【最新】人教版七年级上册第一章教案:1.4.1 有理数的乘法(2)第二课时
- 格式:doc
- 大小:83.50 KB
- 文档页数:2
新人教版七年级数学上册1.4.1《有理数的乘法》教学设计2一. 教材分析新人教版七年级数学上册1.4.1《有理数的乘法》是学生在掌握了有理数的概念、加法、减法、除法的基础上,进一步学习有理数的乘法。
本节内容通过实例让学生理解有理数乘法的概念,掌握有理数乘法的法则,并能够熟练地进行计算。
教材通过例题和练习题的形式,让学生在实际操作中掌握有理数乘法,并能够运用到解决实际问题中。
二. 学情分析七年级的学生已经掌握了有理数的概念、加法、减法、除法,对于本节内容有一定的认知基础。
但是,学生在理解和运用有理数乘法时,可能会存在以下问题:1. 对有理数乘法的概念理解不深,容易与加法、减法混淆;2. 对有理数乘法的法则掌握不牢,容易在计算中出错;3. 在解决实际问题时,不能灵活运用有理数乘法。
三. 教学目标1.让学生理解有理数乘法的概念,掌握有理数乘法的法则;2. 培养学生能够熟练地进行有理数乘法计算;3. 使学生能够运用有理数乘法解决实际问题。
四. 教学重难点1.有理数乘法的概念;2. 有理数乘法的法则;3. 有理数乘法在实际问题中的应用。
五. 教学方法1.采用实例教学法,通过具体例子让学生理解有理数乘法的概念和法则;2. 采用练习法,让学生在实际操作中掌握有理数乘法;3. 采用问题解决法,让学生运用有理数乘法解决实际问题。
六. 教学准备1.PPT课件;2. 练习题;3. 教学黑板。
七. 教学过程1.导入(5分钟)通过一个实际问题引出有理数乘法的重要性,激发学生的学习兴趣。
例如:小明有3个苹果,小红的苹果数是小明的2倍,两人一共有多少个苹果?2.呈现(10分钟)通过PPT展示有理数乘法的概念和法则,让学生初步理解并记忆。
3.操练(10分钟)让学生进行有理数乘法的计算练习,教师逐一讲解并纠正错误。
4.巩固(10分钟)让学生独立完成一些有理数乘法的计算题,教师选取部分题目进行讲解。
5.拓展(10分钟)让学生运用有理数乘法解决实际问题,教师引导学生思考并给出答案。
第二课时多个有理数相乘一、教学目标(一)学习目标1.巩固有理数乘法法则;2。
探索多个有理数相乘时,积的符号的确定方法,并能熟练运用;3.将多个数相乘的符号法则运用到生活中,体会学习数学的乐趣.(二)学习重点正确进行多个有理数的乘法运算.(三)学习难点多个有理数相乘时积的符号的确定.二、教学设计(一)课前设计1。
预习任务计算下列各式:-⨯-⨯⨯⨯=(),-⨯⨯⨯⨯=-,1234512012345120-⨯-⨯-⨯-⨯-=--⨯-⨯-⨯⨯=-,1(2)(3)(4)51201(2)(3)45120-⨯-⨯-⨯-⨯=,1(2)(3)(4)(5)120通过计算结果分析,你发现的规律是:负因数的个数为奇数个时,积为负,负因数的个数为偶数个数时,积为正.(用文字描述)2。
预习自测不计算最后结果,请直接判断结果的正负.(1)123(4)5-⨯⨯-⨯-⨯-⨯⨯⨯-⨯, (2)12(3)(4)5【知识点】多个有理数相乘积的符号的判定.【解题过程】解:∵(1)共有2个负因数.(2)有3个负因数∴第一个算式的结果为正,第二个算式的结果是负.【思路点拨】根据有理数乘法法则,确定算式里面的负因数的个数(1)共有2个负因数.(2)有3个负因数.【答案】(1)的结果为正,(2)的结果是负.(3)下列各式中,积为负数的是();A.(﹣5)×(﹣2)×(﹣3)×(﹣7) B.(﹣5)×(﹣2)×|﹣3|C.(﹣5)×2×0×(﹣7) D.(﹣5)×2×(﹣3)×(﹣7)【知识点】有理数的乘法.【解题过程】解:A.四个负因数相乘,积为正数,故本选项错误;B。
两个负因数与|﹣3|的绝对值相乘,积为正数,故本选项错误;C。
有因式0,积是0,0既不是正数也不是负数,故本选项错误;D.有3个负因数,积是负数,故本选项正确.【思路点拨】根据有理数的乘法运算符号法则对各选项分析判断后利用排除法求解.【答案】D.(4)A。
