通信原理课设SystemView通信系统仿真
- 格式:doc
- 大小:792.50 KB
- 文档页数:33
通信原理systemview课程设计一、课程目标知识目标:1. 让学生掌握通信原理的基本概念,如信号、信道、噪声等;2. 帮助学生了解SystemView软件的基本操作及其在通信原理实验中的应用;3. 使学生能够运用通信原理知识分析并解决实际问题。
技能目标:1. 培养学生运用SystemView软件设计、搭建和仿真通信系统模型的能力;2. 提高学生实际操作、调试和优化通信系统的技能;3. 培养学生团队协作、沟通表达和解决问题的能力。
情感态度价值观目标:1. 激发学生对通信原理的兴趣,培养其探索精神和创新意识;2. 引导学生树立正确的价值观,认识到通信技术在国家发展和社会进步中的重要作用;3. 培养学生严谨、务实的科学态度,提高其面对挑战、克服困难的信心。
课程性质:本课程为通信原理实验课程,旨在通过SystemView软件辅助教学,使学生更好地理解通信原理,提高实践操作能力。
学生特点:学生已具备一定的基础理论知识,但对通信原理的实际应用尚不熟悉,需要通过实践操作加深理解。
教学要求:注重理论与实践相结合,强调学生的实际操作能力,鼓励学生独立思考、主动探索,培养其解决实际问题的能力。
将课程目标分解为具体的学习成果,以便后续教学设计和评估。
二、教学内容1. 通信原理基本概念:信号与系统、线性时不变系统、傅里叶变换、采样与重建;2. 信道与噪声:信道模型、噪声类型及特性、信道容量;3. 数字通信基础:数字信号、调制与解调、误码率分析;4. SystemView软件操作:软件界面与功能、建模与仿真、参数设置与调整;5. 通信系统模型设计与仿真:幅度调制与解调、频率调制与解调、相位调制与解调;6. 通信系统性能分析:误码率、信噪比、系统稳定性。
教学内容安排与进度:第一周:通信原理基本概念;第二周:信道与噪声;第三周:数字通信基础;第四周:SystemView软件操作;第五周:通信系统模型设计与仿真(幅度调制与解调);第六周:通信系统模型设计与仿真(频率调制与解调);第七周:通信系统模型设计与仿真(相位调制与解调);第八周:通信系统性能分析。
通信原理及SystemView仿真测试课程设计概述本次课程设计主要是围绕着通信原理和SystemView仿真测试展开的。
它涉及到了许多方面的知识,例如信道编码、解码、信号调制、解调、数字信号处理等等。
同时,也需要使用到SystemView软件进行仿真测试,能够更直观地理解通信原理中的理论知识。
下面将从课程设计的目的、内容、方法等方面进行详细介绍。
目的本次课程设计旨在通过对通信原理和SystemView仿真测试的学习,使学生们掌握如下知识:1.通信原理中的信道编码、解码、信号调制、解调以及数字信号处理等基本概念;2.SystemView仿真软件进行仿真测试的基本操作;3.通过实践案例,将理论知识和实践操作相结合,更好地理解和掌握通信原理。
内容本次课程设计的主要内容分为两个部分:通信原理和SystemView仿真。
通信原理通信原理是本次课程设计的核心部分。
在这一部分中,我们将介绍通信原理中的信道编码、解码、信号调制、解调以及数字信号处理等基本概念,并通过案例实践进行深入学习。
在信道编码方面,我们将讲解汉明码、海明码、CRC码等编码方式,并通过实验对比它们的优缺点和适用范围。
在信号调制方面,我们将介绍调幅(AM)、调频(FM)、调相(PM)等调制方式,并通过实验模拟它们在不同信噪比下的信号传递效果。
在数字信号处理方面,我们将讲解数字滤波、功率谱密度估计、抽样定理、量化误差等概念,并通过案例对它们进行实践操作。
SystemView仿真SystemView是一款流行的通信仿真软件,能够帮助学生更好地理解通信原理的理论知识。
在这一部分中,我们将通过实例进行SystemView仿真测试,并深入了解信号产生、处理和调制解调的过程。
我们将使用SystemView进行信号产生和滤波测试,对信号调制和解调进行模拟仿真,同时还将使用SystemView对数字信号处理的部分进行案例演示。
