初中数学三角形全等教案、讲义
- 格式:doc
- 大小:237.50 KB
- 文档页数:11
《全等三角形》讲义一、全等三角形的定义两个能够完全重合的三角形叫做全等三角形。
“完全重合”意味着它们的形状和大小完全相同,对应边相等,对应角也相等。
例如,我们将一个三角形沿着某条直线对折,如果对折后的两部分能够完全重合,那么这就是一个全等三角形。
二、全等三角形的性质1、全等三角形的对应边相等这是全等三角形最基本的性质之一。
如果两个三角形全等,那么它们对应的三条边的长度是相等的。
比如,三角形 ABC 全等于三角形DEF,那么 AB = DE,BC = EF,AC = DF。
2、全等三角形的对应角相等同样,如果两个三角形全等,它们对应的三个角的度数也是相等的。
还是以上面的例子来说,∠A =∠D,∠B =∠E,∠C =∠F。
3、全等三角形的周长相等因为全等三角形的对应边相等,所以它们的周长也必然相等。
4、全等三角形的面积相等由于全等三角形的形状和大小完全相同,所以它们所覆盖的面积也是相等的。
三、全等三角形的判定1、 SSS(边边边)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
比如说,有三角形 ABC 和三角形 DEF,AB = DE,BC = EF,AC = DF,那么就可以判定三角形 ABC 全等于三角形 DEF。
2、 SAS(边角边)如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。
假设在三角形 ABC 和三角形 DEF 中,AB = DE,∠A =∠D,AC = DF,那么可以得出这两个三角形全等。
3、 ASA(角边角)当两个三角形的两个角及其夹边分别对应相等时,这两个三角形全等。
例如,在三角形 ABC 和三角形 DEF 中,∠B =∠E,BC = EF,∠C =∠F,那么三角形 ABC 全等于三角形 DEF。
4、 AAS(角角边)如果两个三角形的两个角和其中一个角的对边分别对应相等,那么这两个三角形全等。
比如,在三角形 ABC 和三角形 DEF 中,∠A =∠D,∠B =∠E,BC = EF,那么这两个三角形全等。
初中数学教案:三角形全等的判定教案一、教学目标:1. 让学生理解三角形全等的概念,掌握三角形全等的判定条件。
2. 培养学生运用全等三角形的性质解决实际问题的能力。
3. 培养学生的观察能力、动手能力和逻辑思维能力。
二、教学内容:1. 三角形全等的定义:如果两个三角形的所有对应边和对应角都相等,这两个三角形叫做全等三角形。
2. 三角形全等的判定条件:SSS(边-边-边)、SAS(边-角-边)、ASA (角-边-角)、AAS(角-角-边)。
三、教学重点与难点:1. 教学重点:三角形全等的判定条件及其应用。
2. 教学难点:三角形全等判定条件的理解和运用。
四、教学方法:1. 采用直观演示法,让学生通过观察和动手操作,加深对三角形全等概念的理解。
2. 采用案例分析法,让学生通过分析实际案例,掌握三角形全等的判定条件。
3. 采用小组合作学习法,培养学生的团队合作精神和沟通能力。
五、教学步骤:1. 导入新课:通过复习已学的几何知识,引导学生进入三角形全等的新课学习。
2. 讲解三角形全等的定义和判定条件:详细讲解三角形全等的概念,以及SSS、SAS、ASA、AAS四种判定条件。
3. 案例分析:给出几个实际案例,让学生运用判定条件判断三角形是否全等。
4. 动手操作:让学生自行取材,进行三角形全等的实际操作,加深对全等三角形性质的理解。
5. 课堂练习:布置一些有关三角形全等的练习题,巩固所学知识。
6. 总结与反思:对本节课的内容进行总结,引导学生思考如何运用三角形全等的知识解决实际问题。
7. 作业布置:布置一些有关三角形全等的家庭作业,巩固所学知识。
8. 课后反思:对课堂教学进行反思,总结教学过程中的优点和不足,为下一步教学做好准备。
六、教学评价:1. 通过课堂提问、练习和作业,评价学生对三角形全等概念和判定条件的掌握程度。
2. 观察学生在动手操作和小组合作学习中的表现,评价其观察能力、动手能力和团队协作能力。
3. 结合学生的课堂表现和作业完成情况,对学生的学习态度和思维能力进行评价。
数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。
《三角形全等的判定》教学设计课型新授课教学内容分析边边边定理是“浙教版八年级数学(上)”第一章第五节第一课时的内容。
