浙教版七年级数学下册试题第2章《二元一次方程组》单元培优测试题
- 格式:docx
- 大小:219.57 KB
- 文档页数:16
浙教版初中数学七年级下册第二章二元一次方程组单元测试题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共10小题,3*10=30)1.方程2x﹣=0,3x+y=0,2x+xy=1,3x+y﹣2x=0,x2﹣x+1=0中,二元一次方程的个数是()A.5个B.4个C.3个D.2个2.若(a﹣2)x|a|﹣1+3y=1是关于x,y的二元一次方程,则a=()A.2 B.﹣2 C.2或﹣2 D.03.已知是方程kx+2y=﹣2的解,则k的值为()A.﹣3 B.3 C.5 D.﹣54.二元一次方程x+3y=10的非负整数解共有()对.A.1 B.2 C.3 D.45.若是关于x、y的方程组的解,则(a+b)(a﹣b)的值为()A.15 B.﹣15 C.16 D.﹣166.已知m为正整数,且关于x,y的二元一次方程组有整数解,则m2的值为()A.4 B.1,4 C.1,4,49 D.无法确定7.已知方程组的解满足x﹣y=m﹣1,则m的值为()A.﹣1 B.﹣2 C.1 D.28.已知方程组和有相同的解,则a,b的值为()A.B.C.D.9.为处理甲、乙两种积压服装,商场决定打折销售,已知甲、乙两种服装的原单价共为880元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为684元,则甲、乙两种服装的原单价分别是()A.400元,480元B.480元,400元C.560元,320元D.320元,560元10.设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v千米/小时,并有:①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求x、u、v.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()A.x=u+4 B.x=v+4 C.2x﹣u=4 D.x﹣v=4第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共8小题,3*8=24)11.已知3x m﹣2﹣y n+3=1是二元一次方程,则m=,n=.12.请写出适合方程3x+2y=1的一组解.13.若2x+3y=5,则x=.(用y的代数式表示x)14.方程组的解x,y满足x+y=9,则a的值为.15.如果(x﹣2y+9)2+|x+y﹣6|=0,则x﹣y=.16.三元一次方程组的解是.17.甲对乙说:“当我的岁数是你现在的岁数时,你才4岁”.乙对甲说:“当我的数是你现在的岁数时,你将61岁”.请你计算出甲现在是岁,乙现在是岁.18.为积极响应我区“创卫创模”工作精神,甲、乙两苗圃基地去年年底种植了同一品种的花卉,计划今年全部供应我区,这样两基地所供花卉就能占我区所需花卉的.由于受今年年初持续低温和霜冻影响,甲基地仅有的花卉能供应,乙基地仅有的花卉能供应,现两基地能供应的花卉仅占了我区所需花卉的,则甲基地的计划量与乙基地的计划量的比为.评卷人得分三.解答题(共8小题,66分)19.(6分)已知和是关于x,y的二元一次方程y=kx+b的解,求k,b的值.20.(6分)在解方程组时,由于粗心,甲看错了方程组中的a,而得到解为,乙看错了方程组中的b,而得到解为.(1)求正确的a,b的值;(2)求原方程组的解.21.(6分)解方程组:.22.(8分)已知关于x,y的方程组和有相同解,求(﹣a)b值.23.(8分)阅读材料:善于思考的小明在解方程组时,采用了一种“整体代换”的解法,解法如下:解:将方程②8x+20y+2y=10,变形为2(4x+10y)+2y=10③,把方程①代入③得,2×6+2y=10,则y=﹣1;把y=﹣1代入①得,x=4,所以方程组的解为:请你解决以下问题:(1)试用小明的“整体代换”的方法解方程组(2)已知x、y、z,满足试求z的值.24.(10分)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?25.(10分)某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花3600元购买了黑白两种颜色的文化衫200件.每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2035白色文化衫1525假设通过手绘设计后全部售出,求该校这次义卖活动所获利润.26.(12分)【方法体验】已知方程组求4037x+y的值.小明同学发现解此方程组代入求值很麻烦!后来他将两个方程直接相加便迅速解决了问题.请你体验一下这种快捷思路,写出具体解题过程:【方法迁移】根据上面的体验,填空:已知方程组则3x+y﹣z=.【探究升级】已知方程组求﹣2x+y+4z的值.小明凑出“﹣2x+y+4z=2•(x+2y+3z)+(﹣1)•(4x+3y+2z)=20﹣15=5“,虽然问题获得解决,但他觉得凑数字很辛苦!他问数学老师丁老师有没有不用凑数字的方法,丁老师提示道:假设﹣2x+y+4z=m•(x+2y+3z)+n•(4x+3y+2z),对照方程两边各项的系数可列出方程组,它的解就是你凑的数!根据丁老师的提示,填空:2x+5y+8z=(x+2y+3z)+(4x+3y+2z)【巩固运用】已知2a﹣b+kc=4,且a+3b+2c=﹣2,当k为时,8a+3b﹣2c为定值,此定值是.(直接写出结果)参考答案与试题解析一.选择题(共10小题)1.D2.B3.B4.D5.B6.A7.A8.A9.B10.A 二.填空题(共8小题)11.3,﹣2.12.x=1,y=﹣1 13.14.5 15.﹣4;16.17.42,23 18.1:3三.解答题(共8小题)19.解:根据题意得:,②﹣①得:5k=15,解得:k=3,把k=3代入①得:﹣6+b=﹣8,解得:b=﹣2,答:k=3,b=﹣2.20.解:(1):将代入方程4x﹣by=1得b=5将代入方程ax+5y=﹣17得a=4(2)将a=4,b=5代入原方程组得,解此方程组得21.解:,①+②×3得:10x=50,解得:x=5,把x=5代入②得:y=3,则方程组的解为.22.解:因为两组方程组有相同的解,所以原方程组可化为,解方程组(1)得,代入(2)得.所以(﹣a)b=(﹣2)3=﹣8.23.解:(1)将②变形得3(2x﹣3y)+4y=11 ④将①代入④得3×7+4y=11y=把y=代入①得,∴方程组的解为(2)由①得3(x+4y)﹣2z=47 ③由②得2(x+4y)+z=36 ④③×2﹣④×3得z=224.解:设甲原有x文钱,乙原有y文钱,由题意可得,,解得:,答:甲原有36文钱,乙原有24文钱.25.解:设购进黑色文化衫x件,白色文化衫y件,根据题意得:,解得:,∴(35﹣20)×120+(25﹣15)×80=2600(元).答:该校这次义卖活动所获利润为2600元.26.解:【方法迁移】将中的两个方程相减得到:﹣3x﹣y+z=﹣5,则3x+y﹣z=5.故答案是:5;【探究升级】设2x+5y+8z=m(x+2y+3z)+n(4x+3y+2z)由题意得:解得:∴2x+5y+8z=(x+2y+3z)﹣(4x+3y+2z)故答案为:,﹣【巩固运用】设8a+3b﹣2c=m(2a﹣b+kc)+n(a+3b+2c)∴解得∴8a+3b﹣2c=m(2a﹣b+kc)+n(a+3b+2c)=3×4+2×(﹣2)=8 故答案为﹣2,8。
浙教版2020年七年级数学下册第2章《二元一次方程组》单元测试卷(含答案解析)班级:___________姓名:___________座号:___________成绩:___________一.选择题(共12小题,共36分)1.下列方程中是二元一次方程的是()A.3x+y=0B.2x﹣1=4C.2x2﹣y=2D.2x+y=3z2.若是关于x、y的方程x+ay=3的解,则a值为()A.1B.2C.3D.43.二元一次方程3x+y=7的正整数解有()组.A.0B.1C.2D.无数4.根据“x减去y的差的8倍等于8”的数量关系可列方程()A.x﹣8y=8B.8(x﹣y)=8C.8x﹣y=8D.x﹣y=8×85.下列不是二元一次方程组的是()A.B.C.D.6.若方程组的解x与y互为相反数,则a的值等于()A.1B.2C.3D.47.若与|x﹣y﹣3|互为相反数,则x+y的值为()A.27B.9C.12D.38.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A.B.C.D.9.利用两块长方体木块测量一张桌子的高度.首先按图1方式放置,再交换两木块的位置,按图2方式放置.测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm10.已知方程组和有相同的解,则a,b的值为()A.B.C.D.11.如果方程组的解x、y的值相同,则m的值是()A.1B.﹣1C.2D.﹣212.