人教版七年级数学上册:1.4.1《有理数的乘法》教学设计2一. 教材分析《有理数的乘法》是人民教育出版社出版的初中数学七年级上册第1章第4节的一部分,是在学生已经掌握了有理数加法、减法、除法的基础上进行学习的。
这部分内容是有理数运算的重要组成部分,也是整个初中数学的重要基础。
通过本节课的学习,让学生掌握有理数的乘法运算,理解有理数乘法的运算方法,为后续的数学学习打下基础。
二. 学情分析学生在进入七年级之前,已经学习了整数的乘法,对乘法运算有一定的理解。
但是,对于有理数的乘法,学生可能还存在一些困惑,如如何将整数乘法的运算规则应用到有理数的乘法中,如何处理符号问题等。
因此,在教学过程中,教师需要引导学生将已有的知识与新的知识进行联系,帮助学生理解和掌握有理数的乘法。
三. 教学目标1.知识与技能目标:让学生掌握有理数的乘法运算,能够正确地进行有理数的乘法计算。
2.过程与方法目标:通过探究有理数的乘法,培养学生的问题解决能力和合作交流能力。
3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的自主学习能力。
四. 教学重难点1.教学重点:有理数的乘法运算方法。
2.教学难点:有理数乘法中的符号处理。
五. 教学方法采用问题驱动法、合作交流法、案例分析法等教学方法,引导学生主动探究有理数的乘法,通过小组合作,共同解决问题,提高学生的数学素养。
六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习情况,设计好教学问题和活动。
2.学生准备:预习教材,了解有理数的乘法概念,准备相关知识。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题,如“小明有3个苹果,小红的苹果数是小明的2倍,请问小红有多少个苹果?”让学生思考,引出有理数的乘法。
2.呈现(10分钟)教师通过PPT或者黑板,呈现有理数的乘法运算规则,引导学生观察和思考。
3.操练(10分钟)教师提出几个有理数的乘法问题,让学生独立解决,然后进行讲解和讨论。
【教学设计】《1.4.1有理数的乘法》第二课时(人教)【教学重点】乘法的符号法则和乘法的运算律。
【教学难点】积的符号的确定。
◆课前准备◆收集相关文本资料,相关图片,相关动画等碎片化资源。
◆教学过程复习旧知1.叙述有理数乘法法则。
2.计算(五分钟训练):(1)(-2)×3; (2)(-2)×(-3);(3)4×(-1.5); (4)(-5)×(-2.4);(5)29×(-21); (6)(-2.5)×16;(7) 97×0×(-6); (8)(-9.3)×(-7.8)×0;(9)-35×2; (10)(-84)×(-86);(11)0.2×3×(-5);(12)24×(-0.125);(13)(-0.6)×(-1.5);(14)1×2×3×4×(-5);(15)1×2×3×(-4)×(-5);(16)1×2×(-3)×(-4)×(-5);(17)1×(-2)×(-3)×(-4)×(-5);(18)(-1)×(-2)×(-3)×(-4)×(-5)。
讲授新课1.几个有理数相乘的积的符号法则引导学生观察上面各题的计算结果,找一找积的符号与什么有关?(14),(16),(18)等题积为负数,负因数的个数是奇数个;(15),(17)等题积为正数,负因数个数是偶数个。
是不是规律?再做几题试试:(1)3×(-5);(2)3×(-5)×(-2);(3)3×(-5)×(-2)×(-4);同样的结论:当负因数个数是奇数时,积为负;当负因数个数是偶数时,积为正。