方法本次课程设计采用“理论 + 实践”的结合,充分发挥学生的动手能力和实践能力,帮助学生更好地理解和掌握通信原理中的理论知识。
1、设计方案的原理:
如果用数字信号来监控载波的频率,既信号的符号‘0’对应于载波频率f1,而符号‘1’对应于载波频率f2,这种调制称“二进制频移键控”。
同模拟调制一样,容易想到,2fsk信号可以利用一个矩形脉冲序列对一个载波进行调频得到,如图:
也可以利用受矩形脉冲序列控制的开关电路对二个不同的独立频率源进行选通,如图:
2、具体的设计图形:
本设计是2fsk的systemview仿真的设计图形
3、具体的调试步骤:
首先设定抽样的点数和抽样的频率,具体的数值如图:
经过很详细的调试得出了下列结果,如图:
4、具体结果的分析:
输出的结果产生了失真:不应该出现尖的小脉冲
如果调试的很精确,实际的波形输出应该如图:
5、实验总结:
通过实习,使我认识实践的重要性,让我对通信原理和调制的原
理有了更加深刻的认识,也让我对波形的产生产生视频化的认
识!总之:实践是我验证真理的重要学习步骤!!
再此我感谢张海燕和尹立强老师对我的帮助,我将以此为基础更
加努力的学习,不辜负你们的殷殷教导!。
《通信原理课程设计》报告设计题目:用SystemView实现通信2FSK系统的仿真与分析专业班级: 10通信二班学生姓名:王金剑学生学号: 10422043指导教师:涂丽琴时间: 2012.5.22一、课程设计题目设计仿真二进制频移键控制 2FSK二、课程设计要求(1)设计一数字基带或频带通信系统,包括发送滤波器,调制,解调和接收滤波器等;调制方式可采用2ASK,2FSK,2PSK或2DPSK;根据所学通信原理知识,设计各个模块参数(如码元速率,载波频率等);(4)通信系统的设计利用System view仿真实现实现;(5)仿真波形分析,要求仿真的波形有(产生的输入二进制序列调制信号波形,载波,已调信号波形,噪声信号、已调信号叠加噪声、接收基带信号眼图、判决输出的二进制序列、滤波器参数)。
(6)要求报告书写规范,无书写,排版错误。
图号、表号标注清楚,系统不同条件下,所得的仿真结果能进行分析比较,并得出正确的结论。
三、课程设计方案及原理1. 设计方案采用键控发产生二进制频移键控信号,及利用矩形脉冲序列控制开关电路对两个不同的独立频率进行选通。
频移键控FSK是用数字基带信号去调制载波的频率。
应为数字信号的电平是离散的,所以载波频率的变化也是离散的。
在本实验中,二进制基带信号是用正负电平表示的,载波频率随着调制信号为1或-1二变化,其中1对应于载波频率w1表示,-1对应载波频率w2.A 为载波幅度W1,W2 为载波a(n) 为二进制数字信号2. 设计原理用System View实现通信2FSK系统的仿真与分析调制部分的仿真图为基带信号在经过整流之后就变成了单极性码,用高频信号调制,后用加法器合并还原信号完整内容。
解调部分的仿真图为用同频同相得本地高频型号进行解调得到同步信号,在用低通滤波器滤除高频载波,通过反向器并通过加法器相加后,得到原始基带型号,通过抽样,保持,判决,得到准确的原始信号。
四、课程设计仿真模型1、模块参数设计Token0 载波正弦波发生器(频率1=200HZ)Token1基带信号—PN(频率为10HZ,电平2level,偏移=0)Token2 反相器Token3乘法器Token4 乘法器Token5 载波正弦波发生器(频率2=400HZ)Token7观察窗Token8 半波整流器,门限电压=0VToken9半波整流器,门限电压=0VToken10 观察窗Token 11 加法器Token12载波正弦波发生器(频率1=200HZ)Token13载波正弦波发生器(频率2=400HZ)Token15 乘法器Token17乘法器Token18观察窗Token19 模拟低通滤波器(截止频率1=100HZ)Token20模拟低通滤波器(截止频率1=100HZ)Token21反相器Token23加法器Token25抽样器(抽样频率=1000HZ)Token26 