购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支,作业本5本,圆珠笔2支共需()A.4.5元B.5元C.6元D.6.5元二.填空题(共8小题,共24分)13.若方程x4m﹣1+5y﹣3n﹣5=4是二元一次方程,则m=,n=.14.若是关于x,y的二元一次方程3x+my=10的解,则m=.15.方程4x+3y=20的所有非负整数解为.16.买14支铅笔和6本练习本,共用5.4元.若铅笔每支x元,练习本每本y元,写出以x和y为未知数的方程为.17.若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是.18.已知是二元一次方程组的解,则a﹣b的值为.19.已知(x﹣y+3)2+=0,则x+y=.20.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x只,树为y棵,则可列出方程组为.三.解答题(共8小题,共60分)21.甲、乙两人同求方程ax﹣by=7的整数解,甲求出一组解为,而乙把ax﹣by=7中的7错看成1,求得一组解为,试求a、b的值.22.(开放题)是否存在整数m,使关于x的方程2x+9=2﹣(m﹣2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?23.已知方程组的解能使等式4x﹣3y=7成立,求m的值.24.解方程组.25.我国古代数学名著《孙子算经》中记载了一道题,大意如下:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问大马和小马各有多少匹?请解答上述问题.26.为响应建设“美丽乡村”,大桥村在河岸上种植了柳树和香樟树,已知种植柳树的棵数比香樟树的棵数多22棵,种植香樟树的棵树比总数的三分之一少2棵.问这两种树各种了多少棵?27.已知方程组与有相同的解,求m,n的值.28.二元一次方程组的解x,y的值相等,求k.参考答案与试题解析一.选择题(共12小题)1.下列方程中是二元一次方程的是()A.3x+y=0B.2x﹣1=4C.2x2﹣y=2D.2x+y=3z【分析】根据二元一次方程满足的条件:为整式方程;只含有2个未知数;未知数的项的最高次数是1,逐一判断即可.【解答】解:A、方程3x+y=0符合二元一次方程的定义,此选项正确;B、方程2x﹣1=4只含有一个未知数,不符合二元一次方程的定义,此选项错误;C、方程2x2﹣y=2未知数的项的最高次数是2,不符合二元一次方程的定义,此选项错误;D、方程2x+y=3z含有3个未知数,不符合二元一次方程的定义,此选项错误;故选:A.2.若是关于x、y的方程x+ay=3的解,则a值为()A.1B.2C.3D.4【分析】把x、y的值代入方程,得出一个关于a的意义一次方程,求出方程的解即可.【解答】解:∵是关于x、y的方程x+ay=3的解,∴代入得:2+a=3,解得:a=1,故选:A.3.二元一次方程3x+y=7的正整数解有()组.A.0B.1C.2D.无数【分析】把x看做已知数求出y,即可确定出正整数解.【解答】解:方程3x+y=7,解得:y=﹣3x+7,当x=1时,y=4;x=2时,y=1,则方程的正整数解有2组,故选:C.4.根据“x减去y的差的8倍等于8”的数量关系可列方程()A.x﹣8y=8B.8(x﹣y)=8C.8x﹣y=8D.x﹣y=8×8【分析】关键描述语是:差的8倍等于8,应先表示出x与y的差.【解答】解:根据x减去y的差的8倍等于8,得方程8(x﹣y)=8.故选:B.5.下列不是二元一次方程组的是()A.B.C.D.【分析】依据二元一次方程的定义回答即可.【解答】解:A.方程组中,分母中含有未知数,不是二元一次方程组,与要求相符;B.方程组是二元一次方程组,与要求不符;C.方程组是二元一次方程组,与要求不符;D.方程组是二元一次方程组,与要求不符.故选:A.6.若方程组的解x与y互为相反数,则a的值等于()A.1B.2C.3D.4【分析】根据x与y互为相反数,得到x+y=0,与方程组第一个方程联立求出x与y的值,代入第二个方程求出a的值即可.【解答】解:根据题意得:,①+②×3得:5x=5,解得:x=1,把x=1代入②得:y=﹣1,把x=1,y=﹣1代入得:a+2a=9,解得:a=3,故选:C.7.若与|x﹣y﹣3|互为相反数,则x+y的值为()A.27B.9C.12D.3【分析】先根据相反数的定义列出关于x、y的方程,求出x、y的值即可.【解答】解:∵与|x﹣y﹣3|互为相反数,∴+|x﹣y﹣3|=0,∴,,∴x+y=27.故选:A.8.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A.B.C.D.【分析】根据关键语句“若每组7人,余3人”可得方程7y+3=x;“若每组8人,则缺5人.”可得方程8y﹣5=x,联立两个方程可得方程组.【解答】解:设运动员人数为x人,组数为y组,由题意得:.故选:A.9.利用两块长方体木块测量一张桌子的高度.首先按图1方式放置,再交换两木块的位置,按图2方式放置.测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm【分析】设长方体长xcm,宽ycm,桌子的高为acm,由图象建立方程组求出其解就可以得出结论.【解答】解:设长方体长xcm,宽ycm,桌子的高为acm,由题意,得,解得:2a=152,∴a=76.故选:D.10.已知方程组和有相同的解,则a,b的值为()A.B.C.D.【分析】可以首先解方程组,求得方程组的解,再代入方程组,即可求得a,b的值.【解答】解:解方程组,得,代入方程组,得到,解得,故选:A.11.如果方程组的解x、y的值相同,则m的值是()A.1B.﹣1C.2D.﹣2【分析】由题意将方程组中的两个方程相减,求出y值,再代入求出y值,再根据x=y求出m 的值.【解答】解:由已知方程组的两个方程相减得,y=﹣,x=4+,∵方程组的解x、y的值相同,∴﹣=4+,解得,m=﹣1.故选:B.解法2、∵方程组的解x、y的值相同,∴联立得,,解得,,将x=2,y=2代入x﹣(m﹣1)y=6,解得,m=﹣1,故选:B.12.购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支,作业本5本,圆珠笔2支共需()A.4.5元B.5元C.6元D.6.5元【分析】首先假设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.根据题目说明列出方程组,解方程组求出a的值,即为所求结果.【解答】解:设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.则由题意得由②﹣①得3x+y=1 ④由②+①得17x+7y+2z=7 ⑤由⑤﹣④×2﹣③得0=5﹣a∴a=5故选:B.二.填空题(共8小题)13.若方程x4m﹣1+5y﹣3n﹣5=4是二元一次方程,则m=,n=﹣2.【分析】根据二元一次方程的定义,可得x和y的指数分别都为1,列关于m、n的方程,然后求解即可.【解答】解:根据二元一次方程的定义得,4m﹣1=1,﹣3n﹣5=1,解得m=,n=﹣2.故答案为:;﹣2.14.若是关于x,y的二元一次方程3x+my=10的解,则m=4.【分析】方程的解是能使方程左右两边相等的未知数的值,把方程的解代入,即得到关于m的一元一次方程,进而求m的值.【解答】解:把代入方程3x+my=10,得:3×2+m=10解得:m=4故答案为:4.15.方程4x+3y=20的所有非负整数解为,.【分析】二元一次方程4x+3y=20的解有无数个,对于本题只要能使方程成立且是非负整数即可.【解答】解:方程4x+3y=20的所有非负整数解为,.16.买14支铅笔和6本练习本,共用5.4元.若铅笔每支x元,练习本每本y元,写出以x和y为未知数的方程为14x+6y=5.4.【分析】等量关系为:14支铅笔总价钱+6本练习本总价钱=5.4,把相关量代入即可.【解答】解:铅笔每支x元,14支铅笔需14x元;练习本每本y元,6本练习本需付6y元,共用5.4元,可列方程为:14x+6y=5.4.17.若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是﹣2或﹣3.【分析】根据二元一次方程组的定义:(1)含有两个未知数;(2)含有未知数的项的次数都是1.【解答】解:若方程组是关于x,y的二元一次方程组,则c+3=0,a﹣2=1,b+3=1,解得c=﹣3,a=3,b=﹣2.所以代数式a+b+c的值是﹣2.或c+3=0,a﹣2=0,b+3=1,解得c=﹣3,a=2,b=﹣2.所以代数式a+b+c的值是﹣3.故答案为:﹣2或﹣3.18.已知是二元一次方程组的解,则a﹣b的值为﹣1.【分析】已知方程组的解,求系数,可把解代入原方程组,得到关于a、b的新方程组,进行解答,求出a、b 的值即可.【解答】解:∵把代入二元一次方程组,得:,①+②得:4a=8,解得:a=2,把a=2代入①得:b=3,∴a﹣b=2﹣3=﹣1;故答案为:﹣1.19.已知(x﹣y+3)2+=0,则x+y=1.