1.4.1有理数的乘法(第二课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.4.1有理数的乘法(第二课时),内容包括:有理数乘法的运算律、利用运算律简化乘法运算.2.内容解析本节课内容主要是乘法的运算律及其简单应用.运算律主要用于简化运算,在整个代数内容的学习中,运算律都占有重要地位.例如,整式加减法,就是根据加法交换律与加法结合律把同类项结合在一起,而同类项合并的根据及时分配律.为将来后学的学习打好基础.基于以上分析,确定本节课的教学重点为:探索有理数的乘法运算律并熟练运用运算律进行计算.二、目标和目标解析1.目标(1)掌握有理数乘法的运算律,并利用运算律简化乘法运算. (运算能力)(2)掌握乘法的分配律,并能灵活地运用. (运算能力)2.目标解析有理数乘法的运算律包括交换律、结合律和分配律恰当地运用有理数乘法的运算律,可以使乘法运算变得简洁.有理数乘法的三条运算律,通常需要综合和同时使用,还可以从正、反两个方向应用,进而可以使有理数乘法运算更快捷、更准确特别是乘法的分配律,要通过一定量题目的训练,让学生体会运用乘法运算律的必要性.三、教学问题诊断分析在前面两个有理数乘法的学习中,已经知道有理数的乘法运算分两个步骤:一、确定符号;二、把绝对值相乘,和有理数加法类似先确定符号再计算绝对值,和小学学过的乘法只算数不一样,但学生符号感意识淡薄,确定符号能力有待提高在具体的问题情境中,对于如何确定符号,学生会感到困难.运算律小学也学过,但在有理数中运用也是难点,也有个符号问题.基于以上学情分析,确定本节课的教学难点为:掌握有理数乘法的运算律,并利用运算律简化乘法运算.四、教学过程设计(一)复习回顾一、有理数乘法法则1.两数相乘,同号得正,异号得负,并把绝对值相乘.2.任何数同0相乘,都得0.思考:(1)若a <0,b >0,则ab 0 ;(2)若a <0,b <0,则ab 0 ;(3)若ab >0,则a 、b 应满足什么条件?(4)若ab <0,则a 、b 应满足什么条件?二、多个有理数相乘的运算规律1.几个非零的数相乘:几个不是0的数相乘,当负因数的个数是_____时,积是正数;当负因数的个数是_____时,积是负数.2.几个数相乘,其中含有0:几个数相乘,如果其中有因数为0,那么积等于0.(二)自学导航观察归纳4×(5)=____,(5)×4=____; 6×(2)=____,(2)×6=____;即4×(5)=(5)×4; 6×(2)=(2)×6.[2×(3)]×(5)=__________=____,2×[(3)×(5)]=_______=____.即[2×(3)]×(5)=2×[(3)×(5)]思考:上面每组运算分别体现了什么运算律?【归纳】一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.乘法交换律:ab=ba三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.乘法结合律:(ab)c=a(bc)注意:用字母表示乘数时,“×”号可以写成“·”或省略, 如a ×b 可以写成a ·b 或ab.(三)考点解析例1.计算:(1)(4)×23×(0.25)×(32); (2)24×(-96)×0.75×(-148).分析:根据算式中数的特征以及运算律的作用,选择合适的乘法运算律简化计算.解:(1)原式=(4×14)×(23×32)=1;(2)原式=(24×34)×(96×148) =18×2=36.【迁移应用】1.在(0.125)×(2)×(8)×5=[(0.125)×(8)]×[(2)×5]中,运用了( )A.分配律B.乘法交换律C.乘法结合律D.乘法交换律和乘法结合律2.计算:(1)(4)×(23)×(25); (2)1.5×0.5×(100)×23; (3)(3)×(115)×(13)×(2011).解:(1)原式=(4×25×23)=2300;(2)原式=(32×23)×(0.5×100)=1×50=50; (3)原式=(3×13)×(115×2011)=1×4=4.