精选天津市七年级上期末数学试卷(含答案)
- 格式:doc
- 大小:195.50 KB
- 文档页数:13
天津市初一上学期数学期末试卷带答案一、选择题1.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .122.﹣3的相反数是( ) A .13-B .13C .3-D .33.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线 C .垂线段最短 D .两点之间直线最短4.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离是( )A .2B .2﹣1C .2+1D .15.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程() A .10050062x x += B .1005006x 2x += C .10040062x x += D .1004006x 2x+= 6.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( ) A .9a 9b -B .9b 9a -C .9aD .9a -7.方程312x -=的解是( ) A .1x =B .1x =-C .13x =-D .13x =8.下列调查中,最适合采用全面调查(普查)的是( ) A .对广州市某校七(1)班同学的视力情况的调查 B .对广州市市民知晓“礼让行人”交通新规情况的调查 C .对广州市中学生观看电影《厉害了,我的国》情况的调查D .对广州市中学生每周课外阅读时间情况的调查 9.当x=3,y=2时,代数式23x y-的值是( ) A .43B .2C .0D .310.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x 元,根据题意可列方程为( ) A .300-0.2x =60B .300-0.8x =60C .300×0.2-x =60D .300×0.8-x =6011.下列变形中,不正确的是( ) A .若x=y ,则x+3=y+3 B .若-2x=-2y ,则x=y C .若x ym m =,则x y = D .若x y =,则x y m m= 12.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠1二、填空题13.一个角的余角等于这个角的13,这个角的度数为________. 14.已知x=5是方程ax ﹣8=20+a 的解,则a= ________15.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__. 16.若212-my x 与5x 3y 2n 是同类项,则m +n =_____. 17.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.18.如图,在长方形ABCD 中,10,13.,,,AB BC E F G H ==分别是线段,,,AB BC CD AD 上的定点,现分别以,BE BF 为边作长方形BEQF ,以DG 为边作正方形DGIH .若长方形BEQF 与正方形DGIH 的重合部分恰好是一个正方形,且,BE DG =,Q I 均在长方形ABCD 内部.记图中的阴影部分面积分别为123,,s s s .若2137S S =,则3S =___19.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.20.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x人,则可列方程______.21.小马在解关于x的一元一次方程3232a xx-=时,误将- 2x看成了+2x,得到的解为x=6,请你帮小马算一算,方程正确的解为x=_____.22.化简:2x+1﹣(x+1)=_____.23.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x为_____.24.如图,将△ABE向右平移3cm得到△DCF,若BE=8cm,则CE=______cm.三、压轴题25.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(其中∠P=30°)的直角顶点放在点O处,一边OQ在射线OA上,另一边OP与OC都在直线AB的上方.将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)如图2,经过t秒后,OP恰好平分∠BOC.①求t的值;②此时OQ是否平分∠AOC?请说明理由;(2)若在三角板转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由;(3)在(2)问的基础上,经过多少秒OC平分∠POB?(直接写出结果).26.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1) 若b=-4,则a的值为__________.(2) 若OA=3OB,求a的值.(3) 点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.27.对于数轴上的点P,Q,给出如下定义:若点P到点Q的距离为d(d≥0),则称d为点P 到点Q的d追随值,记作d[PQ].例如,在数轴上点P表示的数是2,点Q表示的数是5,则点P到点Q的d追随值为d[PQ]=3.问题解决:(1)点M,N都在数轴上,点M表示的数是1,且点N到点M的d追随值d[MN]=a(a≥0),则点N表示的数是_____(用含a的代数式表示);(2)如图,点C表示的数是1,在数轴上有两个动点A,B都沿着正方向同时移动,其中A点的速度为每秒3个单位,B点的速度为每秒1个单位,点A从点C出发,点B表示的数是b,设运动时间为t(t>0).①当b=4时,问t为何值时,点A到点B的d追随值d[AB]=2;②若0<t≤3时,点A到点B的d追随值d[AB]≤6,求b的取值范围.28.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.29.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).(4)直接写出点B为AC中点时的t的值.30.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+; (2)当1-≤2x <时,原式()()123x x =+--=; (3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ; (2)化简式子324x x -++.31.如图,A 、B 、P 是数轴上的三个点,P 是AB 的中点,A 、B 所对应的数值分别为-20和40.(1)试求P 点对应的数值;若点A 、B 对应的数值分别是a 和b ,试用a 、b 的代数式表示P 点在数轴上所对应的数值;(2)若A 、B 、P 三点同时一起在数轴上做匀速直线运动,A 、B 两点相向而行,P 点在动点A 和B 之间做触点折返运动(即P 点在运动过程中触碰到A 、B 任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A 、B 两点相遇,停止运动.如果A 、B 、P 运动的速度分别是1个单位长度/s ,2个单位长度/s ,3个单位长度/s ,设运动时间为t .①求整个运动过程中,P 点所运动的路程.②若P 点用最短的时间首次碰到A 点,且与B 点未碰到,试写出该过程中,P 点经过t 秒钟后,在数轴上对应的数值(用含t 的式子表示);③在②的条件下,是否存在时间t ,使P 点刚好在A 、B 两点间距离的中点上,如果存在,请求出t 值,如果不存在,请说明理由.32.已知数轴上三点A ,O ,B 表示的数分别为6,0,-4,动点P 从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P 到点A 的距离与点P 到点B 的距离相等时,点P 在数轴上表示的数是______; (2)另一动点R 从B 出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多少时间追上点R ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可. 【详解】解:根据题意可得: 设BC x =,则可列出:()223x x +⨯= 解得:4x =,12BC AB =, 28AB x ∴==. 故答案为:C. 【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.2.D解析:D 【解析】 【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.3.B解析:B【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B. 4.D解析:D【解析】【分析】根据题意列出算式,计算即可得到结果.【详解】解:∵A,B﹣1,∴A,B﹣1)=1;故选:D.【点睛】此题考查了实数与数轴,掌握数轴上点的特点,利用数轴,数形结合求出答案.5.D解析:D【解析】【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程.【详解】设该厂原来每天加工x个零件,根据题意得:1004006 x2x+=故选:D.【点睛】此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.6.C解析:C【解析】【分析】分别表示出愿两位数和新两位数,进而得出答案.【详解】解:由题意可得,原数为:()10a b b ++; 新数为:10b a b ++,故原两位数与新两位数之差为:()()10a b b 10b a b 9a ++-++=. 故选C . 【点睛】本题考查列代数式,正确理解题意得出代数式是解题关键.7.A解析:A 【解析】试题分析:将原方程移项合并同类项得:3x=3,解得:x=1. 故选A .考点:解一元一次方程.8.A解析:A 【解析】 【分析】根据普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可. 【详解】A. 对广州市某校七(1)班同学的视力情况的调查,适合全面调查,符合题意;B. 对广州市市民知晓“礼让行人”交通新规情况的调查,适合抽样调查,故不符合题意;C. 对广州市中学生观看电影《厉害了,我的国》情况的调查,适合抽样调查,故不符合题意;D. 对广州市中学生每周课外阅读时间情况的调查,适合抽样调查,故不符合题意, 故选A. 【点睛】本题考查的是抽样调查与全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大的调查,应选用抽样调查,对于精确度要求高的调查,事关重大的调查往往先用普查的方式.9.A解析:A 【解析】 【分析】当x=3,y=2时,直接代入代数式即可得到结果. 【详解】23x y -=2323⨯-=43,故选A 【点睛】本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.10.D解析:D 【解析】 【分析】要列方程,首先根据题意找出题中存在的等量关系:售价-进价=利润60元,此时再根据等量关系列方程 【详解】解:设进价为x 元,由已知得服装的实际售价是300×0.8元,然后根据利润=售价-进价, 可列方程:300×0.8-x=60 故选:D 【点睛】本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应弄清楚两点:(1)利润、售价、进价三者之间的关系; (2)打八折的含义.11.D解析:D 【解析】 【分析】等式两边同时加减一个数,同时乘除一个不为0的数,等式依然成立,根据此性质判断即可. 【详解】A. x=y 两边同时加3,可得到x+3=y+3,故A 选项正确;B. -2x=-2y 两边同时除以-2,可得到x=y ,故B 选项正确;C. 等式x ym m=中,m ≠0,两边同时乘以m 得x y =,故C 选项正确; D. 当m=0时,x y =两边同除以m 无意义,则x ym m=不成立,故D 选项错误;故选:D . 【点睛】本题考查等式的变形,熟记等式的基本性质是解题的关键.12.A解析:A 【解析】要把原方程变形化简,去分母得:2ax=3x ﹣(x ﹣6), 去括号得:2ax=2x+6,移项,合并得,x=31a,因为无解,所以a﹣1=0,即a=1.故选A.点睛:此类方程要用字母表示未知数后,清楚什么时候是无解,然后再求字母的取值.二、填空题13.【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=解得x=67.5故填【点睛】此题主要考查角度的求解,解题的关键是解析:67.5【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=1 3 x解得x=67.5故填67.5【点睛】此题主要考查角度的求解,解题的关键是熟知补角的性质.14.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解析:7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解得:a=7.