【分析】利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出x+y的值.【解答】解:∵(x﹣y+3)2+=0,∴,①+②得:3x=﹣3,即x=﹣1,将x=﹣1代入②得:y=2,则x+y=2﹣1=1.故答案为:120.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x只,树为y棵,则可列出方程组为.【分析】设诗句中谈到的鸦为x只,树为y棵,利用“三只栖一树,五只没去处,五只栖一树,闲了一棵树”分别得出方程:x=3y+5,x=5(y﹣1)进而求出即可.【解答】解:设诗句中谈到的鸦为x只,树为y棵,则可列出方程组为:.故答案为:.三.解答题(共8小题)21.甲、乙两人同求方程ax﹣by=7的整数解,甲求出一组解为,而乙把ax﹣by=7中的7错看成1,求得一组解为,试求a、b的值.【分析】由方程组的定义,可知甲的解答满足原方程,代入后,可得a,b间的一个关系式3a﹣4b=7,乙求出的解不满足原方程,而满足方程ax﹣by=1,代入后可得a,b的另一个关系式a﹣2b=1,从而可求出a,b的值.【解答】解:把x=3,y=4代入ax﹣by=7中,得3a﹣4b=7①,把x=1,y=2代入ax﹣by=1中,得a﹣2b=1②,解由①②组成的方程组得,.22.(开放题)是否存在整数m,使关于x的方程2x+9=2﹣(m﹣2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?【分析】要求关于x的方程2x+9=2﹣(m﹣2)x在整数范围内有解,首先要解这个方程,其解x=,根据题意的要求让其为整数,故m的值只能为±1,±7.【解答】解:存在,四组.∵原方程可变形为﹣mx=7,∴当m=1时,x=﹣7;m=﹣1时,x=7;m=7时,x=﹣1;m=﹣7时,x=1.23.已知方程组的解能使等式4x﹣3y=7成立,求m的值.【分析】先解方程组,求得x、y的值,即为原方程组的解,再将x、y的值代入5x﹣2y=m﹣1,从而得出m的值.【解答】解:根据题意得,,①+②,得11x=11,解得x=1,把x=1代入①得,y=﹣1,∴原方程组的解为;将x=1,y=﹣1代入5x﹣2y=m﹣1,得m=8.所以m的值为8.24.解方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=9,即x=3,把x=3代入①得:y=﹣2,则方程组的解为.25.我国古代数学名著《孙子算经》中记载了一道题,大意如下:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问大马和小马各有多少匹?请解答上述问题.【分析】求大马和小马的总数,直接设两个未知数,依据大马的总数+小马的总数=100,大马拉瓦的总数+小马拉瓦的总数=100,构建一个二元一次方程组求解.【解答】解:设大马x匹,小马y匹,依题意得:,解得:,答:大马有25匹,小马有75匹.26.为响应建设“美丽乡村”,大桥村在河岸上种植了柳树和香樟树,已知种植柳树的棵数比香樟树的棵数多22棵,种植香樟树的棵树比总数的三分之一少2棵.问这两种树各种了多少棵?【分析】设种植柳树x棵,种植樟树y棵,根据题目之间的数量关系建立方程求出其解即可.【解答】解:设种植柳树x棵,种植樟树y棵,由题意,得,解得:.答:种植柳树38棵,种植樟树16棵.27.已知方程组与有相同的解,求m,n的值.【分析】根据两个方程组解相同,可先由求出x、y的值,再将x和y的值代入得到m、n的二元一次方程组,解方程组求出m和n.【解答】解:∵方程组与有相同的解,∴与原两方程组同解.由5y﹣x=3可得:x=5y﹣3,将x=5y﹣3代入3x﹣2y=4,则y=1.再将y=1代入x=5y﹣3,则x=2.将代入得:,将(1)×2﹣(2)得:n=﹣1,将n=﹣1代入(1)得:m=4.28.二元一次方程组的解x,y的值相等,求k.【分析】由于x=y,故把x=y代入第一个方程中,求得x的值,再代入第二个方程即可求得k的值.【解答】解:由题意可知x=y,∴4x+3y=7可化为4x+3x=7,∴x=1,y=1.将x=1,y=1代入kx+(k﹣1)y=3中得:k+k﹣1=3,∴k=2。
二元一次方程组单元综合测试题(时间:45分钟 满分:100分) 姓名一、选择题(每小题5分,共20分)1. 下列不是二元一次方程组的是( )A .141y x x y ⎧+=⎪⎨⎪-=⎩ B .43624x y x y +=⎧⎨+=⎩C .44x y x y +=⎧⎨-=⎩D .35251025x y x y +=⎧⎨+=⎩2.由132x y-=,可以得到用x 表示y 的式子是( ) A .223x y -= B .2133x y =-C .223x y =-D .223xy =-3.方程组327413x y x y +=⎧⎨-=⎩的解是( )A .13x y =-⎧⎨=⎩B .31x y =⎧⎨=-⎩C .31x y =-⎧⎨=-⎩ D .13x y =-⎧⎨=-⎩4.方程组125x y x y -=⎧⎨+=⎩的解是( )A .12x y =-⎧⎨=⎩ B .21x y =⎧⎨=-⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=⎩二、填空题(每小题6分,共24分)5.在349x y +=中,如果2y = 6,那么x = 。
6.已知18x y =⎧⎨=-⎩是方程31mx y -=-的解,则m = 。
7.若方程m x + n y = 6的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩,则m = ,n = 。
8.如果2150x y x y -+=+-=,那么x = ,y = 。
三、解下列方程组(每小题8分,共16分)9.13 233 34m nm n⎧+=⎪⎪⎨⎪-=⎪⎩10.()() 344126x y x yx y x y⎧+--=⎪⎨+-+=⎪⎩四、综合运用(每小题10分,共40分)11.用16元买了60分、80分两种邮票共22枚。
60分与80分的邮票各买了多少枚?12.已知梯形的面积是42cm2,高是6cm,它的下底比上底的2倍少1cm,求梯形的上下底。
13.〈〈一千零一夜〉〉中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的13,若从树上飞下去一只,则树上、树下的鸽子就一样多了。
浙教版七年级下数学第二章二元一次方程组单元试卷题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共10小题,3*10=30)1.下列方程中,是二元一次方程的是()A.8x2+1=y B.y=8x+1 C.y=D.xy=12.方程(m2﹣9)x2+x﹣(m+3)y=0是关于x、y的二元一次方程,则m的值为()A.±3 B.3 C.﹣3 D.93.下列各组数值中,是方程2x﹣y=8的解的是()A.B.C.D.4.如果x,y取0,1,2,…9中的数,且3x﹣2y=11,则10x+y的值可以有()A.1个B.2个C.3个D.4个5.方程组的解中x与y的值相等,则k等于()A.2 B.1 C.3 D.46.玩具车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若甲种玩具零件一个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具设生产甲种玩具零件x天,乙种玩具零件y天,则有()A.B.C.D.7.已知一个两位数,它的十位上的数字x比个位上的数字y大1,若对调个位与十位上的数字,得到的新数比原数小9,求这个两位数,所列方程组正确的是()A.B.C.D.8.若2x+5y+4z=0,3x+y﹣7z=0,则x+y﹣z的值等于()A.0 B.1 C.2 D.不能求出9.有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()A.1.2元B.1.05元C.0.95元D.0.9元10.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共6小题,3*6=18)11.把方程2x+y=3改写成用含x的式子表示y的形式,得y=.12.已知方程组与的解相同,那么a+b=.13.我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x,y人,则可以列方程组.14.“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需元.15.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排名工人缝制衣袖,才能使每天缝制出的衣袖,衣身、衣领正好配套.16.三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是.评卷人得分三.解答题(共7小题,52分)17.