本节课的主要内容是让学生通过动手操作探索并掌握判定两个三角形全等的基本事实——三边对应相等的两个三角形全等(SSS),通过生活实例了解三角形的稳定性及其应用,要求学生会运用“SSS”判定两个三角形全等,能够掌握角平分线的尺规作图.边边边定理是平面几何中的重要定理之一,有利于证明几何题中角相等和线段相等的问题,在教材中有着非常重要的地位和作用.学习者分析八年级的学生具备了一定的独立思考、实践操作、合作探究、归纳概括的能力,能够进行简单的推理论证.教师可以通过动手操作,分类讨论引导学生探究判定三角形全等的条件.同时学生具有一定的生活经验,教师可以借助生活实例来帮助学生理解三角形的稳定性.教师在教学过程中要注意指导学生完成边边边定理几何语言格式的书写,且教师的教学要面向全体学生,发挥学生的主体作用,让学生积极参与进来.教学目标 1.探索并掌握判定两个三角形全等的基本事实:三边对应相等的两个三角形全等(SSS).2.了解三角形的稳定性及其应用.3.会运用“SSS”判定两个三角形全等.4.掌握角平分线的尺规作图.教学重点判定两个三角形全等的基本事实:三边对应相等的两个三角形全等.教学难点探究三角形全等的条件学习活动设计教师活动学生活动环节一:情境导入,复习回顾教师活动1:学生活动1:教师讲授:钱塘江大桥由著名桥梁工程师茅以升设计,建成于1937年,是我国第一座铁路、公路两用双层桥.桥上有许多全等的三角形结构.学生认真听讲教师提问:全等三角形的性质是什么?教师带领回顾:全等三角形的对应边相等,对应角相等.学生回顾旧知,举手回答问题学生跟随教师回顾旧知活动意图说明:复习导入有利于衔接新旧知识,提高学习效率。
通过图片和生活实例进行切入有利于活跃课堂教学氛围,激发学生学习动机环节二:探究新知,动手操作教师活动2:△ABC和△A'B'C'全等,说出它们的对应边以及对应角答案:对应边:BC和B'C',CA和C'A',AB和A'B'对应角:∠A和∠A',∠B和∠B',∠C和∠C'思考:从六个条件中至少选出几个条件可以使得两个三角形全等?教师讲授:一个条件:有一个角相等或一条边相等动手操作:画出一个角为50°的三角形和一条边为3cm的三角形,与同桌互相比较所画的三角形,它们能重合吗?教师讲授:有一个角相等或一条边相等的两个三角形不一学生活动2:学生回顾旧知,举手回答问题学生认真听讲学生认真思考,相互交流学生动手操作,合作交流学生认真听讲定全等教师讲授:两个条件:有两个角对应相等、有两条边对应相等、或一条边,一个角对应相等动手操作:画出一个角为60°和一个角为45°的三角形,与同桌互相比较所画的三角形,它们能重合吗?教师讲授:有两个角对应相等的两个三角形不一定全等动手操作:画出一条边为5cm和一条边为7cm的三角形,与同桌互相比较所画的三角形,它们能重合吗?教师讲授:有两条边对应相等的两个三角形不一定全等动手操作:画出一条边为5cm和一个角为40°的三角形,与同桌互相比较所画的三角形,它们能重合吗?教师讲授:有一条边对应相等和一个角对应相等的两个三角形不一定全等教师讲授:学生动手操作,合作交流学生认真听讲学生动手操作,合作交流学生认真听讲学生动手操作,合作交流学生认真听讲动手操作:画出三个角都为60°的三角形,与同桌互相比较所画的三角形,它们能重合吗?教师讲授:有三个角对应相等的两个三角形不一定全等动手操作:按照下面的方法,用刻度尺和圆规在一张透明纸上画△DEF,使其三边长分别为1.3cm,1.9cm和2.5cm.画法:如图1.画线段EF=1.3cm.2.分别以点E,F为圆心,2.5cm,1.9cm长为半径画两条圆弧,交于点D(或D').3.连结DE,DF (或D'E,D'F).△DEF(或△D'EF)即所求作的三角形.把你画的三角形与其他同学所画的三角形进行比较,它们能互相重合吗?教师讲授:一般地,我们有如下基本事实:三边对应相等的两个三角形全等(简写成“边边边”或学生认真听讲学生动手操作,合作交流学生认真听讲学生动手操作,合作交流学生认真听讲“SSS ”).几何语言:在△ABC和△A'B'C'中∵{AB=A'B' BC=B'C' CA=C'A’∴△ABC≌△A'B'C'(SSS)教师讲授:让我们动手做下面的实验:如图,把两根木条的一端用螺栓固定在一起,木条可以自由转动.在转动过程中,连结另两个端点所成的三角形的形状、大小随之改变.如果把另两个端点用螺栓固定在第三根木条上,那么构成的三角形的形状、大小就完全确定.从上述实验可以看出,当三角形的三条边长确定时,三角形的形状、大小完全被确定,这个性质叫做三角形的稳定性,这是三角形特有的性质.三角形的稳定性在生产和日常生活中有广泛的应用.例如,房屋的人字架、大桥的钢梁、起重机的支架等,都采用三角形结构,以起到稳固的作用.学生认真听讲,了解边边边定理的几何语言学生动手操作,合作交流学生认真听讲,了解三角形的稳定性活动意图说明:通过动手操作可以让学生的认知更直观,使学生亲自经历获取知识的过程,能提高对数学结论的认可程度。