保持器Token27 判决器Token28 观察窗Token29 比较电平发生器(电平=0V)Token30 观察窗运行时间设置运行时间=0.3s 采样频率=1000HZ运行系统,利用观察窗观察各波形形状2 、仿真结果原波形(sink30)半波整流后加载到高频信号上得波形(sink7)经反向器并半波整流后加载到高频信号上得波形(sink10)调制后波形(sink18)解调后的波形(sink24)经过抽样判决后的最终波形(sink28)最总输出的眼图为功率谱为改变参数Token0载波正弦波发生器(频率1=300HZ)Token5 载波正弦波发生器(频率2=600HZ)Token12 载波正弦波发生器(频率1=300HZ)Token13载波正弦波发生器(频率2=600HZ)得到个频谱图为输出功率谱为五、结论由各图克一反映出仿真结果基本符合理论结果,完成了信号的调制和解调,在解调后的波形上由些时延忽然抖动,是由电路时延引起的。
通信原理System view仿真实验指导第一部分SystemView简介System View是由美国ELANIX公司推出的基于PC的系统设计和仿真分析的软件工具,它为用户提供了一个完整的开发设计数字信号处理(DSP)系统,通信系统,控制系统以及构造通用数字系统模型的可视化软件环境。
1.1 SystemView的基本特点1.动态系统设计与仿真(1) 多速率系统和并行系统:SYSTEMVIEW允许合并多种数据速率输入系统,简化FIR FILTER的执行。
(2) 设计的组织结构图:通过使用METASYSTEM(子系统)对象的无限制分层结构,SYSTEMVIEW能很容易地建立复杂的系统。
(3) SYSTEMVIEW的功能块:SYSTEMVIEW的图标库包括几百种信号源,接收端,操作符和功能块,提供从DSP、通信信号处理与控制,直到构造通用数学模型的应用使用。
信号源和接收端图标允许在SYSTEMVIEW内部生成和分析信号以及供外部处理的各种文件格式的输入/输出数据。
(4) 广泛的滤波和线性系统设计:SYSTEMVIEW的操作符库包含一个功能强大的很容易使用图形模板设计模拟和数字以及离散和连续时间系统的环境,还包含大量的FIR/IIR滤波类型和FFT类型。
2.信号分析和块处理SYSTEMVIEW分析窗口是一个能够提供系统波形详细检查的交互式可视环境。
分析窗口还提供一个完成系统仿真生成数据的先进的块处理操作的接收端计算器。
接收端计算器块处理功能:应用DSP窗口,余切,自动关联,平均值,复杂的FFT,常量窗口,卷积,余弦,交叉关联,习惯显示,十进制,微分,除窗口,眼模式,FUNCTION SCALE,柱状图,积分,对数基底,数量相,MAX,MIN,乘波形,乘窗口,非,覆盖图,覆盖统计,解相,谱,分布图,正弦,平滑,谱密度,平方,平方根,减窗口,和波形,和窗口,正切,层叠,窗口常数。
1.2 SystemView各专业库简介SystemView的环境包括一套可选的用于增加核心库功能以满足特殊应用的库,包括通信库、DSP库、射频/模拟库和逻辑库,以及可通过用户代码库来加载的其他一些扩展库。
1 前言通信按照传统的理解就是信息的传输,信息的传输离不开它的传输工具,通信系统应运而生,我们此次课题的目的就是要对调制解调的通信系统进行仿真研究。
有调制器,接收端要有解调器,这就用到了调制技术,调制可分为模拟调制和数字调制,模拟调制。
模拟调制常用的方法有AM调制、DSB调制、SSB调制;数字调制常用的方法有BFSK调制等。
经过调制不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于信道传输或便于信道多路复用的已调信号,而且它对系统的传输有效性和传输的可靠性有着很大的影响。
调制方式往往决定着一个通信系统的性能。
随着通信技术的发展日新月异,通信系统也日趋复杂。
因此,在通信系统的设计研发过程中,通信系统的软件仿真已成为必不可少的一部分。