故答案为7.考点:方程的解.15.2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x的取值无关,即含字母x的系数为0.16.4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则解析:4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则m+n=4.故答案是:4.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.17.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a+3b)元解析:(23)a b +【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.18.【解析】【分析】设CG =a ,然后用a 分别表示出AE 、PI 和AH ,根据,列方程可得a 的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG =a ,则DG =GI =BE =10−a , 解析:1214 【解析】【分析】设CG =a ,然后用a 分别表示出AE 、PI 和AH ,根据2137S S =,列方程可得a 的值,根据正方形的面积公式可计算S 3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,∵AB=10,BC=13,∴AE=AB−BE=10−(10−a)=a, PI=IG−PG=10−a−a=10−2a,AH=13−DH=13−(10−a)=a+3,∵213 7S S =,即23(3)7aa a=+,∴4a2−9a=0,解得:a1=0(舍),a2=94,则S3=(10−2a)2=(10−92)2=1214,故答案为121 4.【点睛】本题考查正方形和长方形边长之间的关系、面积公式以及解一元二次方程等知识,解题的关键是学会利用参数列方程解决问题.19.30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.考点:列代数式20.【解析】【分析】设应派往甲处x人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x的一元一次方程,此题得解.【详解】解:设应派往甲处x人,则派往乙处人,解析:()27x 21920x ⎡⎤+=+-⎣⎦【解析】【分析】设应派往甲处x 人,则派往乙处()20x -人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处()20x -人,根据题意得:()27x 21920x ⎡⎤+=+-⎣⎦.故答案为()27x 21920x ⎡⎤+=+-⎣⎦.【点睛】本题考查由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.21.3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x ,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】 ∵方程3232a x x +=的解为x=6, ∴3a+12=36,解得a=8, ∴原方程可化为24-2x=6x ,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.22.x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.23.2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键解析:2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.24.5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴CE=BE-BC=8-3=5cm,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.三、压轴题25.(1)①5;②OQ平分∠AOC,理由详见解析;(2)5秒或65秒时OC平分∠POQ;(3)t=703秒.【解析】【分析】(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t值;②根据∠AOQ和∠COQ度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.【详解】(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°,∵OP平分∠BOC,∴∠COP=12∠BOC=75°,∴∠COQ=90°﹣75°=15°,∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=12∠POQ=45°.设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,当30+6t﹣3t=225,也符合条件,解得:t=65,∴5秒或65秒时,OC平分∠POQ;(3)设经过t秒后OC平分∠POB,∵OC平分∠POB,∴∠BOC=12∠BOP,∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t,又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180﹣30﹣6t=12(90﹣3t),解得t=70 3.本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键.26.(1)10;(2)212±;(3)288.5±±,【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b=-4,则a的值为 10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m2 =,所以,OA=212,点A在原点O的右侧,a的值为212.当A在原点的左侧时(如图),a=-21 2综上,a的值为±212.(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=-28 5.当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.当点A在原点的左侧,点B在点C的右侧时,图略,c=28 5.当点A在原点的左侧,点B在点C的左侧时,图略,c=8.综上,点c的值为:±8,±28 5.本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.27.(1)1+a 或1-a ;(2)12或52;(3)1≤b≤7. 【解析】【分析】(1)根据d 追随值的定义,分点N 在点M 左侧和点N 在点M 右侧两种情况,直接写出答案即可;(2)①分点A 在点B 左侧和点A 在点B 右侧两种情况,类比行程问题中的追及问题,根据“追及时间=追及路程÷速度差”计算即可;②【详解】解:(1)点N 在点M 右侧时,点N 表示的数是1+a ;点N 在点M 左侧时,点N 表示的数是1-a ;(2)①b=4时,AB 相距3个单位,当点A 在点B 左侧时,t=(3-2)÷(3-1)=12, 当点A 在点B 右侧时,t=(3+2)÷(3-1)=52; ②当点B 在点A 左侧或重合时,即d ≤1时,随着时间的增大,d 追随值会越来越大, ∵0<t≤3,点A 到点B 的d 追随值d[AB]≤6,∴1-d+3×(3-1)≤6,解得d ≥1,∴d=1,当点B 在点A 右侧时,即d>1时,在AB 重合之前,随着时间的增大,d 追随值会越来越小,∵点A 到点B 的d 追随值d[AB]≤6,∴d ≤7∴1<d ≤7,综合两种情况,d 的取值范围是1≤d ≤7.故答案为(1)1+a 或1-a ;(2)①12或52;②1≤b≤7. 【点睛】本题考查了数轴上两点之间的距离和动点问题.28.(1)3456;45678S S =+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析【解析】【分析】先找出前几项的钢管数,在推出第n 项的钢管数.【详解】(1)3456;45678S S =+++=++++(2)方法不唯一,例如:12S =+ 1233S =+++ 123444S =+++++ 12345555S =+++++++ (3)方法不唯一,例如:()()12.....2S n n n n =++++++()()()()=.....12.. (1112)n n n n n n n n +++++++=+++ ()312n n =+ 【点睛】 此题主要考察代数式的规律探索及求和,需要仔细分析找到规律.29.(1)-2;1;7;(2)4;(3)3+3t ;9+5t ;6+2t ;(4)3.【解析】【分析】(1)利用|a +2|+(c ﹣7)2=0,得a +2=0,c ﹣7=0,解得a ,c 的值,由b 是最小的正整数,可得b =1;(2)先求出对称点,即可得出结果;(3)分别写出点A 、B 、C 表示的数为,用含t 的代数式表示出AB 、AC 、BC 即可;(4)由点B 为AC 中点,得到AB =BC ,列方程,求解即可.【详解】(1)∵|a +2|+(c ﹣7)2=0,∴a +2=0,c ﹣7=0,解得:a =﹣2,c =7.∵b 是最小的正整数,∴b =1.故答案为﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.故答案为4.(3)点A 表示的数为:-2-t ,点B 表示的数为:1+2t ,点C 表示的数为:7+4t ,则AB =t +2t +3=3t +3,AC =t +4t +9=5t +9,BC =2t +6.故答案为3t +3,5t +9,2t +6.(4)∵点B 为AC 中点,∴AB =BC ,∴3t +3=2t +6,解得:t =3.【点睛】本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.30.(1) 2x =-和4x = ;(2) 35(4)11(43)35(3)x x x x x x --<-⎧⎪+-≤<⎨⎪+≥⎩【解析】【分析】(1)令x +2=0和x -4=0,求出x 的值即可得出|x +2|和|x -4|的零点值,(2)零点值x =3和x =-4可将全体实数分成不重复且不遗漏的如下3种情况:x <-4、-4≤x <3和x ≥3.分该三种情况找出324x x -++的值即可.【详解】解:(1)2x =-和4x =,(2)由30x -=得3,x =由40x +=得4x =-,①当4x <-时,原式()()32435x x x =---+=--,②当4-≤3x <时,原式()()32411x x x =--++=+,③当x ≥3时,原式()()32435x x x =-++=+,综上所述:原式()35(4)11(43)353x x x x x x ⎧--<-⎪=+-≤<⎨⎪+≥⎩, 【点睛】本题主要考查了绝对值化简方法,解决本题的关键是要熟练掌握绝对值化简方法.31.(1)10,(a+b);(2)①60个单位长度;②10-3t ,0≤t≤7.5;③不存在,理由见解析.【解析】【分析】(1)根据数轴上两点间的距离公式结合A 、B 两点表示的数,即可得出结论;(2) ①点P 运动的时间与A 、B 相遇所用时间相等,根据路程=速度×时间即可求得;②由P 点用最短的时间首次碰到A 点,且与B 点未碰到,可知开始时点P 是和点A 相向而行的;③点P 与点A 的距离越来越小,而点P 与点B 的距离越来越大,不存在PA=PB 的时候.【详解】解:(1)∵A 、B 所对应的数值分别为-20和40,∴AB=40-(-20)=60,∵P 是AB 的中点,∴AP=60=30,∴点P 表示的数是-20+30=10;∵如图,点A 、B 对应的数值分别是a 和b ,∴AB=b-a,∵P是AB的中点,∴AP=(b-a)∴点P表示的数是a+(b-a) =(a+b).(2)①点A和点B相向而行,相遇的时间为=20(秒),此即整个过程中点P运动的时间.所以,点P的运动路程为3×20=60(单位长度),故答案是60个单位长度.②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的.所以这个过程中0≤t≤7.5.P点经过t秒钟后,在数轴上对应的数值为10-3t.故答案是:10-3t,0≤t≤7.5.③不存在.由②可知,点P是和点A相向而行的,整个过程中,点P与点A的距离越来越小,而点P 与点B的距离越来越大,所以不存在相等的时候.故答案为:(1)10,(a+b);(2)①60个单位长度;②10-3t,0≤t≤7.5;③不存在,理由见解析.【点睛】本题考查了数轴上点与点的距离和动点问题.32.(1)1;(2)点P运动5秒时,追上点R;(3)线段MN的长度不发生变化,其长度为5.【解析】试题分析:(1)由已知条件得到AB=10,由PA=PB,于是得到结论;(2)设点P运动x秒时,在点C处追上点R,于是得到AC=6x BC=4x,AB=10,根据AC-BC=AB,列方程即可得到结论;(3)线段MN的长度不发生变化,理由如下分两种情况:①当点P在A、B之间运动时②当点P运动到点B左侧时,求得线段MN的长度不发生变化.试题解析:解:(1)(1)∵A,B表示的数分别为6,-4,∴AB=10,∵PA=PB,∴点P表示的数是1,(2)设点P运动x秒时,在点C处追上点R(如图)则:AC=6x BC=4x AB=10∵AC-BC=AB∴ 6x-4x=10解得,x=5。