初中数学三角形全等教案、讲义1.4全等三角形教学目标1.知道什么是全等形、全等三角形及全等三角形的对应元素;2.知道全等三角形的性质,能用符号正确地表示两个三角形全等; 3.能熟练找出两个全等三角形的对应角、对应边.教学重点全等三角形的性质.教学难点找全等三角形的对应边、对应角.教学过程一、三角形全等的概念如果我们把两张纸重叠起来,同时得到两个三角形,你能发现这两个三角形有什么特征吗?我们发现:这两个三角形的形状、大小完全一样,我们把这两个图形放在一起,他们能够完全重合,像这样的图形,我们就称为是全等形.概括全等形的准确定义:能够完全重合的两个图形叫做全等形.能够完全重合的三角形叫做全等三角形.将△ABC 沿直线BC 平移得△DEF ;将△ABC 沿BC 翻折180°得到△DBC ;将△ABC 旋转180°得△AED .C 11CABA 1甲DCABFE 乙DCAB 丙DCABE议一议:各图中的两个三角形全等吗?不难看出△ABC 和△DEF ,△ABC 和△DBC ,△ABC 和△AED 都是全等三角形.我们把两个三角形全等记作:△ABC ≌△DEF ,△ABC ≌△DBC ,△ABC ≌△AED . (注意强调书写时对应顶点字母写在对应的位置上)启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.二、三角形全等的性质甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?引导学生从全等三角形可以完全重合出发找等量关系)全等三角形的性质:全等三角形的对应边相等、对应角相等.例1:如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,•说出这两个三角形中相等的边和角.D CABO例2:如图,已知△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,•指出其他的对应边和对应角.ABCDE(第4题)AODBC(第1题)DCABE根据位置元素来找:有相等元素,它们就是对应元素,•然后再依据已知的对应元素找出其余的对应元素.常用方法有:(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边. (2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角. 例3:已知如图△ABC ≌△ADE ,试找出对应边、对应角.(由学生讨论完成)C ABEO1.如图,已知△ABC ≌△DCB ,且AB=DC ,则∠DBC 等于( )A .∠AB .∠DCBC .∠ABCD .∠ACB2.已知△ABC ≌△DEF ,AB=2,AC=4,△DEF 的周长为偶数,则EF 的长为( ) A .3 B .4 C .5D .6AB FE DCABECD3.已知△ABC ≌△DEF ,∠A=50°,∠B=65°,DE=18㎝,则∠F=___°,AB=____㎝. 4.如图,△ABC 绕点A 旋转180°得到△AED ,则DE 与BC 的位置关系是___________,数量关系是___________.5.把△ABC 绕点A 逆时针旋转,边AB 旋转到AD ,得到△ADE ,用符号“≌”表示图中与△ABC 全等的三角形,并写出它们的对应边和对应角.6.如图,把△ABC 沿BC 方向平移,得到△DEF . 求证:AC ∥DF 。
全等三角形讲义一、知识点总结全等三角形定义:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。
补充说明:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等 全等三角形判定定理:(1)边边边定理:三边对应相等的两个三角形全等。
(简称SSS ) (2)边角边定理:两边和它们的夹角对应相等的两个三角形全等。
(简称SAS) (3)角边角定理:两角和它们的夹边对应相等的两个三角形全等。
(简称ASA ) (4)角角边定理:两个角和其中一个角的对边对应相等的两个三角形全等。
(简称AAS ) (5)斜边、直角边定理:斜边和一条直角边对应相等的两个直角三角形全等。
(简称HL ) 角平分线的性质:在角平分线上的点到角的两边的距离相等.∵OP 平分∠AOB ,PM ⊥OA 于M ,PN ⊥OB 于N , ∴PM=PN角平分线的判定:到角的两边距离相等的点在角的平分线上.∵PM ⊥OA 于M ,PN ⊥OB 于N ,PM=PN ∴OP 平分∠AOB三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离等。