目前,电子设计自动化EDA(Electronic Design Automatic)已成为通信系统设计的主潮流。
为了使复杂的设计过程更加便捷高效,使得分析与设计所需的时间和费用降低。
美国Elanix 公司推出的基于PC机Windows平台的SystemView动态系统仿真软件,是一个比较流行的,优秀的仿真软件。
SystemView是一个信号级的系统仿真软件,主要用于电路与通信系统的设计、仿真、能满足从信号处理、滤波器设计,到复杂的通信系统等要求。
SystemView借助大家熟悉的Windows窗口环境,以模块化和交互式的界面,为用户提供一个嵌入式的分析引擎。
SystemView仿真系统的主要特点有:能仿真大量的应用系统;能快速方便地进行动态系统设计与仿真;在本文中可以方便地加入SystemView的结果;完备的滤波和线性设计;先进的信号分析和数据处理;完善的自我诊断功能等。
SystemView由两个窗口组成,分别是系统设计窗口的分析窗口。
系统设计窗口,包括标题栏、菜单栏、工具条、滚动条、提示栏、图符库和设计工作区。
所有系统的设计、搭建等基本操作,都是在设计窗口内完成。
华东交通大学理工学院课程设计报告书所属课程名称现代通信原理课程设计题目基于SystemV i ew的数字系统仿真设计分院专业班级学号学生姓名指导教师2013 年月日目录第一章课程设计内容 (1)1.1课程设计内容及要求 (1)第二章二进制振幅键控(2ASK) (2)2.2 ASK调制部分 (2)2.3 解调部分 (2)2.4 实验内容 (3)第三章二进制频移键控(2FSK) (6)3.1 调制部分 (6)3.2 解调部分 (6)3.3 实验内容 (7)第四章二进制移相键控2PSK (11)4.1 调制部分 (11)4.2 解调部分 (12)4.3 实验内容 (12)第五章二进制移相键控2DPSK (15)5.1 调制部分 (15)5.2 解调部分 (16)5.3 实验内容 (16)第六章心得体会 (19)参考文献 (21)第一章课程设计内容1.1课程设计内容及要求数字通信系统仿真2ASK、2FSK、2PSK、2DPSK设计方法与步骤:1.学习SystemView仿真软件;2.对需要仿真的通信系统各功能模块的工作原理进行分析;3.提出系统的设计方案,选用合适的模块;4.对所设计系统进行仿真;5.并对仿真结果进行分析。
第二章二进制振幅键控(2ASK)ASK(Amplitude Shift Key):利用数字基带信号控制载波的幅度。
为使数字信号在带通信道中传输,必须对数字信号进行调制。
在幅移键控中,载波幅度是随着调制信号而变化的。
最简单的形式是载波在二进制调制信号 1 或0 控制下通或断,这种二进制幅度键控方式称为通-断键控制(OOK)。
OOK信号表达式:Sook(t)=a(n)Acos(ω0t)2.2 ASK调制部分二进制幅度键控调制器可用一个相乘器来实现。
OOK信号,相乘器可用一个开关电路来代替。
调制信号为1 时,开关电路导通,为0 时开关电路切断,如图所示:2.3 解调部分解调有相干和非相干两种。
基于systemview的多进制数字调制系统的仿真目录绪论错误!未定义书签。
第一章Systemview软件简介错误!未定义书签。
1.1S YSTEMVIEW软件特点错误!未定义书签。
1.2使用S YSTEMVIEW进行系统仿真的步骤错误!未定义书签。
1.3S YSTEM V IEW的工具栏错误!未定义书签。
1.4S YSTEM V IEW的图标库5第二章多进制振幅键控(MASK)系统的设计错误!未定义书签。
2.1多进制振幅键控(4ASK)的调制与解调错误!未定义书签。
2.1.1多进制振幅键控(4ASK)的调制解调原理错误!未定义书签。
2.24ASK的调制解调仿真设计错误!未定义书签。
2.34ASK的仿真结果和分析错误!未定义书签。
第三章 MFSK仿真系统的设计错误!未定义书签。
2.1多进制移频键控(MFSK)的调制与解调错误!未定义书签。
2.1.1MFSK的调制解调原理错误!未定义书签。
2.2MFSK的调制解调仿真设计错误!未定义书签。