(6分)已知关于x,y的二元一次方程(a﹣1)x+(a+2)y+5﹣2a=0,当a每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解.18.(6分)k为何值时,方程组有唯一一组解;无解;无穷多解?19.(6分)解方程组:方程组中的①式实际包含三个等式:=,=,=,只需任取其中两个(另一个通过这两个代换即可得),便可以与②式联立成三元一次方程组,如,然后用一般方法求解.对原方程组也可以用换元的方法来求解.令===k,则有x=2k,y=3k,z=4k③,把③代入②,得4k+3k+4k=22,解得k=2,所以x=4,y=6,z=8,所以原方程组的解为.借鉴上述“换元法”,解方程组.20.(8分)根据要求,解答下列问题(1)解下列方程组(直接写出方程组的解即可)①的解为②的解为③的解为(2)以上每个方程组的解中,x值与y值的大小关系为.(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.21.(8分)解方程组:(1)(2)22.(8分)北京2008年奥运会跳水决赛的门票价格如下表:等级A B C票价(元/张)未知未知150小聪带了2700元购票款前往购票,若购买2张A等票和5张B等票,则购票款多出了200元;若购买5张A等票和1张B等票,则购票款还缺100元.(1)若小聪购买1张A等票和7张B等票共需花费多少元?(2)若小聪要将2700元的购票款全部用于购买这三种门票,并且每种门票至少一张,则他购买的门票总数为张.(该小题直接写出答案,不必写出过程.)23.(10分)某中学的1号教学大楼共有4道门,其中两道正门大小相同,两道侧门也大小相同,安全检查时,对4道门进行了测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)该中学的2号教学大楼,有和1号教学大楼相同的正门和侧门共5道,若这栋大楼的教室里最多有1920名学生,安全检查规定,在紧急情况下,全大楼学生应在4分钟内通过这5道门安全撤离,该栋大楼正门和侧门各有几道?参考答案与试题解析一.选择题(共10小题)1.B2.B3.C4.C5.B6.C7.D8.A9.B10.B二.填空题(共6小题)11.y=3﹣2x.12.1.5 13..14.48 15.120 16.三.解答题(共7小题)17.解:将方程化为a的表达式:(x+y﹣2)a=x﹣2y﹣5,由于x,y的值与a的取值无关,即这个关于a的方程有无穷多个解,所以有,解得.18.解:原方程组可化为,①当,即k≠﹣2时,原方程组有唯一一组解;②当=≠,即k无论取什么值,都不能使原方程组无解;③当==,即k=﹣2时,原方程组有无穷多解.19.解:把解方程组中的,可得:x=2k﹣1,y=3k﹣2,z=4k﹣3,把x=2k﹣1,y=3k﹣2,z=4k﹣3代入2x+3y﹣z=13,可得:4k﹣2+9k﹣6﹣4k+3=13,解得:k=2,可得:x=3,y=4,z=5;所以方程组的解是:.20.解:(1)①的解为;②的解为;③的解为;(2)以上每个方程组的解中,x值与y值的大小关系为x=y;(3),解为,故答案为:(1)①;②;③;(2)x=y21.解:(1)①×3+②,得16x=48解得,x=3,将x=3代入①,得y=2故原方程组的解是;(2)①+②,得2x+4y=﹣2④②×3+③,得3x+11y=﹣8⑤④×3﹣⑤×2,得﹣10y=10解得,y=﹣1,将y=﹣1代入④,得x=1,将x=1,y=﹣1代入①,得z=﹣2故原方程组的解是.22.解:(1)设购买1张A等票需要x元,1张B等票需花费y元,根据题意可得:,解得:,故500+7×300=2600(元),答:小聪购买1张A等票和7张B等票共需花费2600元;(2)若小聪要将2700元的购票款全部用于购买这三种门票,并且每种门票至少一张,则他购买的门票总数为8或9或10张.故答案为:8或9或10.23.解:(1)设平均每分钟一道正门可通过x名学生,一道侧门可以通过y名学生.则,解得.答:平均每分钟一道正门可通过120名学生,一道侧门可以通过80名学生;(2)设该栋大楼正门有m道,侧门有n道,则,解得.故该栋大楼正门有2道,侧门有3道.。
2021-2022学年浙教版七年级数学下册《第2章二元一次方程组》单元达标测试题(附答案)一.选择题(共8小题,满分40分)1.方程x+y=6的正整数解有()A.5个B.6个C.7个D.无数个2.下列方程组中,属于二元一次方程组的是()A.B.C.D.3.一个长方形的周长为28厘米,长比宽的3倍少6厘米,则这个长方形的面积是()A.45平方厘米B.35平方厘米C.25平方厘米D.20平方厘米4.已知x,y满足,则x﹣y的值为()A.3B.﹣3C.5D.05.关于x、y的二元一次方程组的解满足x﹣3y=10+k,则k的值是()A.2B.﹣2C.﹣3D.36.由方程组可以得出关于x和y的关系式是()A.x+y=5B.2x+y=5C.3x+y=5D.3x+y=07.某车间有2个小组,甲组是乙组人数的2倍,若从甲组调8人到乙组,那么甲组人数比乙组人数的一半还多6人,则原来乙组的人数为()A.6B.8C.10D.128.如图,用12块形状和大小均相同的小长方形纸片拼成一个宽是60厘米的大长方形,则每个小长方形的周长是()A.60厘米B.80厘米C.100厘米D.120厘米二.填空题(共8小题,满分40分)9.已知二元一次方程3x+2y=7,用含x的式子表示y,则y=;若y的值为2,则x 的值为.10.在解方程组时,由于粗心,甲看错了方程组中的a,得到的解为乙看错了方程组中的b,得到的解为则原方程组的解.11.已知方程组和方程组的解相同,则(2a+b)2021=.12.关于x、y的方程组的解也是方程x+y=5的解,则m的值为.13.方程无解,则实数k的值为.14.同型号的甲、乙两辆车加满气体燃料后均可行驶210km.它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地km.15.如果实数x,y满足方程组,那么(2x﹣y)2022=.16.《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?由此可求出甲的钱数为钱.三.解答题(共5小题,满分40分)17.解方程组:(1);(2).18.已知关于x,y的方程组的解满足x+2y=3,求k的值.19.阅读下列解方程组的方法,然后回答问题.解方程组.解:由①﹣②,得2x+2y=2,即x+y=1③,③×16,得16x+16y=16④,②﹣④得x=﹣1,从而可得y=2,∴原方程组的解是.(1)请你仿照上面的解题方法解方程组:;(2)请大胆猜测关于x,y的方程组(a≠b)的解是什么?(不用写解答过程)20.千佛山、趵突泉、大明湖并称济南三大风景名胜区.为了激发学生个人潜能和团队精神,历下区某学校组织学生去千佛山开展为期一天的素质拓展活动.已知千佛山景区成人票每张30元,学生票按成人票五折优惠.某班教师加学生一共去了50人,门票共需810元.(1)这个班参与活动的教师和学生各多少人?(应用二元一次方程组解决)(2)某旅行网上成人票价格为28元,学生票价格为14元,若该班级全部网上购票,能省多少钱?21.我市对居民生活用水实行“阶梯水价”.小李和小王查询后得知:每户居民年用水量180吨以内部分,按第一阶梯到户价收费;超过180吨且不超过300吨部分,按第二阶梯到户价收费;超过300吨部分,按第三阶梯到户价收费.小李家去年1﹣9月用水量共为175吨,10月、11月用水量分别为25吨、22吨,对应的水费分别为118.5元、109.12元.(1)求第一阶梯到户价及第二阶梯到户价(单位:元/吨);(2)若小王家去年的水费不超过856元,试求小王家去年年用水量的范围(单位:吨,结果保留到个位).参考答案一.选择题(共8小题,满分40分)1.解:方程的正整数解有,,,,共5个,故选:A.2.解:A选项中xy的次数是2次,不符合题意.B选项中是分式方程,不符合题意.C选项3x=5y2是二元二次方程,不符合题意.D选项两个方程均含有2个未知数,且未知数次数为1,符合题意.故选:D.3.解:设这个长方形的长为x厘米,宽为y厘米,由题意得:,解得:,则这个长方形的面积为9×5=45(平方厘米),故选:A.4.解:第二个方程减第一个方程得:x﹣y=3,故选:A.5.解:原方程组中两个方程作差可得,(3x﹣4y)﹣(2x﹣y)=(5﹣k)﹣(2k+3),整理得,x﹣3y=2﹣3k,由题意得方程,2﹣3k=10+k,解得,k=﹣2,故选:B.6.解:,①+②得,3x+y=5,故选:C.7.解:设原来乙组有x人,甲组有y人,依题意,得:,解得:,即原来乙组有12人,故选:D.8.解:设小长方形地砖的长为x厘米,宽为y厘米,根据题意得:,解得:,则每个小长方形的周长=2(x+y)=120(厘米),故选:D.二.填空题(共8小题,满分40分)9.解:方程3x+2y=7,解得:y=;把y=2代入得:,去分母得:4=7﹣3x,解得:x=1,故答案为:;1.10.解:将代入方程4x﹣by=﹣4,代入方程ax+5y=10,可得,,解得,∴原方程组为,解得,故答案为:.11.解:由于两个方程组的解相同,所以解方程组,解得,把代入方程:ax﹣by=﹣4与bx+ay=﹣8中得:,解得:,则(2a+b)2021=(2﹣1)2021=1.