二、典型例题举例A BC PMNO A BC PMNO例1、如图,△ABN ≌△ACM,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.例2、如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .例3、已知:点A 、F 、E 、C 在同一条直线上, AF =CE ,BE ∥DF ,BE =DF . 求证:△ABE ≌△CDF .例4、如图:D 在AB 上,E 在AC 上,AB =AC ,∠B =∠C .求证AD =AE .例5、如图:∠1=∠2,∠3=∠4 求证:AC=AD例6、如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由D CB ACADB123 4例7、如图1,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.例8、如图,OC 是∠AOB 的平分线,P 是OC 上的一点,PD ⊥OA 交OA 于D ,PE ⊥OB 交OB 于E ,F 是OC 上的另一点,连接DF ,EF ,求证DF =EF例9、如图,△ABC 中,AD 是它的角平分线,P 是AD 上的一点,PE ∥AB 交BC 于E ,PF ∥AC 交BC 于F ,求证:D 到PE 的距离与D 到PF 的距离相等例10、如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是282cm ,AB =20cm ,AC =8cm ,求DE 的长.AGF C BDE图1AEB DCFAB CDE D C EFBA 例10、已知:BE ⊥CD ,BE =DE ,BC =DA ,求证:① △BEC ≌△DAE ;②DF⊥BC .例11、如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.三、专题版块专题一: 全等三角形的判定和性质的应用例1、如图,在△ABC 中,AB=AC , BAC=40°,分别以AB 、AC 为边作两个等腰三角形ABD 和ACE ,使∠BAD=∠CAE=90°.(1)求∠DBC 的度数.(2)求证:BD=CE.例2、如图,A B ∥CD,AF ∥DE,BE=CF,求证:AB=CD.例3、如图在△ABC 中,BE 、CF 分别是AC 、AB 边上的高,在BE 延长线上截取BM =AC ,在CF 延长线上截到CN =AB ,求证:AM =AN 。
三角形全等的判定教案三角形全等的判定教学设计角形全等的判定教案三角形全等的判定教学设计篇一目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。
重点:sss公理、灵活地应用学过的各种判定方法判定三角形全等。
难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中较适当的方法判定两个三角形全等。
用具:直尺,微机方法:自学辅导过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你较少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。
于是要引导学生,抓住问题的本质:三角形的三个元素――三条边。
2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。
然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。
(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。
应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)(3)、此公理与前面学过的公理区别与联系(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。
在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
全等三角形教案(5篇)全等三角形教案(5篇)全等三角形教案范文第1篇教学目标:1、学问目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能娴熟找出两个全等三角形的对应角、对应边。
2、力量目标:(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析力量;(2)通过找出全等三角形的对应元素,培育同学的识图力量。