2.3仿真结果分析错误!未定义书签。
第四章MPSK仿真系统的设计163.1多进制相移键控(MPSK)的调制与解调163.2MFSK的调制解调仿真设计错误!未定义书签。
3.3仿真结果分析结束语错误!未定义书签。
参考文献错误!未定义书签。
辞错误!未定义书签。
绪论数字通信系统,按调制方式可以分为基带传输和带通传输。
数字基带信号的功率一般处于从零开始到某一频率(如0~6M)低频段,因而在很多实际的通信(如无线信道)中就不能直接进行传输,需要借助载波调制进行频谱搬移,将数字基带信号变换成适合信道传输的数字频带信号进行传输,这种传输方式,称为数字信号的频带传输或调制传输、载波传输。
所谓调制,是用基带信号对载波波形的某参量进行控制,使该参量随基带信号的规律变化从而携带消息。
对数字信号进行调制可以便于信号的传输;实现信道复用;改变信号占据的带宽;改善系统的性能。
和模拟调制不同的是,由于数字基带信号具有离散取值的特点,所以调制后的载波参量只有有限的几个数值,因而数字调制在实现的过程中常采用键控的方法,就像用数字信息去控制开关一样,从几个不同参量的独立振荡源中选参量,由此产生的三种基本调制方式分别称为振幅键控(ASK,Amplitude-Shift keying)、移频键控(FSK,Frequency-Shift keying)和移相键(PSK,Phase-Shift keying )或差分移相键(DPSK,DifferentPhase-Shift keying)。
1 引言通信按照传统的理解就是信息的传输。
在当今高度信息化的社会,信息和通信已成为现代社会的命脉。
信息作为一种资源,只有广泛地传播和交流,才能产生利用价值,促进社会成员之间的合作,推进社会生产力的发展,创造出巨大的经济效益。
而通信作为传输信息的手段或方式,与传感技术、计算机技术相互结合,已经成为21世纪国际社会和世界经济发展的强大推动力。
可以预见,未来的通信对人们的生活方式和社会的发展将会产生更加重大和意义深远的影响。
在通信系统的设计研发过程中,通信系统的软件仿真已成为必不可少的一部分。
为了使复杂的设计过程更加便捷高效,使得分析与设计所需的时间和费用降低,美国Elanix公司推出的基于PC机Windows平台的SystemView动态系统仿真软件,是一个比较流行的,优秀的仿真软件。
SystemView是一个信号级的系统仿真软件,主要用于电路与通信系统的设计、仿真、能满足从信号处理、滤波器设计,到复杂的通信系统等要求。
SystemView借助大家熟悉的Windows窗口环境,以模块化和交互式的界面,为用户提供一个嵌入式的分析引擎。
SystemView仿真系统的主要特点有:能仿真大量的应用系统;能快速方便地进行动态系统设计与仿真;在本文中可以方便地加入SystemView的结果;完备的滤波和线性设计;先进的信号分析和数据处理;完善的自我诊断功能等。
SystemView由两个窗口组成,分别是系统设计窗口的分析窗口。
系统设计窗口,包括标题栏、菜单栏、工具条、滚动条、提示栏、图符库和设计工作区。
所有系统的设计、搭建等基本操作,都是在设计窗口内完成。
分析窗口包括标题栏、菜单栏、工具条、流动条、活动图形窗口和提示信息栏。
提示信息栏显示分析窗口的状态信息、坐标信息和指示分析的进度;活动图形窗口显示输出的各种图形,如波形等。
分析窗口是用户观察SystemView数据输出的基本工具,在窗口界面中,有多种选项可以增强显示的灵活性和系统的用途等功能。
在分析窗口最为重要的是接收计算器,利用这个工具我们可以获得输出的各种数据和频域参数,并对其进行分析、处理、比较,或进一步的组合运算。
2 System View软件简介System View 是一个用于现代工程与科学系统设计及仿真的动态系统分析平台。
从滤波器设计、信号处理、完整通信系统的设计与仿真,直到一般的系统数学模型建立等各个领域,System View 在友好而且功能齐全的窗口环境下,为用户提供了一个精密的嵌入式分析工具。