(四)自学导航观察归纳5×[3+(7)]=___________=_____,5×3+5×(7)=__________=_____;即5×[3+(7)]=5×3+5×(7);[2+(4)]×(3)=__________=___,2×(3)+(4)×(3)=________=___.即[2+(4)]×(3)=2×(3)+(4)×(3).思考:上面每组运算体现了什么运算律?【归纳】乘法分配律:一般地,有理数乘法中,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. 字母表达:a(b+c)= ab+ac(五)考点解析例2.利用乘法的运算律进行计算:(112+1456)×(36)解:原式=(112)×(36)+14×(36)56×(36) =39(30)=24.【迁移应用】1.计算(1256+512724)×24的结果是( )A.2B.3C.4D.52.利用乘法的运算律进行计算:34×(81130.04). 解:原式=34×8(-34)×43(-34)×0.04=6(1)(0.03)=6+1+0.03=4.97.例3.计算:(1)(4)×(8)×(316)(6)+6×23; (2)34×(32)3×13.解:(1)原式=32×316+6+4=6+6+4=4;(2)原式=3(6)1=3+61=2.例4.计算:5×313+2×313+(6)×313.解:原式=[5+2+(6)]×313=9×103=30.【迁移应用】计算:(1)99×1845+99×(15)99×835; (2)13×230.34×27+13×(13)57×0.34. 解:(1)原式=99×(184515835)=99×10=990;(2)原式=(23+13)×(13)+(27+57)×(0.34)=13+(0.34)=13.34.例5.计算:(991516)×32.解法1:解:原式=[(99)+(1516)]×32=3168+(30)=3198.解法2:解:原式=[(100)+116]×32=3200+2=3198.【迁移应用】计算:(1)999×(15); (2)(12557)×(15); (3)492425×(5).解:(1)原式=(10001)×(15)=15000+15=14985;(2)原式=(125+57)×15=25+17=2517;(3)原式=(50125)×5=(25015) =24945. 例6.计算:11×3+13×5+15×7+…+12021×2023.解:原式=12×(113)+12×(1315)+12×(1517)+…+12×(1202112023)=12×(113+1315+1517+…+1202112023) =12×(112023)=12×20222023=10112023【迁移应用】计算:11×4+14×7+17×10+…+161×64. 解:原式=13×(114)+13×(1417)+13×(17110)+…+13×(161164)=13×(114+1417+17110+ (161164)=13×(1164)=13×6364=2164例7.有30筐白菜,以每筐25kg 为标准,超过或不足的千克数分别用正、负数表示:求这30筐白菜的总质量.解:25×30+4×(0.8)+6×(+0.6)+3×(0.5)+4×(+0.4)+4×(+0.5)+4×(0.3)+5×(+0.3)=750+(3.2)+3.6+(1.5)+1.6+2+(1.2)+1.5=752.8(kg).答:这30筐白菜的总质量是752.8kg.【迁移应用】某服装店以每件35元的价格购进了30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同.若以50元为标准售价,将超过的钱数记为正数,不足的钱数记为负数,记录结果如下:该服装店售完这30件连衣裙后,赚了多少钱?解:(5035)×30+7×(+3)+6×(+2)+3×(+1)+5×0+4×(1)+5×(2)=450+21+12+3+0410=472(元).答:该服装店售完这30件连衣裙后,赚了472元钱.(六)小结梳理五、教学反思。