天津市七年级(上)期末数学试卷-(含答案)副标题一、选择题(本大题共7小题;共14.0分)1.如图所示;学校、书店、体育馆在平面图上的位置分别是A、B、C;书店在学校的正东方向;体育馆在学校的南偏西35°方向;那么平面图上的∠CAB等于()A.B.C.D.2.如图;下列说法错误的是()A. 直线AC与射线BD相交于点AB. BC是线段C. 直线AC经过点AD. 点D在直线AB上3.已知(a-1)x2y a+1是关于x、y的五次单项式;则这个单项式的系数是()A. 1B. 2C. 3D. 04.若a的相反数是2;则a的值为()A. 2B.C.D.5.关于x的方程a-3(x-5)=b(x+2)是一元一次方程;则b的取值情况是()A. B. C. D. b为任意数6.下列各数中;正确的角度互化是()A. B.C. D.7.设一个锐角与这个角的补角的差的绝对值为α;则()A. 或B.C. D.二、填空题(本大题共6小题;共18.0分)8.若3x=-;则4x=______.9.以∠AOB的顶点O为端点引射线OP;使∠AOP:∠BOP=3:2;若∠AOB=17°;∠AOP的度数为______.10.若点M是线段AB的中点;N是线段AM的中点;若图中所有线段的和是20cm;则AN的长是______cm.11.已知有理数a在数轴上的位置如图;则a+|a-1|=______.12.已知线段MN=16cm;点P为任意一点;那么线段MP与NP和的最小值是______cm.13.若x=y+3;则(x-y)2-2.3(x-y)+0.75(x-y)2+(x-y)+7等于______.三、计算题(本大题共3小题;共27.0分)14.列一元一次方程解应用题.有一批共享单车需要维修;维修后继续投放骑用;现有甲、乙两人做维修;甲每天维修16辆;乙每天维修的车辆比甲多8辆;甲单独维修完成这批共享单车比乙单独维修完多用20天;公司每天付甲80元维修费;付乙120元维修费.(1)问需要维修的这批共享单车共有多少辆?(2)在维修过程中;公司要派一名人员进行质量监督;公司负担他每天10元补助费;现有三种维修方案:①由甲单独维修;②由乙单独维修;③甲、乙合作同时维修;你认为哪种方案最省钱;为什么?15.计算:(1)25×-(-25)×+25÷(-);(2)2-23÷[()2-(-3+0.75)]×5.16.已知∠AOB=α;过点O作∠BOC=90°.(1)若α=30;则∠AOC的度数;(2)已知射线OE平分∠AOC;射线OF平分∠BOC.①若α=50°;求∠EOF的度数;②若90°<α<180°;则∠EOF的度数为______(直接填写用含α的式子表示的结果).四、解答题(本大题共4小题;共31.0分)17.解下列方程:(1)x+=6-;(2)-=.18.已知关于m的方程(m-14)=-2的解也是关于x的方程2(x-)-n=11的解.(1)求m、n的值;(2)若线段AB=m;在直线AB上取一点P;恰好使=n;点Q是PB的中点;求线段AQ的长.19.如图;直线AB与CD相交于点O;∠BOE=∠DOF=90°.(1)写出图中与∠COE互补的所有的角(不用说明理由).(2)问:∠COE与∠AOF相等吗?请说明理由;(3)如果∠AOC=∠EOF;求∠AOC的度数.20.已知;.化简:;已知与的同类项;求的值.答案和解析1.【答案】B【解析】解:从图中发现平面图上的∠CAB=∠1+∠2=90°+35°=125°.故选:B.根据方位角的概念;正确画出方位图表示出方位角;即可求解.本题考查了方向角的知识;解答此类题需要从运动的角度;正确画出方位角;找准中心是做这类题的关键.2.【答案】D【解析】解:A、直线AC与射线BD相交于点A;说法正确;故本选项错误;B、B、C是两个端点;则BC是线段;说法正确;故本选项错误;C、直线AC经过点A;说法正确;故本选项错误;D、如图所示;点D在射线BD上;说法错误;故本选项正确.故选:D.根据射线、直线与线段的定义;结合图形解答.本题考查了直线、射线、线段;注意:直线没有端点.3.【答案】A【解析】解:由题意得:a+1+2=5;解得:a=2;则这个单项式的系数是a-1=1;故选:A.根据一个单项式中所有字母的指数的和叫做单项式的次数可得a的值;然后根据单项式中的数字因数叫做单项式的系数可得答案.此题主要考查了单项式;关键是掌握单项式相关定义.4.【答案】B【解析】解:由a的相反数是2;得a=-2;故选:B.根据相反数的意义求解即可.本题考查了相反数的意义;一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数;一个负数的相反数是正数;0的相反数是0.不要把相反数的意义与倒数的意义混淆.5.【答案】A【解析】解:a-3(x-5)=b(x+2);a-3x+15-bx-2b=0;(3+b)x=a-2b+15;∴b+3≠0;b≠-3;故选:A.先把方程整理为一元一次方程的一般形式;再根据一元一次方程的定义求出b的值即可.本题考查的是一元一次方程的定义;熟知只含有一个未知数(元);且未知数的次数是1;这样的方程叫一元一次方程是解答此题的关键.6.【答案】D【解析】解:A、63.5°=63°30′≠63°50′;故A不符合题意;B、23.48°=23°28′48″≠23°12′36″;故B不符合题意;C、18.33°=18°19′48″≠18°18′18″;故C不符合题意;D、22.25°=22°15′;故D正确;故选:D.根据大单位化小单位乘以进率;小单位化单位除以进率;可得答案.本题考查了度分秒的换算;利用大单位化小单位乘以进率;小单位化单位除以进率是解题关键.7.【答案】B【解析】解:设这个角的为x且0<x<90°;根据题意可知180°-x-x=α;∴α=180°-2x;∴180°-2×90°<α<180°-2×0°;0°<α<180°.故选:B.根据补角的定义来求α的范围即可.本题考查了余角和补角的概念.互为余角的两角的和为90°;互为补角的两角之和为180°.解此题的关键是能准确的从题意中找出这两个角之间的数量关系;从而判断出两角之间的关系.8.【答案】-【解析】解:系数化为1;得x=-;4x=-×4=-;故答案为:-.根据系数化为1;可得答案.本题考查了解一元一次方程;利用系数化为1是解题关键.9.【答案】10.2°或51°【解析】解:如图1;当射线OP在∠AOB的内部时;设∠AOP=3x;则∠BOP=2x;∵∠AOB=∠AOP+∠BOP=5x=17°;解得:x=3.4°;则∠AOP=10.2°;如图2;当射线OP在∠AOB的外部时;设∠AOP=3x;则∠BOP=2x;∵∠AOP=∠AOB+∠BOP;又∵∠AOB=17°;∴3x=17°+2x;解得:x=17°;则∠AOP=51°.故∠AOP的度数为10.2°或51°.故答案为:10.2°或51°.分射线OP在∠AOB的内部和外部两种情况进行讨论求解即可.本题考查了角的计算;关键是分两种情况进行讨论.10.【答案】【解析】解:如图;∵点M是线段AB的中点;N是线段AM的中点;∴AN=NM=AM=BM=BN=AB;∴AM=BM=2AN;BN=3AN;AB=4AN;又∵图中所有线段的和是20cm;∴AN+MN+BM+AM+BN+AB=20;∴AN+AN+2AN+2AN+3AN+4AN=20;解得AN=cm故答案为:.依据点M是线段AB的中点;N是线段AM的中点;可得AN=NM=AM=BM=BN=AB;再根据图中所有线段的和是20cm;即可得到AN+MN+BM+AM+BN+AB=20;进而得出AN的长.本题主要考查了两点间的距离;平面上任意两点间都有一定距离;它指的是连接这两点的线段的长度.11.【答案】1【解析】解:由数轴上a点的位置可知;a<0;∴a-1<0;∴原式=a+1-a=1.故答案为:1.先根据a在数轴上的位置确定出a的符号;再根据绝对值的性质把原式进行化简即可.本题考查的是数轴的特点及绝对值的性质;比较简单.12.【答案】16【解析】解:如图所示:所以线段MP与NP和的最小值是16cm;故答案为;16根据线段的性质解答即可.此题考查线段的性质;关键是根据两点之间线段最短解答.13.【答案】3.7【解析】解:∵x=y+3;∴x-y=3;则原式=×32-2.3×3+0.75×3-×3+7=2.25-6.9+2.25-0.9+7=3.7;故答案为:3.7.由x=y+3得x-y=3;整体代入原式计算可得.此题考查了整式的加减-化简求值;熟练掌握整体代入思想的运用是解本题的关键.14.【答案】解:(1)设乙单独做需要x天完成;则甲单独做需要(x+20)天;由题意可得:16(x+20)=24x;解得:x=40;总数:24×40=960(套);答:乙单独做需要40天完成;甲单独做需要60天;一共有960辆共享单车;(2)方案一:甲单独完成:60×80+60×10=5400(元);方案二:乙单独完成:40×120+40×10=5200(元);方案三:甲、乙合作完成:960÷(16+24)=24(天);则一共需要:24×(120+80)+24×10=5040(元);故选择方案三合算.【解析】(1)通过理解题意可知本题的等量关系;即甲乙单独修完共享单车的数量相同;列方程求解即可;(2)分别计算;通过比较选择最省钱的方案.此题主要考查了一元一次方程的应用;正确得出等量关系是解题关键.15.【答案】解:(1)25×-(-25)×+25÷(-)=25×+25×+25×(-4)=25×()=25×(-)=-;(2)2-23÷[()2-(-3+0.75)]×5=====-13.【解析】(1)根据有理数的乘除法和乘法分配律可以解答本题;(2)根据有理数的乘除法和加减法可以解答本题.本题考查有理数的混合运算;解答本题的关键是明确有理数混合运算的计算方法.16.【答案】α或180°-α【解析】解:(1)如图1中;∠AOC=∠AOB+∠BOC=120°;如图2中;∠AOC=∠BOC-∠AOB=60°.(2)①如图1-1中;∵∠AOC=∠AOB+∠BOC=140°;∴∠EOC=∠AOC=70°;∵∠FOC=∠BOC=45°;∴∠EOF=∠EOC-∠FOC=25°;如图2-1中;∵∠AOC=∠BOC-∠AOB=40°;∴∠EOC=∠AOC=20°;∵∠FOC=∠BOC=45°;∴∠EOF=∠FOC-∠EOC=25°.②如图1-2中;∵∠AOC=∠AOB-∠BOC=α-90°;∴∠EOC=∠AOC=(α-90°);∵∠FOC=∠BOC=45°;∴∠EOF=∠EOC+∠FOC=α;如图2-2中;∵∠AOC=360°-∠AOB-∠BOC=270°-α∴∠EOC=∠AOC=(270-α);∵∠FOC=∠BOC=45°;∴∠EOF=∠EOC+∠FOC=180°-α;故答案为α或180°-α.(1)分两种情形画出图形求解即可;(2)①分两种情形画出图形分别求解即可;③分两种情形分别画出图形分别求解即可;本题考查角的计算、角平分线的定义等知识;解题的关键是灵活运用所学知识解决问题;学会用分类讨论的思想解决问题;属于中考常考题型.17.【答案】解:(1)去分母;可得:6x+4(x-3)=36-x+7;去括号;可得:6x+4x-12=43-x;移项;合并同类项;可得:11x=55;解得x=5.(2)去分母;可得:6(4x-1.5)-150(0.5x-0.3)=2;去括号;可得:24x-9-75x+45=2;移项;合并同类项;可得:51x=34;解得x=.【解析】解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1;据此求解即可.此题主要考查了解一元一次方程的方法;要熟练掌握;解答此题的关键是要明确解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.18.【答案】解:(1)(m-14)=-2;m-14=-6m=8;∵关于m的方程(m-14)=-2的解也是关于x的方程2(x-)-n=11的解.∴x=8;将x=8;代入方程2(x-)-n=11得:11 / 13解得:n=4;故m=8;n=4;(2)由(1)知:AB=8;=4;①当点P在线段AB上时;如图所示:∵AB=8;=4;∴AP=;BP=;∵点Q为PB的中点;∴PQ=BQ=BP=;∴AQ=AP+PQ=+=;②当点P在线段AB的延长线上时;如图所示:∵AB=8;=4;∴PB=;∵点Q为PB的中点;∴PQ=BQ=;∴AQ=AB+BQ=8+=.故AQ=或.【解析】(1)先求出方程(m-14)=-2的解;然后把m的值代入方程2(x-)-n=11;求出n的值;(2)分两种情况:①点P在线段AB上;②点P在线段AB的延长线上;画出图形;根据线段的和差定义计算即可;此题考查了一元一次方程的解;以及两点间的距离;解题的关键是理解题意;学会用分类讨论的思想思考问题;属于中考常考题型.∴∠COE+∠DOE=180°;又∵∠BOE=∠DOF=90°;∴∠DOE=∠BOF;∴与∠COE互补的所有的角为∠DOE;∠BOF;(2)∠COE与∠AOF相等;理由:∵∠BOE=∠DOF=90°;∴∠AOE=∠COF;∴∠AOE-∠AOC=∠COF-∠AOC;∴∠COE=∠AOF;(3)设∠AOC=x;则∠EOF=5x;∵∠COE=∠AOF;第12页;共13页∴∠COE=∠AOF=(5x-x)=2x;∵∠AOE=90°;∴x+2x=90°;∴x=30°;∴∠AOC=30°.【解析】(1)依据直线AB与CD相交于点O;可得∠COE+∠DOE=180°;依据∠BOE=∠DOF=90°;可得∠DOE=∠BOF;即可得出与∠COE互补的所有的角;(2)依据∠AOE=∠COF;可得∠AOE-∠AOC=∠COF-∠AOC;进而得到∠COE=∠AOF;(3)设∠AOC=x;则∠EOF=5x;依据∠AOE=90°;可得x+2x=90°;进而得出∠AOC的度数.本题考查了对顶角、邻补角;余角和补角计算的应用;常常与等式的性质、等量代换相关联.20.【答案】解:(1)2B-A=2(2xy-3y2+4x2)-(3x2+3y2-5xy)=4xy-6y2+8x2-3x2-3y2+5xy=9xy-9y2+5x2;(2)∵与的同类项;∴=1;y=2;则x=1或3;y=2;当x=1;y=2时;2B-A=18-36+5=-13;当x=3;y=2时;2B-A=54-36+45=63.【解析】本题考查的是整式的加减混合运算;掌握整式的加减混合运算法则是解题的关键.(1)根据整式的加减混合运算法则计算;(2)根据同类项的定义分别求出x、y;代入计算即可.13 / 13。