System View是美国ELANIX公司推出的,基于Windows环境下运行的用于系统仿真分析的可视化软件工具,它使用功能模块(Token)描述程序。
利用System View,可以构造各种复杂的模拟、数字、数模混合系统和各种多速率系统,因此,它可用于各种线性或非线性控制系统的设计和仿真。
用户在进行系统设计时,只需从System View配置的图标库中调出有关图标并进行参数设置,完成图标间的连线,然后运行仿真操作,最终以时域波形、眼图、功率谱等形式给出系统的仿真分析结果。
2.1 SystemView的基本特点SystemView基本属于一个系统级工具平台,可进行包括数字信号处理(DSP)系统、模拟与数字通信系统、信号处理系统和控制系统的仿真分析,并配置了大量图符块(Token)库,用户很容易构造出所需要的仿真系统,只要调出有关图符块并设置好参数,完成图符块间的连线后运行仿真操作,最终以时域波形、眼图、功率谱、星座图和各类曲线形式给出系统的仿真分析结果。
SystemView的库资源十分丰富,主要包括:含若干图符库的主库(Main Library)、通信库(Communications Library)、信号处理库(DSP Library)、逻辑库(Logic Library)、射频/模拟库(RF Analog Library)和用户代码库(User Code Library)。
2.2 SystemView系统视窗2.2.1 主菜单功能进入SystemView后,屏幕上首先出现该工具的系统视窗,如下所示。
系统视窗最上边一行为主菜单栏,包括:文件(File )、编辑(Edit )、参数优选(Preferences )、视窗观察(View )、便笺(NotePads )、连接(Connetions )、编译器(Compiler )、系统(System )、图符块(Tokens )、工具(Tools )和帮助(Help )共11项功能菜单。
与最初的SystemView1.8相比,SystemView3.0的操作界面和对话框布局有所改变。
系统视窗最上边一行为主菜单栏,包括:文件(File )、编辑(Edit )、参数优选(Preferences )、视窗观察(View )、便笺(NotePads )、连接(Connetions )、编译器(Compiler )、系统(System )、图符块(Tokens )、工具(Tools )和帮助(Help )共11项功能菜单。
与最初的SystemView1.8相比,SystemView3.0的操作界面和对话框布局有所改变。
2.2.2快捷功能按钮在主菜单栏下,SystemView 为用户提供了16个常用快捷功能按钮,按钮功能如下所示。
清除系统 删图符块 切断连线 布放连线复制图符 便笺注释 终止运行 系统运行系统定时 分析窗口 进亚系统 建亚系统根轨迹 波特图 重画图形 图符翻转图2-1 系统视窗图2-2 快捷键2.2.3 图符库选择按钮系统视窗左侧竖排为图符库选择区。
图符块(Token )是构造系统的基本单元模块,相当于系统组成框图中的一个子框图,用户在屏幕上所能看到的仅仅是代表某一数学模型的图形标志(图符块),图符块的传递特性由该图符块所具有的仿真数学模型决定。
创建一个仿真系统的基本操作是,按照需要调出相应的图符块,将图符块之间用带有传输方向的连线连接起来。
这样一来,用户进行的系统输入完全是图形操作,不涉及语言编程问题,使用十分方便。
进入系统后,在图符库选择区排列着8个图符选择按钮,即:信源库亚器件库 加法器 输入/输出 操作库 函数库 乘法器 信宿库在上述8个按钮中,除双击“加法器”和“乘法器”图符按钮可直接使用外,双击其它按钮后会出现相应的对话框,应进一步设置图符块的操作参数。
单击图符库选择区最上边的主库开关按钮 main ,将出现选择库开关按钮 Option 下的用户库(User )、通信库(Comm )、DSP 库(DSP )、逻辑库(Logic )、射频模拟库(RF/Analog )和数学库(Matlab )选择按钮,可分别双击选择调用。
