/3。
接下来,我们介绍不定积分。
不定积分是定积分的逆运算,它表示一个函数的反导函数。
不定积分的符号表示为∫,但是没有指定被积区间。
不定积分求解的结果是一个函数,而不是一个具体的数值。
我们可以通过对函数的求导运算来验证不定积分的结果。
不定积分的一个重要应用是求解函数的原函数,从而进一步计算定积分的值。
举一个简单的例子,我们考虑求解函数f(x) = 2x的不定积分。
根据不定积分的定义,我们需要找到一个函数F(x),使得它的导函数等于2x。
通过对常数函数求导的逆运算,我们可以得到F(x) = x^2 + C,其中C为常数。
因此,函数f(x)的不定积分为∫2x dx = x^2 + C。
在实际应用中,定积分和不定积分有着广泛的应用。
比如,在物理学中,我们可以通过计算函数的定积分来求解物体的位移、速度和加速度等问题。
不定积分和定积分1.简介微积分是高等数学的重要分支,分为微分学和积分学两部分。
其中,积分学主要包括不定积分和定积分两个部分。
不定积分是求函数的原函数,定积分是求曲线下的面积或空间体积。
本文将对不定积分和定积分进行阐述和比较。
2.不定积分2.1定义不定积分用符号$\int$表示,表示对一个函数进行求导后的反过程,称为原函数。
其中,被积函数为f(x),不定积分表示为$\int f(x)dx$。
2.2基本公式在求不定积分时,需要掌握一些基本公式,如:$(k)'=0$,$(x^n)'=nx^{n-1}$,$(sinx)'=cosx$,$(cosx)'=-sinx$,$(e^x)'=e^x$,$(lnx)'=\dfrac1x$,$(tanx)'=sec^2x$等,还需要掌握不定积分的基本性质,如线性性、逆向加减法、逆向乘法、常数因子的提出和合并等基本规律。
2.3求解方法不定积分的求解方法比较灵活,可以通过换元、分部积分、凑微分等方法进行求解。
比如,对于有理函数,可以先进行分式分解,再分别求积分;对于无理函数,可以通过一些特殊方法实现求解。
3.定积分3.1定义定积分用符号$\int_a^bf(x)dx$表示,表示求解在x=a和x =b之间的曲线所围成的面积,其中被积函数为f(x)。
3.2基本公式在求定积分时,也需要掌握一些基本公式,如:$\int_a^bf(x)dx=\int_a^cf(x)dx+\int_c^bf(x)dx$,$\int_a^bf(x)dx=-\int_b^af(x)dx$等。
3.3求解方法定积分可以通过几何直观法、牛顿-莱布尼茨公式,定积分的性质、定积分的基本公式、变量代换法、分部积分法等方法进行求解。
4.不定积分与定积分的比较不定积分和定积分虽然都是微积分的重要部分,但是在应用中具有不同的作用。
不定积分主要用来确定函数的原函数,从而在一些复杂的函数计算中起到了重要的作用。
不定积分和定积分有什么区别
不定积分和定积分有什么区别?有很多同学都这样问过,我们今天就来解决大家的疑惑。
其实,他们二者之间只是名字上相似罢了。
在数学中,所谓的不定积分与定积分,都是数学计算中的两个概念而已,但也可以说是完全相反的两个概念。
它们的差异主要体现在如下几点:(1)不定积分是指无限小数的求导,这是可逆的;而定积分是指含有未知函数值的极限求导,这时结果是不确定的。
(2)对于定义域内某些连续函数,应用积分基本定理,能够利用不等式,化成为原函数或其它形式的积分。
首先,我们要明白定积分存在的意义是为了找到被积函数的变化规律,进行变量之间的换算,比如说三角函数中的换元法、积分换元法、曲线拟合、参数方程等等都是运用了这一条件,然后才将三角函数与其他形式的函数进行转化的,因此得出的不定积分才是具备数学特征的积分。
在这里,重点是掌握好它与导数的关系,并通过导数知识去寻找所求积分的函数性质。
如果题目中给定一个积分,那么你需要根据积分变量的取值范围,再结合自己所掌握的知识进行选择求导对象,从而得到不定积分的一般式子。
定义:是函数的一种表达形式,把表示被积函数图像叫做积分区间,记作 f (x),常见的定积分就是求函数的定积分。
例如∫x^2y+1=∫1/(x^2+ y^2) dx,∫2/(2xy)=∫3/(3x^2+4xy) dx,∫4/(4k^2+6* y^2)=∫5/(5x^2+5y^2) dx,这些都属于定积分。
其次,要掌握常见的几类积分。
对于微积分的重难点函数来讲,定积分函数则较容易求
出,比如三角函数。
不定积分和定积分的区别和联系
不定积分和定积分是微积分中非常重要的两个概念,它们的定义、性质、计算方法等方面有很多区别和联系。
下面我们将一一介绍。
1. 定义不同
不定积分是函数f(x)的一个函数的集合,它们的导数都等于f(x)。
定积分是函数f(x)在[a,b]区间内的一个实数值,表示函数在该区间内的累计变化量或者说面积。
不定积分所代表的是函数f(x)的原函数的全体,即将f(x)在x轴上的所有点都往上移(或下移)同一个常数c得到的函数的集合。
定积分所代表的是函数f(x)在[a,b]区间上沿x轴方向“累计”的面积,它是二元函数f(x,y)在矩形区域[a,b]x[0,f(x)]上的积分,即
∫[a,b]f(x)dx = lim Δx→0 ∑ f(xi)Δx
3. 求解方法不同
不定积分的求解方法主要是基于导数的运算法则来逆推出原函数,例如:
- 常数函数、幂函数、指数函数、三角函数、反三角函数等的不定积分的求法;
- 分部积分法、换元积分法、有理函数分解法等的不定积分的求法。
- 牛顿-莱布尼茨公式;
- 几何解法:用长方形的面积逼近曲线所围成的面积,随着长方形数的增加,接近真实面积;
- Riemann和与定积分;
4. 性质不同
不定积分的性质:
- 常数积分:∫kdx = kx + C,其中C为常数;
- 线性性质:①∫[a,b](u(x) + v(x))dx = ∫[a,b]u(x)dx + ∫[a,b]v(x)dx
②∫[a,b]k·u(x)dx = k · ∫[a,b]u(x)dx,其中k为任意常数;
- 逆运算性质:若F'(x) = f(x),则有∫f(x)dx = F(x) + C。
5. 联系
不定积分和定积分之间,最基本的联系是通过牛顿-莱布尼茨公式:
即定积分等于一个不定积分在区间[a,b]两个端点处的取值之差。
这说明,在一定条
件下,定积分可以用于求出不定积分的取值。
另外,在一些问题中,也可以通过求不定积分来推导出定积分的结果。
比如,长方形
逼近法和Riemann和与定积分法,都是通过对不定积分的求解来构建一个无限小的矩形序列,从而推导出定积分的值。
此外,不定积分和定积分在微积分的应用中也经常同时出现。
例如,求解一些最大值、最小值、曲线长度、质心等问题时,先需要求出函数的不定积分,再用定积分来求解另一
个函数的值。