故答案为:1.12.解:,①+②得,3x+3y=3m,∴x+y=m,∵关于x、y的方程组的解也是方程x+y=5的解,∴m=5.故答案为:5.13.解:,将①代入②得,2x+k=(k2﹣7)x+3,∴(k2﹣9)x=k﹣3,∵方程无解,∴k2﹣9=0,∴k=±3,当k=3时,k﹣3=0,x取任意数,∴k=﹣3时,方程无解,故答案为:﹣3.14.解:设甲车行驶到C地时返回,到达A地燃料用完,乙行驶到B地再返回A地时燃料用完,如图:设AC=xkm,AB=ykm,依题意得:,解得:,∴乙在C地时加注行驶210﹣2×70=70(km)的燃料,AB的最大长度为140km.故答案为:140.15.解:,①+②,得:2x﹣y=1,则(2x﹣y)2022=12022=1.故答案为:1.16.解:设甲的钱数为x钱,乙的钱数为y钱,根据题意,得:,解得:,即甲的钱数为钱,乙的钱数为25钱,故答案为:.三.解答题(共5小题,满分40分)17.解:(1),将②代入①,得x+4x=10,解得x=2,将x=2代入②得,y=4,∴方程组的解为;(2),化简方程组得,,①+②,得8x=24,解得x=3,将x=3代入①得,y=﹣5,∴方程组的解为.18.解:,①+②得:5x+10y=k+5,∴x+2y=+1,∵x+2y=3,∴+1=3,∴k=10.19.解:(1),①﹣②,得2x+2y=2,即x+y=1③,③×2020得,2020x+2020y=2020④,④﹣②得,y=2,将y=2代入③得,x=﹣1,∴原方程组的解是;(2),①﹣②,得(a﹣b)x+(a﹣b)y=a﹣b,即x+y=1③,③×(a+2)得,(a+2)x+(a+2)y=a+2④,④﹣①得,y=2,将y=2代入③得,x=﹣1,∴原方程组的解为.20.解:(1)设参与活动的教师有x人,学生有y人,由题意得:,解得:,答:参与活动的教师有4人,学生有46人;(2)(30﹣28)×4+(15﹣14)×46=54(元),答:能省54元.21.解:设第一阶梯到户价为x元,第二阶梯到户价y元,由题意得:,解得:,答:第一阶梯到户价为3.86元,第二阶梯到户价为4.96元;(2)设小王家去年最多可用水为m(m>180)吨,由题意得:3.86×180+4.96(m﹣180)≤856,解得:m≤212.5,即最多可用水212.5吨≈212吨,∴小王家去年年用水量的范围为大于0吨小于212吨.。
七年级下册第二章单元检测卷选择题(每题 4 分,共 32 分)1. 下列方程组是二元一次方程组的是( A )x y 4 2a 3b 11x 2 9 A. B.C. x 2x 3y 7 5b 4c 6 y 2 x 2y 5 的解的是( B )3 .已知方程组2x 3y ;①,把②代入①,正确的是(D )y x 1②A.2x -3x -1=5B.2x -3y +1=5C.2x -3x -3=5D.2x -3x +3=5 4 . 若方程组 2x y 3 的解,也是方程3x y 2 的一个解,则 m 的值为2x my 1 (C )A. -2B.-1C.3D.45 . 某班同学去划船,若每船坐 7 人,剩余 5 人没有座位;若每船坐 8 人,则又 空出两个座位,这个班参加划船的同学人数及船数分别是( C )A.47,6B.46,6C.54,7D.61,86 . 二元一次方程 2x +y=7 的正整数解有( C )A. B . x1 y2 x C. y2 x D. yxy8 2 x y42. 下列各组数中,是二元一次方程A.1组B.2组C.3组D.4组2a 6b 11 .............7.已知a,b满足方程组,则a+b的值为(A )3ab 4A.3B.-3 C-4 D.48.如图,周长为68的长方形ABCD刚好可以分成7个大小、形状完全相同的长方形,则长方形ABCD的面积为(C )A.98B.196C.280D.284二.填空题(每题5分,共30分)5 2y9.将方程3x-2y=5变形成用y的代数式表小x、则*= -一y一3 ---------10.方程4x-3y=14有一组解x与y互为相反数,则2x+y的值为_2 ________ ;____ 2 _ 1 111.已知 2a 2b ab 一,且 a b 3ab 一,那么a b ab ______ 一 ;3 2 —612.已知关于x , y的二元一次方程组mx ny 9的解是x 1 ,则2mx ny 6 y 2m=1 n=4 ......................13.45名学生搬桌椅,两人抬一张桌子,一人拿两把椅子,若一张桌子配一把椅子,设X名学生搬桌子,y名学生搬椅子,则根据题意,可列出方程组x y 45x 4y14.在解方程组a X y 10时,由于粗心,甲看错方程组中的a,而得到方程组x by 7 的解为X 1 ,而乙看错方程组中的b,得到方程组的解为X 1,则原方程组y 6 y 12的正确解为三.解答题(共38分)15.(14分)解下列方程组(每小题4分,共16分)(1)3x 2y 7 y 3x 1 3x y 5(2) / )x 2y 42x 3y 12 (33x 4y 17 (4) x y 2z 72x 3y z 12x 2解:(1)x3;(2) xy 8 y 2 x 3.;(3) 々(4) y 3 1 y 216.(10分)在某地,人们发现某种蟋蟀1分钟所叫次数x与当地温度T之间的关系式为T=a x +b,下表为蟋蟀所叫次数与温度变化情况对照表:(1)根据表中的数据确定a,b的值;(2)如果蟋蟀1分钟叫63次,那么该地当时的温度为多少摄氏度?1解;(1) a 7 (2) 12cb 317.(12分)水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下信息:①每亩水面的年租金为500元;②每亩水面可在年初混合投放4kg蟹苗和20kg虾苗;③每千克蟹苗的价格为75元,饲养费用为525元,当年可获得1400元收益;④每千克虾苗的价格为15元,饲养费用为85元,当年可获得160元收益;(1)若租用水面n亩,则年租金共需___________ 元;(2)水产养殖的成本包括水面年租金、苗种费用和饲养费用,求每亩水面蟹虾混合养殖的年利润(利润=收益-成本);(3)李大爷现有资金25000元,他准备再向银行贷款,用于蟹虾混合养殖,已知银行贷款的年利率为10%,试问:李大爷应该租多少亩水面,并向银行贷款多少元,可使扣除贷款利息后的年利润达到36600元?解:(1) 500n; (2) 3900元;(3) 10 亩。
2浙教版七年级数学下册《第2章二元一次方程组》单元综合测试题(附答案)一.选择题(共8小题,满分40分)1.方程2x﹣3y=7,用含y的代数式表示x为()A.y=(7﹣2x)B.y=(2x﹣7)C.x=(7﹣3y)D.x=(7+3y)2.方程2x+3y=17的正整数解的对数是()A.1对B.2对C.3对D.4对3.已知是二元一次方程组的解,则m﹣n的值是()A.﹣2B.﹣3C.1D.﹣44.关于x、y的二元一次方程组,用代入法消去y后所得到的方程,正确的是()A.3x﹣x﹣5=83B.3x+x﹣5=8C.3x+x+5=8D.3x﹣x+5=8 5.若关于x,y的方程组的解x,y满足x﹣y=1,则k的值为()A.1B.2C.3D.46.若(x﹣y)2+|5x﹣7y﹣2|=0,则x+y的值为()A.﹣2B.0C.﹣1D.17.《九章算术》中记载.“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:“现有一些人共同买一个物品,每人出8钱,还盈余3钱;每人出7钱,还差4钱,问人数、物品价格各是多少?”设人数为x人,物品的价格为y钱,根据题意,可列方程组为()A.B.C.D.8.从茂名电白到湛江赤坎全长约为105km,一辆小汽车、一辆货车同时从茂名电白、湛江赤坎两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km,设小汽车和货车的速度分别为xkm/h,ykm/h,则下列方程组正确的是()A.B.C.D.二.填空题(共8小题,满分40分)9.已知关于x,y的方程组,则x﹣y=.10.若是二元一次方程2x+y=4的一个解,则m的值为.11.已知,则x+y+z的值.12.若方程组,则3(x+y)﹣3x+5y的值是.13.已知关于x,y的二元一次方程组的解x,y互为相反数,则a的值为.14.已知关于x、y的二元一次方程组的解是,则关于x,y的方程组的解是.15.若关于x,y的方程组和同解,则a=.16.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A,B,C三种盲盒各一个.其中A盒中有2个耳机,3个优盘,1个音箱;B盒中耳机与音箱的数量之和等于优盘的数量,耳机与音箱的数量之比为3:2;C盒中有1个耳机,3个优盘,2个音箱.经核算,A盒的价值为145元,B盒的价值为245元,则C盒的价值为元.三.解答题(共6小题,满分40分)17.(1)解方程组:;(2)解方程组:.18.甲、乙两位同学一起解方程组由于甲看错了方程①中的a,得到的解为,乙看错了方程②中的b,得到的解为,试根据上述条件,求解下列问题:(1)求a、b的值;(2)计算.19.