2.3 系统窗下的库选择操作2.3.1 选择设置信源创建系统的首要工作就是按照系统设计方案从图符库中调用图符块,作为仿真系统的基本单元模块。
可用鼠标左键双击图符库选择区内的选择按钮。
现以创建一个PN 码信源为例,该图符块的参数为2电平双极性、1V 幅度、100Hz 码时钟频率,操作步骤如下:1.双击“信源库”按钮,并再次双击移出的“信源库图符块”,出现源库(Source Library )选择设置对话框,如图1-3-1所示。
与SystemView1.8相比,SystemView3.0的库对话框布局有所变化,它将信源库内各个图符块进行分类,通过 “Sinusoid/Periodic (正弦/周期)”、“Noise/PN (噪声/PN 码)”和“Aperiodic/Ext (非周期/扩展)” 3个开关按钮进行分类选择和调用,而不像SystemView1.8那样所有库内图符全部显示在一个窗口内:图2-3 图符库2.单击开关按钮下边框内的“PN Seq ”图符块表示选中,再次单击对话框中的参数按钮 Parameters ,在出现的参数设置对话框中分别设置:幅度Amplitude =1、直流偏置Offset =0、电平数Level =2;3.分别单击参数设置和源库对话框的按钮 OK ,从而完成该图符块的设置。
2.3.2 选择设置信宿库当需要对系统中各测试点或某一图符块输出进行观察时,通常应放置一个信宿(Sink )图符块,一般将其设置为“Analysis ”属性。
Analysis 块相当于示波器或频谱仪等仪器的作用。
Analysis 块的创建操作如下:1.双击系统窗左边图符库选择按钮区内的“信宿”图符按钮,并再次双击移出的“信宿”块,出现信宿定义(Sink Definition )对话框;2.单击“Analysis ”图符块选中;3.最后,单击信宿定义对话框内的 OK 按钮完成信宿选择。
图2-5 对话框图2-4 源库选择设置对话框双击图符库选择区内的“操作库”图符块按钮,并再次双击移出的“操作库” 图符块,出现操作库(Operator Library )选择对话框,操作库中的各类图符块可通过6个分类选择开关选用,如图2-6所示。
2.3.4 选择设置函数库双击图符库选择区内的“函数库”图符块按钮,并再次双击移出的“函数库” 图符块,出现函数库(Function Library )选择设置对话框,如图2-7所示,设置图符块参数的方法与前边类似。
对于上述各库的对话框,如果希望知道库内某图符块的功能,可用鼠标指在某个图符块上,立刻出现一个小文本框,框内以英文提示用户该图符块的功能参数和性质。
图2-6 操作库选择对话框图2-7 函数库选择设置对话框在系统窗下,单击图符库选择区内上端的开关按钮 Main ,图符库选择区内图符内容将改变,双击其中的图符按钮“Comm ”,再次双击移出的“Comm ”图符块,出现通信库(Communication Library )选择设置对话框, 如图2-8所示。
通信库中包括通信系统中经常会涉及的BCH 、RS 、Golay 、Vitebi 纠错码编码/译码器、不同种类的信道模型、调制解调器、分频器、锁相环、Costas 环、误比特率BER 分析等可调用功能图符块。
2.3.6 选择设置逻辑库在系统窗下,双击图符库选择区内的“Logic ”图符按钮,再次双击移出的“Logic ”图符块,出现逻辑库(Logic Library )选择设置对话框, 如图2-9所示。
通过6个选择开关按钮可分门别类地选择库内各种逻辑门、触发器和其它逻辑部件。
除已经介绍的图符库外,SystemView 还提供了其它种类的丰富库资源,但作为一般通信系统的仿真分析,基本可不涉及其它类型库的调用。
图2-8 通信库选择设置对话框图2-9 逻辑库选择设置对话框3 通信系统的设计与分析3.1 DSB 调制解调通信系统的设计与分析3.1.1 DSB 调制解调原理如果输入的基带信号没有直流分量,且滤波器是理想带通滤波器,则得到的输出信号便是无载波分量的双边带信号,或称双边带抑制载波(DSB-SC )信号,简称DSB 信号。