2023-2024学年天津市南开区七年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如表所示是某用户微信支付情况,﹣200表示的意思是()零钱明细微信红包12月23日13:21﹣200余额667.35微信红包12月23日13:18+200余额867.35微信红包12月17日13:21+0.54余额667.35A.发出200元B.收入200元C.余额200元D.抢到200元2.(3分)如图,从A地到B地的四条路线中,最短路线是()A.1B.2C.3D.43.(3分)据2023年5月21日《天津日报》报道,在天津举办的第七届世界智能大会通过“百网同播、万人同屏、亿人同观”,全球网友得以共享高端思想盛宴,总浏览量达到935000000人次,将数据935000000用科学记数法表示应为()A.0.935×109B.9.35×108C.93.5×107D.935×106 4.(3分)下列计算正确的是()A.4a﹣2a=2B.2ab+3ba=5abC.a+a2=a3D.5x2y﹣3xy2=2xy5.(3分)下列方程中,解是x=2的方程是()A.3x+6=0B.2x+4=0C.D.2x﹣4=0 6.(3分)在数轴上与﹣1的距离等于5个单位长度的点所表示的数是()A.6B.﹣4或6C.﹣6D.4或﹣67.(3分)下列变形正确的是()A.若3x﹣1=2x+1,则3x+2x=﹣1+1B.若,则2﹣3x﹣1=2x C.若3(x+1)﹣5(1﹣x)=2,则3x+3﹣5+5x=2D.若,则8.(3分)将一副三角板的直角顶点重合放置于A处,下列结论一定成立的是()A.∠BAE+∠DAC=180°B.∠CAE+∠DAB=90°C.∠BAE﹣∠DAC=45D.∠DAC=2∠BAD9.(3分)若∠α的余角为54°32',则∠α的补角的大小是()A.35°28'B.45°38'C.144°32'D.154°38' 10.(3分)如图,已知线段a,b.按如下步骤完成尺规作图.①用直尺画射线AM;②在射线AM上用圆规依次截取AD=a,DB=a;③在线段AB上用圆规截取BC=b.则线段AC的长是()A.2a+b B.2a﹣b C.a+b D.b﹣a11.(3分)有理数a在数轴上的位置如图所示,下列各数中,在0到1之间的是()①﹣a﹣1,②|a+1|,③2﹣|a|,④|a|.A.②③④B.①③④C.①②③D.①②③④12.(3分)如图所示,在这个数据运算程序中,若开始输入的x的值为1,结果输出的是﹣4,返回进行第二次运算则输出的是﹣2,…,则第2024次输出的结果是()A.﹣8B.﹣6C.﹣4D.﹣2二、填空题(本大题共6小题,每小题3分,共18分.请将答案真接填在答题纸中对应的横线上)13.(3分)﹣6倒数的绝对值为.14.(3分)某个两位数,十位上的数为a,个位上的数为b,将其十位上的数与个位上的数交换位置,得到一个新的两位数,新两位数用式子表示为.15.(3分)如图是一个长方体包装盒的平面展开图,已知包装盒中相对两个面上的数互为相反数,则a+b﹣c=.16.(3分)若关于x的方程(k﹣2)x|k|﹣1=k+1是一元一次方程,则此方程的解是.17.(3分)如图,长方形纸片ABCD,点E,F分别在边AB,CD上,连接EF.将∠BEF 对折,点B落在直线EF上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF 上的点A′处,得折痕EN.若∠AEN=31°,则∠BEM=(度).18.(3分)线段AB上有P,Q两点,AB=24,AP=12,PQ=10,那么BQ=.三、解答题(本大题共6小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.(6分)计算.(Ⅰ);(Ⅱ)|﹣|÷()﹣(﹣4)2.20.(8分)解下列一元一次方程.(Ⅰ)2x﹣(x+10)=5x+2(x﹣1);(Ⅱ).21.(6分)(Ⅰ)化简代数式:;(Ⅱ)若a为最小的正整数,求(Ⅰ)中代数式的值.22.(8分)直线AB,CD相交于点O,∠AOF=90°,OA平分∠EOC.(Ⅰ)如图1,若∠AOE=50°,求∠COF和∠EOD;(Ⅱ)如图2,若∠EOC=∠COF,①求∠AOE的度数;②直接写出与∠AOE互补的角:.23.(8分)学校七年级举行数学说题比赛,计划购买笔记本作为奖品.根据比赛设奖情况,需购买笔记本共30本.已知A种笔记本的单价是11元,B种笔记本的单价是9元.(Ⅰ)若学校购买A,B两种笔记本作为奖品,设购买A种笔记本x本.①根据信息填表(用含有x的式子表示).型号单价(元/本)数量(本)费用(元)A笔记本11x11xB笔记本9②若购买笔记本的总费用为288元,则购买A,B笔记本各多少本?(Ⅱ)为缩减经费,学校最终购买A,B,C三种笔记本共30本作为奖品,其中C种笔记本的单价为6元,A,B两种笔记本单价不变.若购买A种笔记本m本,B种笔记本n 本.①则购买C种笔记本本,购买三种笔记本的费用为元.(请用含有m,n的式子表示)②若学校购买三种笔记本的费用为188元,则m的值为(本).24.(10分)已知数轴上点O表示的数是0,A,B两点表示的数分别是a,b,且满足|a+6|+|b ﹣15|=0.动点P从点A出发,以每秒1个单位长度的速度向点B运动,设运动时间为t秒,点P运动到点B时停止.(Ⅰ)填空:①a=,b=.②点P表示的数为(用含有t的式子表示);③当t的值为时,点P停止运动.(Ⅱ)当点P在线段AO上运动时,若M为PA的中点,N为PO的中点,试判断在点P 运动的过程中,线段MN的长度是否发生变化.如果发生变化,请说明理由,如果不发生变化,请求出线段MN的值.(Ⅲ)当点P运动到点O时,动点Q开始从点A出发,以每秒个单位长度的速度在A,B两点之间往返运动.动点P仍按照原来的速度运动,直至点P停止运动,点Q也停止运动.当P,Q两点之间的距离为时,直接写出的t值.2023-2024学年天津市南开区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】正数和负数是一组具有相反意义的量,据此即可求得答案.【解答】解:﹣200表示发出200元,故选:A.【点评】本题考查正数和负数,理解具有相反意义的量是解题的关键.2.【分析】根据两点之间线段最短进行判断即可.【解答】解:从A地到B地的四条路线中,3是一条线段,∴路程最短的是3.故选:C.【点评】本题考查了线段的性质,解本题的关键在熟练掌握两点之间线段最短.3.【分析】将一个数表示为a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可得出答案.【解答】解:935000000=9.35×108,故选:B.【点评】本题考查科学记数法表示较大的数,科学记数法是基础且重要知识点,必须熟练掌握.4.【分析】根据合并同类项的运算法则将各项计算后进行判断即可.【解答】解:A.4a﹣2a=(4﹣2)a=2a,则A不符合题意;B.2ab+3ba=(2+3)ab=5ab,则B符合题意;C.a与a2不是同类项,无法合并,则C不符合题意;D.5x2y与3xy2不是同类项,无法合并,则D不符合题意;故选:B.【点评】本题考查合并同类项,其运算法则是基础且重要知识点,必须熟练掌握.5.【分析】把x=2代入每个方程,看看是否相等即可.【解答】解:A.把x=2代入方程3x+6=0得:左边=3×2+6=6+6=12,右边=0,左边≠右边,所以x=2不是方程3x+6=0的解,故本选项不符合题意;B.把x=2代入方程2x+4=0得:左边=2×2+4=8,右边=0,左边≠右边,所以x=2不是方程2x+4=0的解,故本选项不符合题意;C.把x=2代入方程x=﹣4得:左边=×2=1,右边=﹣4,左边≠右边,所以x=2不是方程x=﹣4的解,故本选项不符合题意;D.把x=2代入方程2x﹣4=0得:左边=2×2﹣4=0,右边=0,左边=右边,所以x =2是方程2x﹣4=0的解,故本选项不符合题意;故选:D.【点评】本题考查了一元一次方程的解,能熟记方程的解的定义(使方程左右两边相等的未知数的值,叫方程的解)是解此题的关键.6.【分析】结合数轴进行判断,从表示﹣1的点向左向右分别找数.【解答】解:数轴上与﹣1距离等于5个单位的点有两个,从表示﹣1的点向左数5个单位是﹣6,从表示﹣1的点向右数5个单位是4.故选:D.【点评】本题考查数轴,注意在数轴上,把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成.本题注意观察所有符合条件的点,在学习中要注意培养数形结合的数学思想.7.【分析】根据去分母,去括号,移项的方法依次变形,即可得出正确判断.【解答】解:A.若3x﹣1=2x+1,则3x﹣2x=1+1,故本项错误,不符合题意;B.若,则2﹣(3x﹣1)=2x,故本项错误,不符合题意;C.若3(x+1)﹣5(1﹣x)=2,则3x+3﹣5+5x=2,故本项正确,符合题意;D.若,则,故本项错误,不符合题意.故选:C.【点评】此题考查了解一元一次方程的部分步骤:去分母,去括号,移项的几个易错点.学习时要注意这几个地方.8.【分析】根据题意,利用角的和差判断正误.【解答】解:根据题意可知:∠CAE+∠DAC=90°,∠BAE﹣∠DAB=90°,∠BAE+∠DAC=180°,∠DAC+∠BAD=90°,∴B、C、D选项不成立,只有A选项成立.故选:A.【点评】本题考查了角的计算,掌握角的和差计算是关键.9.【分析】如果两个角的和是90°,那么这两个角互为余角,如果两个角的和是180°,那么这两个角互为补角,据此计算即可.【解答】解:∵∠α的余角是54°32',∴∠α=90°﹣54°32'=89°60'﹣54°32'=35°28',∴∠α的补角是180°﹣35°28'=144°32′.故选:C.【点评】本题考查了余角和补角,熟练掌握互为余角的定义是解题的关键.10.【分析】根据题意画出几何图形,然后利用两点之间的距离得到AC=AD+BD﹣BC.【解答】解:如图,AC=AB﹣BC=AD+BD﹣BC=2a﹣b.故选:B.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了两点间的距离.11.【分析】根据数轴得出﹣2<a<﹣1,再逐个判断即可.【解答】解:①根据数轴可以知道:﹣2<a<﹣1,∴1<﹣a<2,∴0<﹣a﹣1<1,符合题意;②∵﹣2<a<﹣1,∴﹣1<a+1<0,∴0<|a+1|<1,符合题意;③∵﹣2<a<﹣1,∴1<|a|<2,∴﹣2<﹣|a|<﹣1,∴0<2﹣|a|<1,符合题意;④∵1<|a|<2,∴<|a|<1,符合题意.故选:D.【点评】本题主要考查了数轴,绝对值,相反数的定义,其中,用绝对值的定义去判断是解题的关键.12.【分析】根据程序的输出结果总结出结果的变化规律即可.【解答】解:由题知第一次输入1;第一次输出﹣4;第二次输出为﹣2;第三次输出为﹣1;第四次输出为﹣6;第五次输出为﹣3;第六次输出为﹣8;第七次输出为﹣4;.....∴从第一次开始每六次循环一次,2024÷6=337......2,∴第2024次的输出结果为﹣2,故选:D.【点评】本题主要考查数字的变化规律,总结出输出数字的变化规律是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分.请将答案真接填在答题纸中对应的横线上)13.【分析】根据倒数的定义和绝对值的定义求解.【解答】解:﹣6的倒数是﹣,﹣的绝对值是.故答案为:.【点评】此题考查的是倒数与绝对值,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.14.【分析】列代数式的定义是把题目中与数量有关的词语,用含有数字字母和运算符号的式子表示出来,就是列代数式,根据意思代入即可.【解答】解:∵十位数字为a,个位数字为b,将其十位上的数与个位上的数交换位置,得到一个新的两位数,∴新的两位数的十位数字为b,个位数字为a,这个新的两位数用代数式表示为10b+a,故答案为:10b+a.【点评】本题考查列代数式的定义,解题的关键是实现从基本数量关系的语言表述到代数式的一种转换.15.【分析】根据长方体的表面展开图找相对面的方法,同层隔一面,“Z”字两端是对面求出a,b,c的值即可解答.【解答】解:由题意得:a=1,b=﹣2,c=﹣3,∴a+b﹣c=1﹣2+3=2,故答案为:2.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.16.【分析】根据x的次数为1,x的系数不等于0,计算即可.【解答】解:根据题意得:,解得:k=﹣2,原方程为:﹣4x=﹣1,x=,故答案为:,.【点评】本题考查了一元一次方程的定义,解题时注意x的系数不等于0.17.【分析】先由翻折的性质得到∠AEN=∠A′EN,∠BEM=∠B′EM,从而可知∠NEM =×180°=90°,然后,根据余角的性质即可得到结论.