对于任意的有理数a、b、c、d,我们规定,如.若x、y同时满足.求x,y的值.20.阅读下列解方程组的方法,然后回答问题.解方程组:.解:①﹣②,得2x+2y=2,即x+y=1.③③×16,得16x+16y=16.④②﹣④,得x=﹣1,从而可得y=2.∴原方程组的解是.(1)请你仿照上面的解法解方程组:;(2)请大胆猜测关于x,y的方程组(a≠b)的解是什么?并利用方程组的解加以验证.21.疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”,用19000元购进甲、乙两种医用口罩共计900盒,甲、乙两种口罩的售价分别是20元/盒,25元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计900人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?22.为发展校园足球运动,我市四校决定联合购买一批足球运动装备.经市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球.已知每套队服比每个足球多60元,5套队服与8个足球的费用相等,经洽谈,甲商场优惠方案是每购买10套队服,送1个足球;乙商场优惠方案是购买队服超过80套,则购买足球打8折.(1)求每套队服和每个足球的价格各是多少?(2)若这四所学校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用.(3)在(2)的条件下,若a=70,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?请说明理由.参考答案一.选择题(共8小题,满分40分)1.解:∵2x﹣3y=7,∴2x=7+3y.∴x=.∴用含y的代数式表示x为x=.故选:D.2.解:方程2x+3y=17,解得:y=,当x=1时,y=5;x=4时,y=3;x=7时,y=1,则正整数解的个数是3个,故选:C.3.解:把方程组的解代入方程组得,解得,∴m﹣n=﹣4+1=﹣3,故选:B.4.解:,把①代入②,得3x﹣(x﹣5)=8,3x﹣x+5=8,故选:D.5.解:,②×2得:8x﹣2y=10k③,①+③得:9x=12k,解得:x=k,把x=k代入①得:k+2y=2k,解得:y=k,∴原方程组的解为:,把代入x﹣y=1中可得:k﹣k=1,解得:k=1,故选:A.6.解:由题意得方程组,,解得,,∴x+y=﹣1﹣1=﹣2,故选:A.7.解:依题意,得.故选:A.8.解:由题意可得,,即,故选:D.二.填空题(共8小题,满分40分)9.解:,①×5+②得,16x=28,x=,把x=,代入①得y=﹣,∴x﹣y=﹣(﹣)=2,故答案为:2.10.解:把代入二元一次方程2x+y=4,得2+m=4,解得m=2.故答案为:2.11.解:,①+②+③得:3x+3y+3z=6063,则x+y+z=2021.故答案为:2021.12.解:由3x﹣5y=﹣3可得﹣3x+5y=3,∴3(x+y)﹣3x+5y=3×7+3=21+3=24.故答案为:24.13.解:由题意得:x+y=0,∴y=﹣x,把y=﹣x代入原方程组可得:,①+②可得:3a+9=0,解得a=﹣3,故答案为:﹣3.14.解:方程组可变形为:,∵关于x、y的二元一次方程组的解是,∴,解得:,故答案为:.15.解:原方程组可化为:,①+②得7x=14,x=2,把x=2代入②2×2﹣y=3,解得y=1,把x=2,y=1代入ax﹣3y=9,2a﹣3×1=9,解得a=6,故答案为:6.16.解:设1个耳机的价值为x元,1个优盘的价值为y元,1个音箱的价值为z元,B盒中耳机的数量为3n(n为正整数)个,则音箱的数量为2n个,优盘的数量为5n个,依题意得:.若n=2,则B盒的价值至少是A盒价值的3倍,∴n=2不合适,∴n只能为1,∴方程②为3x+5y+2z=245③.3×③﹣4×②得:x+3y+2z=155,即C盒的价值为155元.故答案为:155.三.解答题(共6小题,满分40分)17.解:(1),由②,得x=﹣1+2y③,把③代入①,得2(﹣1+2y)+y=3,解得:y=1,把y=1代入③,得x=﹣1+2×1=1,所以原方程组的解是;(2),②×3,得6x+45y=9③,①×2,得6x﹣4y=﹣40④,③﹣④,得﹣49y=﹣49,解得:y=1,把y=1代入①,得3x﹣2+20=0,解得:x=﹣6,所以原方程组的解是.18.解:(1)将代入方程②得﹣12=﹣b﹣2,解得b=10,将代入方程①得5a+20=15,解得a=﹣1;(2)当a=﹣1,b=10时,原式===3﹣2﹣0.4=0.6.19.解:∵,∴3y﹣2x=﹣2①,2x﹣(﹣y)=8②.∴①+②,得4y=6.∴y=.把y=代入②,得x=.∴x=,y=.20.解:(1)①﹣②,得2x+2y=2,即x+y=1③,①﹣③×2 020,得x=﹣1.把x=﹣1代入③,得﹣1+y=1,解得y=2.所以原方程组的解为;(2)猜想:方程组(a≠b)的解为:;检验:把x=﹣1,y=2代入(a+2)x+(a+1)y=a,得左边=a,左边=右边;把x=﹣1,y=2代入(b+2)x+(b+1)y=b,得左边=b,左边=右边.∴是方程组的解.21.解:(1)设甲种口罩购进了x盒,乙种口罩购进了y盒,依题意得:,解得:,答:甲种口罩购进了700盒,乙种口罩购进了200盒.(2)20×700+25×200=14000+5000=19000(个),2×900×10=18000(个),∵19000>18000,∴购买的口罩数量能满足市教育局的要求.22.解:(1)设每个足球的价格是x元,每套队服的价格为y元,由题意得:,解得:,答:每套队服的价格各是160元,每个足球的价格是100元.(2)到甲商场购买装备所花的费用为:100×160+100(a﹣10)=(100a+15000)(元),到乙商场购买装备所花的费用为:100×160+100×0.8a=(80a+16000)(元);(3)到乙商场购买比较合算,理由如下:当a=70时,到甲商场购买装备所花的费用是:100a+15000=100×70+15000=22000(元),到乙商场购买装备所花的费用是:80a+16000=80×70+16000=21600(元),∵22000>21600,∴到乙商场购买比较合算.。
浙教版2022-2023学年七下数学第二章 二元一次方程组 培优测试卷(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.在方程12x =x +1,2x +3y =5,2y −1=x ,x −y +z =0中二元一次方程的个数为( ) A .1个 B .2个 C .3个 D .4个【答案】B 【解析】在方程12x =x +1,2x +3y =5,2y −1=x ,x −y +z =0中, 2x +3y =5,2y −1=x 是二元一次方程.故答案为:B .2.已知{x =1y =2是方程ax −2y =6的一个解,那么a 的值是( )A .−10B .−9C .9D .10【答案】D【解析】∵{x =1y =2是二元一次方程ax-2y=6的一个解, ∴a-2×2=6, 解得:a=10.故答案为:D .3.已知二元一次方程3x ﹣4y =1,则用含x 的代数式表示y 是( )A .y =1−3x 4B .y =3x−14C .x =4y+13D .x =1−4y 3 【答案】B【解析】∵3x-4y=1,∴4y=3x-1,∴y=3x−14. 故答案为:B.4.解方程组 {x =3y −2①2y −5x =10②时,把①代入②,得( ) A .2y −15y +2=10 B .2y −3y +2=10C .2y −15y +10=10D .2y −15y −10=10【答案】C【解析】把①代入②,得2y-5(3y-2)=10,2y-15y+10=10;故答案为:C5.若方程组{4x +3y =1kx +(k −1)y =3的解 x 和 y 的值相等,则 K 的值等于( ) A .4 B .10 C .11 D .12【答案】C【解析】把y=x 代入4x+3y=1得:7x=1,解得x=17, ∴y=x=17. 把y=x=17得:17k+17 (k−1)=3, 解得:k=11.故答案为:C.6.某玩具厂共有300名生产工人,每个工人每天可生产玩具车架20个或车轮40个,且1个车架与4个车轮可配成一套,设有x 个工人生产车架,y 个工人生产车轮,下列方程组正确的是( )A .{x +y =30040x =20yB .{x +y =30020x =40yC .{x +y =3004×20x =40yD .{x +y =30020x =4×40y【答案】C【解析】设有x 个工人生产车架,y 个工人生产车轮,由题意得,{x +y =3004×20x =40y, 故答案为:C .7.根据图中提供的信息,可知每个杯子的价格是( )A .51元B .35元C .8元D .7.5元 【答案】C【解析】设一杯为x ,一杯一壶为43元,则右图为三杯两壶,即二杯二壶+一杯,即:43×2+x=94解得:x=8(元)故答案为:C . 