人教版数学七年级上册1.4.1《有理数的乘法》教学设计2一. 教材分析《有理数的乘法》是人教版数学七年级上册第1章第4节的一部分,主要介绍了有理数乘法的基本法则和运算性质。
本节课的内容是学生在学习了有理数的加减法、乘除法和实数概念的基础上进行的,是进一步深入学习有理数运算的重要环节。
通过本节课的学习,学生能够掌握有理数乘法的基本法则,理解有理数乘法的运算性质,并能够熟练地进行有理数的乘法运算。
二. 学情分析七年级的学生已经具备了一定的数学基础,对实数概念、有理数的加减法、乘除法有一定的了解。
但是,对于有理数的乘法,学生可能还存在着一些困惑,如对于负数乘以负数、负数乘以正数、正数乘以负数的情况,学生可能还存在着模糊的认识。
因此,在教学过程中,教师需要通过具体的例子,让学生深入理解有理数乘法的法则和性质。
三. 教学目标1.掌握有理数乘法的基本法则和运算性质。
2.能够熟练地进行有理数的乘法运算。
3.培养学生的逻辑思维能力和数学思维习惯。
四. 教学重难点1.有理数乘法的基本法则。
2.有理数乘法的运算性质。
3.有理数乘法在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,通过提问引导学生思考和探索,激发学生的学习兴趣和主动性。
2.利用具体例子,通过讲解和示范,让学生深入理解有理数乘法的法则和性质。
3.采用小组合作学习的方式,让学生在讨论和交流中共同解决问题,提高学生的合作能力和团队意识。
4.利用多媒体教学手段,如PPT、视频等,丰富教学形式,提高学生的学习兴趣和积极性。
六. 教学准备1.PPT课件。
2.教学视频或动画。
3.练习题和测试题。
4.教学黑板和粉笔。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,如“小明有3个苹果,小红的苹果数是小明的2倍,请问小红有多少个苹果?”让学生思考和讨论,引出有理数乘法的重要性。
2.呈现(10分钟)讲解有理数乘法的基本法则,如“两数相乘,同号得正,异号得负,并把绝对值相乘”。
第一章有理数1.4有理数的乘除法1.4.1有理数的乘法第2课时相关运算律1.掌握多个有理数连续相乘的运算方法.2.正确理解乘法交换律、结合律和分配律,能用字母表示运算律的内容.3.能运用运算律较熟练地进行乘法运算.重点1.了解多个有理数连续相乘的运算方法以及乘法运算律的内容,运用运算律进行乘法运算.2.运用有理数的乘法解决问题.难点运用有理数的乘法解决问题.一、创设情境,导入新课教师出示投影,计算以下各题,并观察其结果的符号情况.2×3×4×(-5)2×3×(-4)×(-5)2×(-3)×(-4)×(-5)(-2)×(-3)×(-4)×(-5)0×(-2)×(-3)×(-4)×(-5)几个不等于0的数相乘,你发现结果的符号与哪些因素有关?几个数相乘,如果其中一个因数是0,结果又是多少?学生讨论交流归纳结果,师生共同得出教材31页的归纳,同时完成31页的思考问题.二、推进新课、巩固提高1.教师出示例3.师生共同完成,教师注意讲解归纳方法.“先确定积的符号,然后再把它们的绝对值相乘.”2.练习:教材32页练习.学生分组练习,板演,互相纠错与全班纠错相结合,注意提示学生方法的运用.三、再次创设情境、导入运算律1.提出问题,激发学生探索的欲望和学习积极性.计算(-5)×89.2×(-2)的过程能否使用简便方法.这样做有没有依据.小学里数的运算律在有理数中是否适用?2.导入运算律:(1)通过计算①5×(-6),②(-6)×5,比较结果得出5×(-6)=(-6)×5.(2)用文字语言归纳乘法交换律:两个数相乘,交换因数的位置,积相等.(3)用公式的形式表示为:ab=ba.这里的a,b表示有理数,讲解“a×b→a·b→ab”的过程.