【解答】解:由翻折的性质可知:∠AEN=∠A′EN=23°18',∠BEM=∠B′EM.∠NEM=∠A′EN+∠B′EM=(∠AEA′+∠BEB′)=×180°=90°.由翻折的性质可知:∠MB′E=∠B=90°.∴∠MEB′+∠A′EN=∠B′ME+∠MEB′=90°,∴∠B′ME=∠A′EN,∴∠EMB=∠EMB′,∴∠BME=∠AEN=23°18′,∴∠BEM=90°﹣∠BME=90°﹣23°18′=66°42′=66.7°.故答案为:66.7.【点评】本题主要考查的是翻折的性质、余角的定义,掌握翻折的性质是解题的关键.18.【分析】本题没有给出图形,在画图时,应考虑到A、B、P、Q四点之间的位置关系的多种可能,再根据正确画出的图形解题.【解答】解:本题有两种情形:(1)当点Q在线段AP上时,如图,BQ=BP+PQ=AB﹣AP+PQ=24﹣12+10=22;(2)当点Q在线段BP上时,如图,BQ=BP﹣PQ=AB﹣AP+PQ=24﹣12﹣10=2.故答案为:22或2.【点评】本题考查了比较线段长短的知识,注意在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.三、解答题(本大题共6小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.【分析】(1)利用乘法分配律计算即可;(2)先算绝对值,乘方及括号里面的,再算乘除,最后算减法即可.【解答】解:(1)原式=48×(﹣)+48×﹣48×=48×(﹣+﹣)=48×0=0;(2)原式=÷﹣×16=÷﹣=×﹣=﹣=﹣.【点评】本题考查有理数的混合运算,熟练掌握相关运算法则是解题的关键.20.【分析】(I)方程去括号,移项合并,把x系数化为1,即可求出解;(II)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(I)去括号得:2x﹣x﹣10=5x+2x﹣2,移项得:2x﹣x﹣5x﹣2x=﹣2+10,合并得:﹣6x=8,解得:x=﹣;(II)去分母得:10(3y+2)﹣20=5(2y﹣1)﹣4(2y+1),去括号得:30y+20﹣20=10y﹣5﹣8y﹣4,移项合并得:28y=﹣9,解得:y=﹣.【点评】此题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解本题的关键.21.【分析】先去括号,合并同类项,化简后将a,b的值代入计算即可.【解答】解:(Ⅰ)原式=3a2﹣(5a﹣a+3+2a2)=3a2﹣5a+a﹣3﹣2a2=a2﹣a﹣3;(Ⅱ)∵a为最小的正整数,∴a=1,原式=12﹣×1﹣3=1﹣﹣3=﹣.【点评】本题考查整式化简求值,解题的关键是掌握去括号,合并同类项的法则.22.【分析】(Ⅰ)根据角平分线的定义可求得∠AOC的度数,再利用角的和差即可求得∠COF的度数及∠EOD的度数;(Ⅱ)①利用角平分线的定义及角的和差即可求得∠AOE的度数;②根据补角的定义即可求得答案.【解答】解:(Ⅰ)∵∠AOE=50°,OA平分∠EOC,∴∠AOC=∠AOE=50°,∴∠EOD=180°﹣50°﹣50°=80°,∵∠AOF=90°,∴∠COF=90°﹣50°=40°;(Ⅱ)①∵OA平分∠EOC,∠EOC=∠COF,∴∠AOE=∠AOC,∠COF=∠EOC=2∠AOE=2∠AOC,∵∠AOC+∠COF=∠AOF=90°,∴3∠AOE=90°,∴∠AOE=30°;②∵∠AOE+∠BOE=180°,∠AOC+∠AOD=180°,∠AOC+∠BOC=180°,∠AOC=∠AOE,∴∠AOE+∠BOE=∠AOE+∠AOD=∠AOE+∠BOC=180°,∴与∠AOE互补的角为:∠BOE,∠AOD,∠BOC,故答案为:∠BOE,∠AOD,∠BOC.【点评】本题考查邻补角,角平分线的定义,余角和补角及角的运算,(Ⅱ)①中结合已知条件求得∠COF=∠EOC=2∠AOE=2∠AOC是解题的关键.23.【分析】(1)①设买A种笔记本x本,则B种笔记本的数量为(30﹣x)本,购买A种笔记本的费用为11x元,B种笔记本的费用为9(30﹣x)元,就可以得出结论;②根据购买笔记本的总费用为288元建立方程式求出其解即可得出结论;(2)①购买笔记本的总数减去购买A、B两种笔记本的数即可,总费用就是三种笔记本费用之和;②利用①中费用总和代数式等于188,分析讨论解答即可.【解答】解:(1)①由题意,得:型号单价(元/本)数量(本)费用(元)A笔记本11x11xB笔记本9(30﹣x)9(30﹣x)②根据题意得:11x+9(30﹣x)=288,解得:x=9,∴30﹣9=21(本).答:购买A笔记本9本,B笔记本21本.故答案为:(30﹣x);9(30﹣x).(2)①∵购买A种笔记本m本,B种笔记本n本,∴购买C种笔记本为(30﹣m﹣n)本,购买三种笔记本的总费用为:11m+9n+6(30﹣m﹣n)=(5m+3n+180)元;②∵学校购买三种笔记本的费用为188元,∴5m+3n+180=188(m、n取正整数);整理得5m+3n=8,∵m、n取正整数,∴m=1,n=1.故答案为:①(30﹣m﹣n);(5m+3n+180);1.【点评】本题考查了列一元一次方程式和二元一次方程解实际问题的运用,解答本题的关键是明确题意,找出相应的数量关系.24.【分析】(Ⅰ)①根据非负数的性质求解;②根据向右运动用加法列式表示;③根据“时间=路程÷速度”计算;(Ⅱ)根据两点之间的距离公式求解;(Ⅲ)根据两点之间的距离公式求解.【解答】解:(Ⅰ)①由题意得:a=﹣6,b=15,故答案为:﹣6,15;②点P表示的数为:﹣6+t,故答案为:﹣6+t;③t=15﹣(﹣6)=21,故答案为:21;(Ⅱ)线段MN的长度不发生变化,为3;理由:M表示的数为:=﹣6+t,N表示的数为:=﹣3+t,∴MN=|(﹣6+)﹣(﹣3+))|=3;(Ⅲ)当6≤t≤20时,|t﹣(t﹣6)|=,解得:t=15.5或t=20.5(不合题意,舍去),当20<t≤21,|15﹣(t﹣20)﹣(﹣6+t)|=,解得:t=20.9或t=19.9(不合题意,舍去),所以当t=15.5或20.9时,P、Q相距.【点评】本题考查了一元一次方程的应用,找到相等关系是解题的关键。
2023-2024学年天津市部分区七年级(上)期末数学试卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列四个数中,是负整数的是()A.0B.C.D.2.袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年努力,目前我国杂交水稻种植面积约为亿亩.将250000000用科学记数法表示应为()A. B. C. D.3.如图所示的几何体,从上往下看的视图是()A. B. C. D.4.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若把气温为零上记作,则表示气温为()A.零上B.零下C.零上D.零下5.下面的计算正确的是()A. B.C. D.6.如果是关于x的方程的解,那么a的值为()A. B.4 C.6 D.107.若多项式为常数化简后的结果不含字母y,则a的值为()A. B.0 C.2或 D.68.如图,某海域有三个小岛A,B,O,在小岛O处观测到小岛A在它的北偏东的方向上,观测到小岛B在它的南偏西的方向上,则的度数是()A.B.C.D.9.实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A. B. C. D.10.A,B,C三点在同一直线上,线段,,那么A,C两点的距离是()A.1cmB.9cmC.1cm或9cmD.以上答案都不对11.《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.设人数为x,则可列方程为()A. B. C. D.12.观察如图“蜂窝图”,按照这样的规律,第2024个图案中的“”的个数是()A.6074B.6072C.6073D.6068二、填空题:本题共6小题,每小题3分,共18分。
13.已知一个角是,则它的余角是______.14.按括号内的要求,用四舍五入法求近似数:精确到______.15.如图所示,在我国“西气东输”的工程中,从A城市往B城市架设管道,有三条路可供选择,在不考虑其他因素的情况下,架设管道的最短路线是______,依据是______.16.若,则______,______.17.如图,,OC平分,OD平分,则的大小为______度18.已知数轴上A,B两点所对应的数分别是1和3,P为数轴上任意一点,对应的数为,B两点之间的距离为______;式子的最小值为______.三、计算题:本大题共1小题,共8分。
天津市七年级上学期期末数学试题题及答案 一、选择题1.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3 B .13 C .13- D .32.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b3.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( )A .0.1289×1011B .1.289×1010C .1.289×109D .1289×1074.下列每对数中,相等的一对是( )A .(﹣1)3和﹣13B .﹣(﹣1)2和12C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)35.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°6.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120207.在下边图形中,不是如图立体图形的视图是( )A .B .C .D .8.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( ) A .14,4 B .11,1 C .9,-1 D .6,-49.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x )10.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D . 11.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=112.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( )A .45010⨯B .5510⨯C .6510⨯D .510⨯二、填空题13.一个角的余角等于这个角的13,这个角的度数为________. 14.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元.15.单项式22ab -的系数是________. 16.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.17.如果一个数的平方根等于这个数本身,那么这个数是_____.18.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.19.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.20.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________.21.已知一个角的补角是它余角的3倍,则这个角的度数为_____.22.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.23.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.24.3.6=_____________________′三、解答题25.先化简,再求值:已知2(3xy ﹣x 2)﹣3(xy ﹣2x 2)﹣xy ,其中x ,y 满足|x+2|+(y ﹣3)2=0.26.解下列方程或方程组:(1)3(2x ﹣1)=2(1﹣x )﹣1(2)111234x y x y -+⎧+=⎪⎨⎪+=⎩ 27.计算:(1)()()3684-++-+;(2)()()231239-⨯+-÷.28.先化简,再求值:﹣a 2b +(3ab 2﹣a 2b )﹣2(2ab 2﹣a 2b ),其中a =1,b =﹣2.29.用尺规作图按下列语句画图:(1)画射线BC ,连接AC ,AB ;(2)反向延长线段AB 至点D ,使得DA =AB .30.解方程:(1)3–(5–2x )=x +2;(2)421123x x -+-=. 四、压轴题31.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?32.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD .(1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.33.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:∵3>13>13->﹣3,∴在数3,﹣3,13,13-中,最小的数为﹣3.