8.在解方程组{●x −2y =57x −4y =●时,小明由于粗心把系数●抄错了,得到的解是{x =−13y =−103.小亮把常数●抄错了,得到的解是{x =−9y =−16,则原方程组的符合题意解是( ) A .{x =1y =1 B .{x =−1y =1 C .{x =1y =−1 D .{x =1y =2【答案】C【解析】对于方程组{●x −2y =57x −4y =●, 小明由于粗心把系数●抄错了,得到的解是{x =−13y =−103 ∴7×(−13)−4×(−103)=● 解得●=11小亮把常数●抄错了,得到的解是{x =−9y =−16∴●⋅(−9)−2×(−16)=5解得●=3∴原方程组为{3x −2y =57x −4y =11,解得{x =1y =−1 故答案为:C .9.如果方程组 {ax +3y =92x −y =1无解,则a 为( ) A .6 B .-6 C .9 D .-9【答案】B【解析】把方程 2x −y =1 两边同时乘以3,再与方程 ax +3y =9 相加,消去y 得:ax +6x =9+3 ,即 (a +6)x =12 ,∵原方程无解,∴a +6=0 ,解得 a =−6 .故答案为:B.10.如图,在某张桌子上放相同的木块,R=34,S=92,则桌子的高度是( )A .63B .58C .60D .55【答案】A【解析】设木块的长为x ,宽为y ,桌子的高度为z ,由题意得: {y +z =x +34①x +z =y +92②, 由①得:y-x=34-z ,由②得:x-y=92-z ,即34-z+92-z=0,解得z=63;即桌子的高度是63.故答案为:A .二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.已知方程 2x a−5−(b −2)y |b|−1=4 是关于 x , y 的二元一次方程,则 a −2b = .【答案】10【解析】∵方程 2x a−5−(b −2)y |b|−1=4 是关于 x , y 的二元一次方程, ∴{a −5=1|b|−1=1b −2≠0 ,解得 {a =6b =−2 , ∴a −2b =10 ,故答案为:10.12.七年级(二)班选出部分同学参加夏令营,分成红、蓝两队,红队戴红帽子,蓝队戴蓝帽子.一个红队队员说,我看见的是红队人数与蓝队人数相等;一个蓝队队员说,我看见的是红队人数是蓝队人数的2倍.则这个班参加夏令营的总人数是 人.【答案】7【解析】设红队队员有x 人,蓝队队员有y 人根据题意可得 {x −1=y x =2(y −1) 解得: {x =4y =3∴这个班参加夏令营的总人数是4+3=7(人)故答案为:7. 13.已知关于 x,y 的方程组 {2x −ay =3bx +y =−1 的解是 {x =1y =−3 ,则 a +b = . 【答案】73 【解析】把方程组的解 {x =1y =−3 代入可得: {2+3a =3b −3=−1 , 解得 a =13 , b =2 , ∴a +b =73, 故答案为: 73 . 14.已知关于x 、y 的方程组{2x +5y =−6ax −by =4和{3x −5y =16bx +ay =−8的解相同,则(a +b)2= . 【答案】4【解析】联立得:{2x +5y =−6①3x −5y =16②, ①+②得:5x =10,解得:x =2,把x =2代入①得:y =−2,代入得:{a +b =2b −a =−4, 解得:{a =3b =−1, 则原式=(3−1)2=4.故答案为:4.15.如图, 8 个完全相同的小长方形拼成了一个大长方形,大长方形的周长是 60 厘米,则小长方形的长是 ,宽是 .【答案】9cm ;3cm【解析】设小长方形的长为acm ,宽为bcm ,则{2a =3b +a 2(2a +a +b )=60 解得{a =9b =3, ∴小长方形的长为9cm ,宽为3cm.故答案为:9cm ;3cm.16.有甲,乙,丙三种不同重量的重物,它们的重量分别为a ,b ,c ,天平一端放2个甲,另一端放一个乙和一个丙天平平衡;或者天平一端放一个甲和一个乙,另一端放一个丙,天平平衡.问a :b :c 的值为 .【答案】2:1:3【解析】由题意,得 {2a =b +c a +b =c ,解得: {a =2b c =3b , ∴a :b :c =2b :b :3b =2:1:3.故答案为:2:1:3.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.解方程组: (1){3x −y =135x +2y =7 (2){x 3+1=y 2(x +1)−y =6【答案】(1)解:{3x −y =13①5x +2y =7②, ①×2+②,得11x=33, ∴x=3,把x=3代入①,得y=-4,∴{x =3y =−4;(2)解:变形,得{x −3y =−3①2x −y =4②, ①×2-②,得-5y=-10, ∴y=2,把y=2代入①,得x=3,∴{x =3y =2.18.已知关于x 、y 的二元一次方程组{2ax +by =7ax −by =2的解为{x =−1y =1,求2a −b 的值. 【答案】解:把{x =−1y =1代入方程组{2ax +by =7ax −by =2,得: {−2a +b =7①−a −b =2②, ①+②,得−3a =9,a =−3,把a =−3代入①得b =1,∴2a −b =2×(−3)−1=−7.19.先阅读,再解方程组.解方程组{x −y −1=0,①4(x −y)−y =5②时,可由①得x −y =1③,然后再将③代入②,得4×1−y =5,解得y =−1,从而进一步得{x =0,y =−1.这种方法被称为“整体代入法”. 请用上述方法解方程组{2x −3y −2=0,2x−3y+57+2y =9. 【答案】解:{2x −3y −2=0,①2x−3y+57+2y =9,②由①,得2x −3y =2,③ 把③代入②,得2+57+2y =9,解得y =4. 把y =4代入③,得2x −3×4=2,解得x =7.故原方程组的解为{x =7,y =4.20.某旅游景点今年“五一”小长假共接待游客39200人,和去年同时期相比,游客总数增加了12%,其中省外游客增加了17%,省内游客增加了10%,求该景点去年“五一”小长假接待的省外游客和省内游客各是多少人?【答案】解:设该景点去年“五一”小长假接待的省外游客是x 人、省内游客是y 人,根据题意得{x +y =392001+12%(1+17%)x +(1+10%)y =39200, 解得:{x =10000y =25000.答:该景点去年“五一”小长假接待的省外游客是10000人、省内游客是25000人21.(1)仔细阅读下面解方程组的方法,并将解题过程补充完整:解方程组{19x +18y =17①17x +16y =15②时,如果直接用代入消元或加减消元,计算会很繁琐,若采用下面的解法,则会简单很多.解:① -②,得:2x +2y =2,即x +y =1③③×16,得:16x +16y =16④ ②-④,得:x =____将x 的值代入③ 得:y =____∴方程组的解是____;(1)请你采用上述方法解方程组:{2022x +2021y =20202020x +2019y =2018【答案】(1)解:{2022x +2021y =2020①2020x +2019y =2018②① –②得:2x +2y =2,即x +y =1③③×2019得:2019x +2019y =2019④② -④得x =−1把x =−1代入③ 得y =2∴原方程组的解是{x =−1y =2.22.亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【答案】(1)解:设计划调配36座新能源客车x 辆,该大学共有y 名志愿者,由题意得{36x +2=y 22(x +4)−2=y解得:{x =6y =218 答:计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)解:设需调配36座客车m 辆,22座客车n 辆,由题意得 36m +22n =218,∴n =109−18m 11又∵m ,n 均为正整数,∴{m =3n =5,答:需调配36座客车3辆,22座客车5辆.23.阅读下列方程组的解法,然后解答相关问题:解方程组{27x +26y =25①25x +24y =23②时,若直接利用消元法解,那么运算比较繁杂,采用下列解法则轻而易举解:①-②,得2x +2y =2,即x +y =1.③②-③×24,得x =−1. 把x =−1代入③,解得y =2.故原方程组的解是{x =−1y =2.(1)请利用上述方法解方程组{19x +21y =2311x +13y =15. (2)猜想并写出关于x ,y 的方程组{ax +(a −m)y =a −2m bx +(b −m)y =b −2m的解,并加以检验. 【答案】(1)解:{19x +21y =23①11x +13y =15②解①-②,得8x +8y =8,即x +y =1③解②-③×11,得y =2.