(4)分组计算,比较[3×(-4)]×(-5)与3×[(-4)×(-5)]的结果,讨论,归纳出乘法结合律.(5)全班交流,规范结合律的两种表达形式:文字语言、公式形式.(6)分组计算、比较,5×[3+(-7)])与5×3+5×(-7)的结果,讨论归纳出分配律.(7)全班交流、规范分配律的两种表达形式:文字语言、公式形式.四、感受运算律在乘法运算中的运用教师出示例4,用两种方法计算. (14+16-12)×12 师生共同完成.练习:教材33页练习.教师可布置学生板演,小组交流等形式,来发现学生的问题,及时反馈.五、作业习题1.4第7(1)~(3),14题.新课引入设计,期望使学生始终处于积极的思维状态,学生利用已有的知识与经验引出当前要学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题环境中.在探求新知的过程中,给学生充分的思考,讨论和发挥的机会,让他们始终处于主动愉悦的学习状态,对探究新知具有新鲜感和满腔热情,借助于多媒体手段,生动直观地分析问题.。
新人教版七年级上册第一章教案:1.4.1 有理数的乘法(2)第二课时
三维目标
一、知识与技能
(1)能确定多个因数相乘时,积的符号,•并能用法则进行多个因数的乘积运算.(2)能利用计算器进行有理数的乘法运算.
二、过程与方法
经历探索几个不为0的数相乘,积的符号问题的过程,发展观察、归纳•验证等能力.三、情感态度与价值观
培养学生主动探索,积极思考的学习兴趣.
教学重、难点与关键
1.重点:能用法则进行多个因数的乘积运算.
2.难点:积的符号的确定.
3.关键:让学生观察实例,发现规律.
教具准备
投影仪.
四、教学过程
1.请叙述有理数的乘法法则.
2.计算:(1)│-5│(-2);(2)(-1
7
)×(-9);(3)0×(-99.9).
五、新授
1.多个有理数相乘,可以把它们按顺序依次相乘.
例如:计算:12
3
×(-1
1
5
)×(-7)=
5
3
×-
6
5
×(-7)=-2×(-7)=14;
又如:(+2)×[(-78)×1
3
]=(+2)×(-26)=-52.
我们知道计算有理数的乘法,关键是确定积的符号.
观察:下列各式的积是正的还是负的?
(1)2×3×4×(-5);(2)2×3×4×(-4)×(-5);
(3)2×(-3)×(-4)×(-5);(4)(-2)×(-3)×(-4)×(-5).
易得出:(1)、(3)式积为负,(2)、(4)式积为正,积的符号与负因数的个数有关.教师问:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?
学生完成思考后,教师指出:几个不是0的数相乘,积的符号由负因数的个数决定,与
正因数的个数无关,当负因数的个数为负数时,积为负数;当负因数的个数为偶数时,积为正数.
2.多个不是0的有理数相乘,先由负因数的个数确定积的符号再求各个绝对值的积.
六、课堂练习
课本第32页练习.
思路点拨:先观察题目是什么类型,然后按有理数的乘法法则进行,(1)、(2)题都是多个不是0的数相乘,要先确定积的符号,再求积的绝对值,(3)•题是几个数相乘,且其中有一个因数为0,所以直接得结果0.
七、课堂小结
本节课我们通过观察实例,归纳出几个不等于零的数相乘,积的符号由负因数的个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正;几个不等于零的数相乘,先确定积的符号,再把各个数的绝对值相乘;几个数相乘,有一个因数是0,积就为零.
八、作业布置
1.课本第38页习题1.4第7题第(1)、(2)、(3)题.
九、板书设计:
1.4.1 有理数的乘法(2)
第二课时
1、几个不是0的数相乘,积的符号由负因数的个数决定,与正因数的个数无关,当负因数的个数为负数时,积为负数;当负因数的个数为偶数时,积为正数.
2、随堂练习。
3、小结。
4、课后作业。
十、课后反思。