故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.A解析:A【解析】【分析】依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和.【详解】∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选A.【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.3.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.A解析:A【解析】【分析】根据乘方和绝对值的性质对各个选项进行判断即可.【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等.故选A.5.A解析:A【解析】【分析】延长CD交直线a于E.由∠ADC=∠AED+∠DAE,判断出∠ADC>70°即可解决问题.【详解】解:延长CD交直线a于E.∵a∥b,∴∠AED=∠DCF,∵AB∥CD,∴∠DCF=∠ABC=70°,∴∠AED=70°∵∠ADC=∠AED+∠DAE,∴∠ADC>70°,故选A.【点睛】本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.B解析:B【解析】【分析】根据倒数的概念即可解答.【详解】解:根据倒数的概念可得,﹣2020的倒数是1 2020 ,故选:B.【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.7.C解析:C【分析】直接利用简单组合体的三视图进而判断得出答案.【详解】解:A选项为该立体图形的俯视图,不合题意;B选项为该立体图形的主视图,不合题意;C选项不是如图立体图形的视图,符合题意;D选项为该立体图形的左视图,不合题意.故选:C.【点睛】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.8.B解析:B【解析】【分析】把5xy=⎧⎨=⎩x=5代入方程x-2y=3可求得y的值,然后把x、y的值代入2x+y=口即可求得答案.【详解】把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1,把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11,故选B.【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.9.D解析:D【解析】【分析】设应从乙处调x人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x的一元一次方程,此题得解.【详解】设应从乙处调x人到甲处,依题意,得:30+x=2(24﹣x).故选:D.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.10.D【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D .【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.11.A解析:A【解析】解:A ,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A ; B ,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C ,底数为-1,一个负数的偶次方应为正数(-1)2=1;D ,底数为1,1的平方的相反数应为-1;即-12=-1,故选A .12.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将50万用科学记数法表示为5510⨯,故B 选项是正确答案.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时正确确定a 的值以及n 的值是解决本题的关键.二、填空题13.【解析】【分析】设这个角度的度数为x 度,根据题意列出方程即可求解.【详解】设这个角度的度数为x 度,依题意得90-x=解得x=67.5故填【点睛】此题主要考查角度的求解,解题的关键是解析:67.5【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=1 3 x解得x=67.5故填67.5【点睛】此题主要考查角度的求解,解题的关键是熟知补角的性质. 14.100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;解析:100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;15.【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式的系数是,故答案为:.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.解析:12【解析】【分析】直接利用单项式的系数的概念分析得出即可.解:单项式22ab -的系数是12-, 故答案为:12-. 【点睛】此题主要考查了单项式,正确把握相关定义是解题关键. 16.-3【解析】【分析】根据题意将代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将代入方程得到,变形得到,所以=故填-3.【点睛】本题考查利用方程的对代数式求值,将方解析:-3【解析】【分析】根据题意将1x =-代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将1x =-代入方程得到220a b --+=,变形得到22a b -=-,所以241a b -+=2(2)1 3.a b -+=-故填-3.【点睛】本题考查利用方程的对代数式求值,将方程的解代入并对代数式变形整体代换即可. 17.0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵±=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】解析:0【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵±0=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.18.100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】5[32= 5(32+3×2)= 515=(-5)2-(-5)×15=25+75=100. 故答案解析:100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】-5⊗[3⊗(-2)]=- 5⊗(32+3×2)= - 5⊗15=(-5)2-(-5)×15=25+75=100.故答案为100.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.20.42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求解析:42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x的之即可.【详解】解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.21.45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.22.72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】解析:72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键. 23.5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案. 【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴CE=BE-BC=8-3=5cm,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.24.【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】解:=3°36′.故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的解析:336【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】=︒+︒=︒+⨯=3°36′.解:3.630.63(0.660)'故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的计算法则知道度分秒间的进率为60进行分析运算.三、解答题25.2xy+4x2,4.【解析】【分析】把所给的整式去括号后合并同类项得到最简结果,再利用非负数的性质求出x、y的值,代入即可求解.【详解】解:原式=6xy﹣2x2﹣3xy+6x2﹣xy,=2xy+4x2,∵|x+2|+(y﹣3)2=0,∴x+2=0且y﹣3=0,解得:x=﹣2、y=3,则原式=2×(﹣2)×3+4×(﹣2)2,=﹣12+16,=4.【点睛】本题考查了整式的加减﹣化简求值及非负数的性质,熟练运用整式的加减运算法则把所给的整式化为最简是解本题的关键.26.(1)x=12;(2)15xy=-⎧⎨=⎩.【解析】【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)3(2x﹣1)=2(1﹣x)﹣1,6x﹣3=2﹣2x﹣1,x=12,(2)111234x yx y-+⎧+=⎪⎨⎪+=⎩,整理得:3x+2y=72x+2y=8①②⎧⎨⎩,②﹣①得:﹣x=1,x=﹣1,把x=﹣1代入①中得:y=5,∴方程组的解为:15xy=-⎧⎨=⎩.【点睛】此题考查了解二元一次方程组和一元一次方程,熟练掌握运算法则是解本题的关键. 27.(1)-1;(2)-1.【解析】【分析】(1)根据有理数的运算法则进行运算求解即可;(2)根据乘方的运算法则,将每一项进行化简,然后根据有理数的运算法则进行计算求解即可.(1)(-3)+6+(-8)+4;=-11+10=-1;(2)(-1)2×2+(-3)3÷9.=1×2+(-27)÷9=-1.【点睛】本题考查了有理数的运算法则,解决本题的关键正确理解题意,掌握有理数的运算法则. 28.-4.【解析】【分析】首先根据整式的加减运算法则将原式化简,再代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【详解】解:原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b=(﹣1﹣1+2)a2b+(3﹣4)ab2=﹣ab2,当a=1,b=﹣2时,原式=﹣1×(﹣2)2=﹣4.【点睛】考查整式的化简求值,解题关键是先化简,再代入求值.注意运算顺序及符号的处理.29.(1)见详解;(2)见详解.【解析】【分析】(1)根据尺规作图过程画射线BC,连接AC,AB即可;(2)根据尺规作图过程反向延长线段AB至点D,使得DA=AB即可.【详解】解:如图所示:(1)(1)射线BC,连接AC,AB即为所求作的图形;(2)如图所示即为所求作的图形.【点睛】本题考查了作图−−复杂作图、直线、射线、线段,解决本题的关键是根据语句准确画图.30.x=4 ;x=4 7【分析】(1)去括号,再移项合并同类项,最后系数化为1;(2)先去分母,再去括号,然后移项合并同类项,最后系数化为1.【详解】(1)3-(5-2x )= x +2.3-5+2x= x +2,2x-x=2+5-3,x=4;(2)421123x x -+-= 3(4-x )-2(2x+1)=612-3x-4x-2=6-3x-4x=6+2-12-7x=-4x=47. 考点:解一元一次方程. 四、压轴题31.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.32.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.【解析】【分析】(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;(2)∠AOE ﹣∠BOF 的值是定值由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;(3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+, 解得4t =.故答案为4.【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.33.(1)13-;(2)P 出发23秒或43秒;(3)见解析. 【解析】【分析】(1)由题意可知运动t 秒时P 点表示的数为-3+2t ,Q 点表示的数为1-t ,若P 、Q 相遇,则P 、Q 两点表示的数相等,由此可得关于t 的方程,解方程即可求得答案;(2)由点P 比点Q 迟1秒钟出发,则点Q 运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C 表示的数为a ,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t 秒时P 点表示的数为-5+t ,Q 点表示的数为10-2t ;若P ,Q 两点相遇,则有-3+2t=1-t ,解得:t=43, ∴413233-+⨯=-, ∴点P 和点Q 相遇时的位置所对应的数为13-;(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-, 解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度,则2t+1×(t+1) =4+1, 解得:4t 3=, 综合上述,当P 出发23秒或43秒时,P 和点Q 相距1个单位长度; (3)①若点P 和点Q 在相遇前相距1个单位长度, 此时点P 表示的数为-3+2×23=-53,Q 点表示的数为1-(1+23)=-23, 设此时数轴上存在-个点C ,点C 表示的数为a ,由题意得 AC+PC+QC=|a+3|+|a+53|+|a+23|,要使|a+3|+|a+53|+|a+23|最小,当点C与P重合时,即a=-53时,点C到点A、点P和点Q这三点的距离和最小;②若点P和点Q在相遇后相距1个单位长度,此时点P表示的数为-3+2×43=-13,Q点表示的数为1-(1+43)=-43,此时满足条件的点C即为Q点,所表示的数为43 ,综上所述,点C所表示的数分别为-53和-43.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,数轴上两点间的距离,正确理解数轴上两点间的距离,从中找到等量关系列出方程是解题的关键.本题也考查了分类讨论思想.。