把y =2代入③,解得x =−1. 故这个方程组的解是{x =−1y =2.(2)解:猜想方程组{ax +(a −m)y =a −2m①bx +(b −m)y =b −2m②解是{x =−1y =2. 检验:把{x =−1y =2代入方程①的左边,左边=−a +2(a −m)=a −2m ,右边=a −2m ,∴左边=右边,∴{x =−1y =2方程①的解.把{x =−1y =2代入方程②的左边,左边=−b +2(b −m)=b −2m ,右边=b −2m ,∴左边=右边,∴{x =−1y =2是方程②的解.∴{x =−1y =2,是方程组{ax +(a −m)y =a −2m bx +(b −m)y =b −2m的解.24.阅读下列材料,解答下面的问题:我们知道方程3x +5y =30有无数个解,但在实际问题中往往只需求出其正整数解.例:由3x +5y =30,得y =30−3x 5=6−35x (x 、y 为正整数).要使6−35x 为正整数,则35x 为正整数,可知x 为5的倍数,从而x =5,代入y =6−35×5=3.所以3x +5y =30的正整数解为{x =5y =3. (1)请你直接写出方程4x +3y =24的正整数解 ;(2)若12a−4为自然数,则求出满足条件的正整数a 的值; (3)关于x ,y 的二元一次方程组{2x +y =82y +kx =7的解是正整数,求整数k 的值. 【答案】(1){x =3y =4(2)解:若12a−4为自然数,则(a −4)的值为12,6,4,3,2,1, 则满足条件的正整数a 的值有16,10,8,7,6,5;(3)解:{2x +y =8①2y +kx =7②, ①×2−②:(4−k)x =9, 解得:x =94−k , ∵x ,y 是正整数,k 是整数,∴4−k =1或3或9.k =3或1或−5.但k =3时,y 不是正整数,故k =1或−5.【解析】(1)解:由方程4x +3y =24得,y =24−4x 3=8−4x 3(x 、y 为正整数). 要使y =8−4x 3为正整数,则4x 3为正整数, 可知:x 为3的倍数,从而x =3,代入y =8−4x 3=4. 所以4x +3y =24的正整数解为{x =3y =4,故答案为:{x =3y =4;。
七年级(下)二元一次方程组测试班级: 姓名: 学号:一、选择题(每小题3分,共30分)1.下列是二元一次方程的是 ( )A 、3x-6=xB 、32x y =C 、2x+13=yD 、23x y xy -= 2.下列各方程组中,属于二元一次方程组的是 ( ) A 、 ⎩⎨⎧==+5723xy y x B 、⎩⎨⎧=+=+212z x y x C 、⎩⎨⎧=+=2432y x x y D 、⎪⎩⎪⎨⎧=+=+322135y x y x 3. 对于方程组⎩⎨⎧-==-)2(12)1(532x y y x ,把(2)代入(1)得 ( ) A 、2x-6x-1=5 B 、2(2x-1)-3y=5 C 、2x-6x+3=5 D 、2x-6x-3=54. 二元一次方程组⎩⎨⎧=+=-521y x y x 的解是( ) A 、⎩⎨⎧=-=21y x B 、⎩⎨⎧-==12y x C 、⎩⎨⎧==21y x D 、⎩⎨⎧==12y x 5. 如图,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( )A 、400 cm 2B 、500 cm 2C 、600 cm 2D 、4000 cm 2 第5题6. 小王只带2元和5元两种面值的人民币,他买一件学习用品要支付27元,则付款的方式有( )A 、1种B 、2种C 、3种D 、4种7.已知两个单项式773+y x b a 与xy b a 2427--能合并为一个单项式,则x,y 的值是( )A 、x=-3,y=2B 、x=2,y=-3C 、x=-2,y=3D 、x=3,y=-2 8、已知关于x 、y 的方程组⎩⎨⎧=-=+10230by ax by ax 的解为⎩⎨⎧-==12y x 则a 、b 的值是( ) A 、⎩⎨⎧==21b a B 、⎩⎨⎧==12b a C 、⎩⎨⎧-=-=21b a D 、⎩⎨⎧-==12b a 9. 某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为( )A 、⎩⎨⎧=++=x y x y 5837B 、⎩⎨⎧=-+=x y x y 5837C 、⎩⎨⎧+=-=5837x y x yD 、⎩⎨⎧+=+=5837x y x y 10. 若方程组⎩⎨⎧=-=+0262y x ky x 有正整数解,则k 的正整数值是( )A 、3B 、2C 、1D 、不存在二、填空题(每小题3分,共30分)11.已知05332=--+n m y x是关于x 、y 的二元一次方程,则m+n= . 12.若⎩⎨⎧-==43y x 是方程3x + ay=1的一个解,则a 的值是__________.13. 将方程x=2m-1,y=4-m,那么用含x 的代数式表示y ,则y =___________.14.写出一个以⎩⎨⎧=-=21y x 为解的二元一次方程组__________________ . 15.若方程组⎩⎨⎧=+=-5624y kx y x 的解x,y 互为相反数,则k= . 16. 如果y x 2-和2)3(-+y x 互为相反数,则y x = . 第17题17. 如图,在3×3的方格内,填入一些代数式与数,若各行、各列及对角线上的三个数字之和都相等,则x= ,y= .18. 关于x 、y 的二元一次方程组⎩⎨⎧=-=+42by ax by ax 与⎩⎨⎧-=-=+654432y x y x 的解相同,则a=b= .19. 导游给一个旅游团分配房间,若每房间1人,则余下10人;若每房间3人,则空余10间,其他房间正好住满,则这批游客有 人,房间有多少 间.20.代数式ax+by,当x=3,y=-2时,它的值为8;当x=-2,y=3时,它的值为-7,则代数式为 .三、解答题(共40分)21. (10分)解下列方程组:(1)⎩⎨⎧=+-=623x y y x (2)⎩⎨⎧=-+--=-5)1()2(2)1(22y x y x22. (6分)《一千零一夜》中有这样一段文字:有一群鸽子,其中有一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子为整个鸽群的31,若从树上飞下去一只,则树上、树下的鸽子就一样多.”你知道树上、树下各有多少只鸽子吗?23. (7分)在解方程组⎩⎨⎧=+=+710by x y ax 时,由于粗心,甲看错了方程组中的a ,而得到方程组的解为⎩⎨⎧==61y x ,乙看错了方程组中的b ,而得到方程组的解为⎩⎨⎧=-=121y x(1) 甲把a 看成了什么?乙把b 看成了什么?(2)求出原方程组的正确解。
浙教版七下数学第2章《二元一次方程组》单元培优测试题
班级_________ 姓名_____________ 得分_____________
注意事项:本卷共有三大题23小题,满分120分,考试时间120分钟.
一、选择题(本题有10小题,每小题3分,共30分)
下面每小题给出的四个选项中,只有一个是正确的.
1﹒下列方程中,二元一次方程是()
A﹒x+xy=8 B﹒y=1
2
x-1 C﹒x+
1
x
=2 D﹒x2+y-3=0
2﹒已知2x+3y=6,用含y的代数式表示x得()
A﹒x=3-3
2
y B﹒y=2-
2
3
x C﹒x=3-3y D﹒y=2-2x
3﹒已知关于x的方程3x+2a=2的解是a-1,则a的值是()
A﹒-1B﹒1
5
C﹒
3
5
D﹒1
4﹒若方程组
352
23
x y k
x y k
+=+
⎧
⎨
+=
⎩
的解x,y的和为0,则k的值为()
A﹒2B﹒3 C﹒4 D﹒5
5﹒若方程组
23
24
x y
ax by
+=
⎧
⎨
+=
⎩
与方程组
3
ax by
x y
+=
⎧
⎨
-=
⎩
有相同的解,则a,b的值分别为()
A﹒1,2 B﹒1,0 C﹒1
3
,-
2
3
D﹒-
1
3
,
2
3
6﹒在等式y=kx+b中,当x=1时,y=2,当x=-1时,y=4,则k b的值是()A﹒-3B﹒3C﹒-1D﹒1
7﹒足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获的场数可能是()
A﹒1或2 B﹒2或3C﹒3或4D﹒4或5
8﹒“五一”节即将来临,某旅游景点超市用700元购进甲、乙两种商品260个,其中甲种商品比乙种商品少用100元,已知甲种商品单价比乙种商品单价高20%.那么乙种商品单价是()
A﹒2元B﹒2.5元C﹒3元D﹒5元
9﹒如图,是正方体的一种表面展开图,若这个正方体相对的两
个面上的代数式的值相等,则x+y+a的值为()
A﹒5B﹒6
C﹒7D﹒8
10.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,
调价后,两种商品的单价和比原来的单价和提高了20%.若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()。