天津市初一上学期数学期末试卷带答案一、选择题1.下列判断正确的是()A.3a2bc与bca2不是同类项B.225m n的系数是2C.单项式﹣x3yz的次数是5D.3x2﹣y+5xy5是二次三项式2.已知线段AB的长为4,点C为AB的中点,则线段AC的长为()A.1 B.2 C.3 D.43.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了12 个棋子,按这样的规律摆下去,摆成第 20 个“H”字需要棋子()A.97B.102C.107D.1124.下列四个数中最小的数是()A.﹣1 B.0 C.2 D.﹣(﹣1)5.下列各数中,绝对值最大的是()A.2 B.﹣1 C.0 D.﹣36.已知一个多项式是三次二项式,则这个多项式可以是()A.221x x-+B.321x+C.22x x-D.3221x x-+7.下列式子中,是一元一次方程的是()A.3x+1=4x B.x+2>1 C.x2-9=0 D.2x-3y=08.如果+5米表示一个物体向东运动5米,那么-3米表示( ).A.向西走3米B.向北走3米C.向东走3米D.向南走3米9.当x=3,y=2时,代数式23x y-的值是()A.43B.2 C.0 D.310.下列各数中,比73-小的数是()A.3-B.2-C.0D.1-11.a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是()A.a+b<0 B.a+c<0 C.a-b>0 D.b-c<012.把1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .2125 二、填空题 13.把53°30′用度表示为_____. 14.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.15.已知关于x 的一元一次方程320202020x x n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 16.=38A ∠︒,则A ∠的补角的度数为______.17. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm.18.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.19.52.42°=_____°___′___″.20.请先阅读,再计算:因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________. 21.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.22.材料:一般地,n 个相同因数a 相乘n a a a a ⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.23.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.24.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______.三、解答题25.如图,AB 和CD 相交于点O ,∠A=∠B ,∠C=75°求∠D 的度数.26.已知直线AB 与CD 相交于点O ,且∠AOD =90°,现将一个直角三角尺的直角顶点放在点O 处,把该直角三角尺OEF 绕着点O 旋转,作射线OH 平分∠AOE .(1)如图1所示,当∠DOE =20°时,∠FOH 的度数是 .(2)若将直角三角尺OEF 绕点O 旋转至图2的位置,试判断∠FOH 和∠BOE 之间的数量关系,并说明理由.(3)若再作射线OG 平分∠BOF ,试求∠GOH 的度数.27.快车以200km/h 的速度由甲地开往乙地再返回甲地,慢车以75km/h 的速度同时从乙地出发开往甲地,已知快车回到甲地时,慢车距离甲地还有225km ,则(1)甲乙两地相距多少千米?(2)从出发开始,经过多长时间两车相遇?(3)几小时后两车相距100千米?28.如图,O 为直线AB 上一点,130BOC ∠=︒,OE 平分BOC ∠,DO OE ⊥.(1)求BOD ∠的度数.(2)试判断OD 是否平分AOC ∠,并说明理由.29.解方程:223146x x +--=. 30.保护环境人人有责,垃圾分类从我做起.某市环保部门为了解垃圾分类的实施情况,抽样调查了部分居民小区一段时间内的生活垃圾分类,对数据进行整理后绘制了如下两幅统计图(其中A 表示可回收垃圾,B 表示厨余垃圾,C 表示有害垃圾,D 表示其它垃圾)根据图表解答下列问题(1)这段时间内产生的厨余垃圾有多少吨?(2)在扇形统计图中,A 部分所占的百分比是多少?C 部分所对应的圆心角度数是多少? (3)其它垃圾的数量是有害垃圾数量的多少倍?条形统计图中表现出的直观情况与此相符吗?为什么?四、压轴题31.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P,Q两点的位置;(2)若将图②中的点P向左移动x cm,点Q向右移动3x cm,则移动后点P、点Q表示的数分别为多少?并求此时线段PQ的长.(用含x的代数式表示);(3)若P、Q两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t(秒),当t为多少时PQ=2cm?32.如图,数轴上点A表示的数为4-,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t0)>.()1A,B两点间的距离等于______,线段AB的中点表示的数为______;()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1PQ AB2=?()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.33.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2=,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据同类项的定义,单项式和多项式的定义解答.【详解】A.3d2bc与bca2所含有的字母以及相同字母的指数相同,是同类项,故本选项错误.B.225m n的系数是25,故本选项错误.C.单项式﹣x3yz的次数是5,故本选项正确.D.3x2﹣y+5xy5是六次三项式,故本选项错误.故选C.【点睛】本题考查了同类项,多项式以及单项式的概念及性质.需要学生对概念的记忆,属于基础题.2.B解析:B【解析】【分析】根据线段中点的性质,可得AC的长.【详解】解:由线段中点的性质,得AC=12AB=2.故选B.【点睛】本题考查了两点间的距离,利用了线段中点的性质.3.B解析:B【解析】【分析】观察图形,正确数出个数,再进一步得出规律即可.【详解】摆成第一个“H”字需要2×3+1=7个棋子,第二个“H”字需要棋子2×5+2=12个;第三个“H”字需要2×7+3=17个棋子;第n个图中,有2×(2n+1)+n=5n+2(个).∴摆成第 20 个“H”字需要棋子的个数=5×20+2=102个.故B.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n.4.A解析:A【解析】【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.【详解】解:﹣(﹣1)=1,∴﹣1<0<﹣(﹣1)<2,故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.5.D解析:D【解析】试题分析:∵|2|=2,|﹣1|=1,|0|=0,|﹣3|=3,∴|﹣3|最大,故选D.考点:D.6.B解析:B【解析】A. 2x2x1-+是二次三项式,故此选项错误;B. 3+是三次二项式,故此选项正确;2x1C. 2x2x-是二次二项式,故此选项错误;D. 32-+是三次三项式,故此选项错误;x2x1故选B.7.A解析:A【解析】A. 3x+1=4x是一元一次方程,故本选项正确;B. x+2>1是一元一次不等式,故本选项错误;C. x2−9=0是一元二次方程,故本选项错误;D. 2x−3y=0是二元一次方程,故本选项错误。
2022-2023学年天津市河东区天铁一中七年级(上)期末数学试卷一、选择题:(每题3分,共36分)1.(3分)如果水位下降2021m记作﹣2021m,那么水位上升2020m记作( )A.﹣1m B.4041m C.﹣4041m D.2020m2.(3分)下列说法中正确的是( )A.整数一定是正数B.有这样的有理数,它既不是正数,也不是负数C.零是最小的整数D.有这样的有理数,它既是正数,也是负数3.(3分)若|a|=4,|b|=1,a与b异号,则a﹣b的值为( )A.3B.5C.±3D.±54.(3分)下列式子中a,﹣xy2,,0,是单项式的有( )个.A.2B.3C.4D.55.(3分)联合国报告显示,新冠肺炎疫情可能导致全球饥饿人数大幅增加.去年全世界有8.28亿人处于饥饿状态,828000000用科学记数法表示为( )A.8.28×107B.8.28×108C.8.28×109D.8.28×1010 6.(3分)若3a2b n﹣1与是同类项,则m n的值为( )A.3B.2C.1D.07.(3分)解方程=x﹣时,去分母正确的是( )A.3(x+1)=x﹣(5x﹣1)B.3(x+1)=12x﹣5x﹣1C.3(x+1)=12x﹣(5x﹣1)D.3x+1=12x﹣5x+18.(3分)下列图形中,能用∠1,∠ACB,∠C三种方法表示同一个角的是( )A.B.C.D.9.(3分)四个各不相等的整数a、b、c、d,满足abcd=9,则a+b+c+d的值为( )A.0B.4C.10D.无法确定10.(3分)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“迎”字一面的相对面上的字是( )A.百B.党C.年D.喜11.(3分)如图所示,将一张长方形纸片斜折过去,使顶点A落在A′处,BC为折痕,然后再把BE折过去,使之与BA'重合,折痕为BD,若∠ABC=56°,则求∠E'BD的度数( )A.29°B.32°C.34°D.56°12.(3分)根据图中数字的规律,则x+y的值是( )A.729B.550C.593D.738二、填空题:(每题3分,共18分)13.(3分)单项式πr3的系数是 .14.(3分)方程3x﹣2(x+3)=6的解是 .15.(3分)在△ABC中,已知∠A=60°,∠ABC的平分线与∠ACB的平分线相交于点O,则∠BOC的度数为 .16.(3分)如图,AB=16cm,C是AB上一点,且AC=10cm,D是AC的中点,E是BC 的中点,则线段DE的长度为 cm.17.(3分)已知互余的两个角的差为20°,则这两个角的度数分别为 .18.(3分)在﹣1,2,﹣3,0,5这五个数中,任取两个相除,其中商最小的是 .三、解答题:(共7道大题,共46分)19.(6分)(1)24×;(2)﹣14+(﹣2)3÷4×[5﹣(﹣3)2].20.(6分)先化简,再求值:3(2x2﹣xy)﹣4(﹣6+xy+x2),其中x=1,y=﹣1.21.(6分)解方程:(1)(2)22.(6分)如图所示,已知∠AOC=2∠BOC,∠AOC的余角比∠BOC小30°(1)求∠AOB的度数;(2)过点O作射线OD,使得∠AOC=4∠AOD,请你求出∠COD的度数.23.(6分)如图,长为32米,宽为20米的长方形地面上,修筑宽度均为x米的两条互相垂直的小路(图中阴影部分),余下的部分作为耕地,如果将两条小路铺上地砖,选用地砖的价格是每平米40元.(1)求买地砖至少需要多少元?(用含x的式子表示)(2)计算当x=2时,地砖的费用.24.(8分)在某校举办的足球比赛中规定胜一场得3分,平一场得1分,负一场得0分,某班足球队参加了12场比赛,共得22分,已知这个队只输了2场,那么此队胜几场平几场?25.(8分)已知数轴上点A表示的数为6,B是数轴上在原点左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是 ;当点P运动到AB的中点时,它所表示的数是 .(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发,求:①当点P运动多少秒时,点P追上点Q?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?参考答案与试题解析一、选择题1-5:DBDBB 6-10:CCCAB 11-12:CC二、填空题13.14.x=1215.120°16.817.55°和35°18.﹣5三、解答题19.解:(1)原式=24×(﹣)+24×﹣24×=﹣20+9﹣2=﹣13;(2)原式=﹣1﹣8÷4×(5﹣9)=﹣1﹣2×(﹣4)=﹣1+8=7.20.解:原式=6x2﹣3xy+24﹣4xy﹣4x2=2x2﹣7xy+24,当x=1,y=﹣1时,原式=2×12﹣7×1×(﹣1)+24=2+7+24=33.21.解:(1)移项,得:x﹣x=1+3,合并同类项,得:﹣x=4,系数化为1,得:x=﹣8;(2)去分母,得:3(3y﹣1)﹣12=2(5y﹣7),去括号,得:9y﹣3﹣12=10y﹣14,移项,得:9y﹣10y=﹣14+3+12,合并同类项,得:﹣y=1,系数化为1,得:y=﹣1.22.解:(1)设∠BOC=x,则∠AOC=2x,依题意列方程90°﹣2x=x﹣30°,解得:x=40°,即∠AOB=40°.(2)由(1)得,∠AOC=80°,①当射线OD在∠AOC内部时,∠AOD=20°,则∠COD=∠AOC﹣∠AOD=60°;②当射线OD在∠AOC外部时,∠AOD=20°则∠COD=∠AOC+∠AOD=100°.23.解:(1)小路的面积为:32x+20x﹣x2,即52x﹣x2(平方米),买地砖的金额为:40(52x﹣x2)=2080x﹣40x2(元),答:买地砖至少需要(2080x﹣40x2)元;(2)当x=2时,2080x﹣40x2=2080×2﹣40×22=4160﹣160=4000(元),答:当x=2时,地砖的费用为4000元.24.解:设这支足球队胜x场,平y场,依题意,得解得.答:这支足球队胜了6场,平了4场.25.解:(1)∵数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10,∴得B点表示的数为﹣4,当点P运动到AB的中点时,它所表示的数为(6﹣4)÷2=1.故答案为:﹣4、1;(2)①根据题意得:6t﹣2t=10,解得t=2.5.答:当P运动2.5秒时,点P追上点Q;②根据题意得:当点P与点Q相遇前,距离8个单位长度:2t+(10﹣6t)=8,解得t=0.5;当点P与点Q相遇后,距离8个单位长度:(6t﹣10)﹣2t=8,解得t=4.5.答:当点P运动0.5秒或4.5秒时,点P与点Q间的距离为8个单位长度.。
2019-2020学年上学期期末模拟试卷七年级数学(考试时间:120分钟试卷满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合要求的.请将答案选项填在下表中)1.(3分)如果零上2℃ 记作+2℃,那么零下3℃ 记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃2.(3分)下列各组数中,互为相反数的是()A.﹣1与(﹣1)2B.(﹣1)2与1 C.2与D.2与|﹣2|3.(3分)天津到上海的铁路里程约1326000米,用科学记数法表示1326000的结果是()A.0.1326×107B.1.326×106C.13.26×105D.1.326×1074.(3分)由5个小立方体搭成如图所示的几何体,从左面看到的平面图形是()A.B.C.D.5.(3分)下列说法正确的是()A.一点确定一条直线B.两条射线组成的图形叫角C.两点之间线段最短D.若AB=BC,则B为AC的中点6.(3分)如果|a|=﹣a,下列成立的是()A.a>0 B.a<0 C.a>0或a=0 D.a<0或a=07.(3分)a、b两数在数轴上位置如图所示,将a、b、﹣a、﹣b用“<”连接,其中正确的是()A.b<﹣a<﹣b<a B.﹣b<b<﹣a<a C.﹣a<b<﹣b<a D.﹣a<﹣b<b<a8.(3分)下列结论中,正确的是()A.单项式的系数是3,次数是2B.单项式m的次数是1,没有系数C.单项式﹣xy2z的系数是﹣1,次数是4D.多项式2x2+xy+3是三次三项式9.(3分)某种商品每件的进价为210元,按标价的8折销售时,利润率为15%,设这种商品的标价为每件x元,根据题意列方程正确的是()A.210﹣0.8x=210×0.8 B.0.8x=210×0.15C.0.15x=210×0.8 D.0.8x﹣210=210×0.1510.(3分)关于x的方程2(x﹣a)=5的解是3,则a的值为()A.2 B.C.﹣2 D.﹣11.(3分)父亲与小强下棋(设没有平局),父亲胜一盘记2分,小强胜一盘记3分,下了10盘后,两人得分相等,则小强胜的盘数是()A.2 B.3 C.4 D.512.(3分)平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n个点最多可确定28条直线,则n的值是()A.6 B.7 C.8 D.9二、填空题(本大题共6小题,每小题3分,共18分.请将答案直接填在题中横线上)13.(3分)数轴上点A表示的数是﹣4,点B表示的数是3,那么AB= .14.(3分)8.7963精确到0.01的近似数是.15.(3分)已知方程(a﹣5)x|a|﹣4+2=0是关于x的一元一次方程,则a的值是.16.(3分)如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为度.17.(3分)如图,已知点D在点O的西北方向,点E在点O的北偏东50°方向,那么∠DOE的度数为度.18.(3分)已知线段AB,在AB的延长线上取一点C,使AC=3BC,在AB的反向延长线上取一点D,使DA=AB,那么线段AC是线段DB的倍.三、解答题(本大题共7小题,共计46分。
解答应写出文字说明、演算步骤或证明过程)19.(6分)计算:(1)4×(﹣3)2﹣13+(﹣)﹣|﹣43|;(2)﹣9÷3+(﹣)×12+32.20.(6分)(1)化简:2﹣3(﹣2a+a2)+2(﹣3a2+a+1)(2)先化简,再求值:(2x2+3xy﹣2x﹣1)﹣(﹣x2+xy),其中x=﹣3,y=2.21.(5分)如图,点C、D在线段AB上,且AC=CD=DB,点E是线段AC的中点,若ED=12cm,求AB的长度.22.(6分)解方程:(1)5(2﹣x)=﹣(2x﹣7);(2)=1﹣.23.(8分)用方程解答下列问题(1)一个角的余角比它的补角的还少15°,求这个角的度数.(2)几个人共同搬运一批货物,如果每人搬运8箱货物,则剩下7箱货物未搬运;如果每人搬运12箱货物,则缺13箱货物,求参与搬运货物的人数.24.(7分)如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,求∠AOC的度数.25.(8分)某区运动会要印刷秩序册,有两个印刷厂前来联系业务,他们的报价相同,甲厂的优惠条件是:按每份定价6元的八折收费,另收500元制版费;乙厂的优惠条件是:每份定价6元的价格不变,而500元的制版费四折优惠.问:(1)这个区印制多少份秩序册时两个印刷厂费用是相同的?(2)当印制200份、400份秩序册时,选哪个印刷厂所付费用较少?为什么?2019-2020学年天津市武清区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合要求的.请将答案选项填在下表中)1.(3分)如果零上2℃记作+2℃,那么零下3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃【解答】解:∵零上2℃记作+2℃,∴零下3℃记作﹣3℃.故选:D.2.(3分)下列各组数中,互为相反数的是()A.﹣1与(﹣1)2B.(﹣1)2与1 C.2与D.2与|﹣2|【解答】解:A、(﹣1)2=1,1与﹣1 互为相反数,正确;B、(﹣1)2=1,故错误;C、2与互为倒数,故错误;D、2=|﹣2|,故错误;故选:A.3.(3分)天津到上海的铁路里程约1326000米,用科学记数法表示1326000的结果是()A.0.1326×107B.1.326×106C.13.26×105D.1.326×107【解答】解:用科学记数法表示1326000的结果是1.326×106,故选:B.4.(3分)由5个小立方体搭成如图所示的几何体,从左面看到的平面图形是()A .B .C .D .【解答】解:从左边看第一层两个小正方形,第二层右边一个小正方形, 故选:D .5.(3分)下列说法正确的是( )A .一点确定一条直线B .两条射线组成的图形叫角C .两点之间线段最短D .若AB=BC ,则B 为AC 的中点 【解答】解:A 、两点确定一条直线,故本选项错误;B 、应为有公共端点的两条射线组成的图形叫做角,故本选项错误;C 、两点之间线段最短,故本选项正确;D 、若AB=BC ,则点B 为AC 的中点错误,因为A 、B 、C 三点不一定共线,故本选项错误. 故选C .6.(3分)如果|a|=﹣a ,下列成立的是( ) A .a >0B .a <0C .a >0或a=0D .a <0或a=0【解答】解:如果|a|=﹣a ,即一个数的绝对值等于它的相反数,则a ≤0. 故选D .7.(3分)a 、b 两数在数轴上位置如图所示,将a 、b 、﹣a 、﹣b 用“<”连接,其中正确的是( )A .b <﹣a <﹣b <aB .﹣b <b <﹣a <aC .﹣a <b <﹣b <aD .﹣a <﹣b <b <a 【解答】解:根据图示,可得:﹣1<b <0,a >1, ∴0<﹣b <1,﹣a <﹣1, ∴﹣a <b <﹣b <﹣a . 故选:C .8.(3分)下列结论中,正确的是()A.单项式的系数是3,次数是2B.单项式m的次数是1,没有系数C.单项式﹣xy2z的系数是﹣1,次数是4D.多项式2x2+xy+3是三次三项式【解答】解:A、单项式的系数是,次数是3,故此选项错误;B、单项式m的次数是1,系数是1,故此选项错误;C、单项式﹣xy2z的系数是﹣1,次数是4,故此选项正确;D、多项式2x2+xy+3是三次二项式,故此选项错误.故选:C.9.(3分)某种商品每件的进价为210元,按标价的8折销售时,利润率为15%,设这种商品的标价为每件x元,根据题意列方程正确的是()A.210﹣0.8x=210×0.8 B.0.8x=210×0.15C.0.15x=210×0.8 D.0.8x﹣210=210×0.15【解答】解:设这种商品的标价为每件x元,根据题意得:0.8x﹣210=210×0.15.故选D.10.(3分)关于x的方程2(x﹣a)=5的解是3,则a的值为()A.2 B.C.﹣2 D.﹣【解答】解:根据题意将x=3代入得:2(3﹣a)=5,解得:a=.故选:B.11.(3分)父亲与小强下棋(设没有平局),父亲胜一盘记2分,小强胜一盘记3分,下了10盘后,两人得分相等,则小强胜的盘数是()A.2 B.3 C.4 D.5【解答】解:设小强胜了x盘,则父亲胜了(10﹣x)盘,根据题意得:3x=2(10﹣x),解得:x=4.答:小强胜了4盘.故选C.12.(3分)平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n个点最多可确定28条直线,则n的值是()A.6 B.7 C.8 D.9【解答】解:两点确定一条直线;不同三点最多可确定3条直线;不同4点最多可确定(1+2+3)条直线,不同5点最多可确定(1+2+3+4)条直线,因为1+2+3+4+5+6+7=28,所以平面上不同的8个点最多可确定28条直线.故选C.二、填空题(本大题共6小题,每小题3分,共18分.请将答案直接填在题中横线上)13.(3分)数轴上点A表示的数是﹣4,点B表示的数是3,那么AB= 7 .【解答】解:∵﹣4<0,3>0,∴AB=3+4=7.14.(3分)8.7963精确到0.01的近似数是8.80 .【解答】解:8.7963≈8.80(精确到0.01).故答案为8.80.15.(3分)已知方程(a﹣5)x|a|﹣4+2=0是关于x的一元一次方程,则a的值是﹣5 .【解答】解:由题意可知:解得:a=﹣5故答案为:﹣516.(3分)如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为140 度.【解答】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°,故答案为:140.17.(3分)如图,已知点D在点O的西北方向,点E在点O的北偏东50°方向,那么∠DOE 的度数为95 度.【解答】解:如图,由题意,得∠1=45°,∠2=50°.由角的和差,得∠DOE=∠1+∠2=45°+50°=95°,故答案为:95°.18.(3分)已知线段AB,在AB的延长线上取一点C,使AC=3BC,在AB的反向延长线上取一点D,使DA=AB,那么线段AC是线段DB的倍.【解答】解:设AB=x,则BC=x,DA=AB,∴AC=x+x=x,DB=x+x=x,∴==.故答案为:.三、解答题(本大题共7小题,共计46分。