3、情感目标:(1)通过感受全等三角形的对应美激发同学喜爱科学勇于探究的精神;(2)通过自主学习的进展体验猎取数学学问的感受,培育同学勇于创新,多方位端详问题的制造技巧。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发觉这两个三角形有什么奇妙的关系吗?一般同学都能发觉这两个三角形是完全重合的。
(2)同学自己动手画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学协作,把两个三角形放在一起重合。
(3)猎取概念让同学用自己的语言叙述:全等三角形、对应顶点、对应角以及有关数学符号。
2、全等三角形性质的发觉:(1)电脑动画显示:问题:对应边、对应角有何关系?由同学观看动画发觉,两个三角形的三组对应边相等、三组对应角相等。
3、找对应边、对应角以及全等三角形性质的应用(1)投影显示题目:D、AD∥BC,且AD=BC分析:由于两个三角形完全重合,故面积、周长相等。
至于D,由于AD 和BC是对应边,因此AD=BC。
C符合题意。
说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是简单找错对应角。
分析:对应边和对应角只能从两个三角形中找,所以需将从简单的图形中分别出来说明:依据位置元素来找:有相等元素,其即为对应元素:然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
1.4全等三角形教学目标1.知道什么是全等形、全等三角形及全等三角形的对应元素;2.知道全等三角形的性质,能用符号正确地表示两个三角形全等; 3.能熟练找出两个全等三角形的对应角、对应边.教学重点全等三角形的性质.教学难点找全等三角形的对应边、对应角.教学过程一、三角形全等的概念如果我们把两张纸重叠起来,同时得到两个三角形,你能发现这两个三角形有什么特征吗?我们发现:这两个三角形的形状、大小完全一样,我们把这两个图形放在一起,他们能够完全重合,像这样的图形,我们就称为是全等形.概括全等形的准确定义:能够完全重合的两个图形叫做全等形.能够完全重合的三角形叫做全等三角形.将△ABC 沿直线BC 平移得△DEF ;将△ABC 沿BC 翻折180°得到△DBC ;将△ABC 旋转180°得△AED .甲DCABFE 乙DCAB 丙DCABEC 11CABA 1议一议:各图中的两个三角形全等吗?不难看出△ABC 和△DEF ,△ABC 和△DBC ,△ABC 和△AED 都是全等三角形.我们把两个三角形全等记作:△ABC ≌△DEF ,△ABC ≌△DBC ,△ABC ≌△AED . (注意强调书写时对应顶点字母写在对应的位置上)启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.二、三角形全等的性质甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?引导学生从全等三角形可以完全重合出发找等量关系)全等三角形的性质:全等三角形的对应边相等、对应角相等.例1:如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,•说出这两个三角形中相等的边和角.D CABO例2:如图,已知△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,•指出其他的对应边和对应角.DCABE根据位置元素来找:有相等元素,它们就是对应元素,•然后再依据已知的对应元素找出其余的对应元素.常用方法有:(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边. (2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.AB C D E (第4题) ACF EDA O DB C(第1题)A B F ED C ABECD例3:已知如图△ABC ≌△ADE ,试找出对应边、对应角.(由学生讨论完成)DC ABEO1.如图,已知△ABC ≌△DCB ,且AB=DC ,则∠DBC 等于( ) A .∠A B .∠DCB C .∠ABC D .∠ACB2.已知△ABC ≌△DEF ,AB=2,AC=4,△DEF 的周长为偶数,则EF 的长为( )A .3B .4C .5D .63.已知△ABC ≌△DEF ,∠A=50°,∠B=65°,DE=18㎝,则∠F=___°,AB=____㎝. 4.如图,△ABC 绕点A 旋转180°得到△AED ,则DE 与BC 的位置关系是___________,数量关系是___________.5.把△ABC 绕点A 逆时针旋转,边AB 旋转到AD ,得到△ADE ,用符号“≌”表示图中与△ABC 全等的三角形,并写出它们的对应边和对应角.6.如图,把△ABC 沿BC 方向平移,得到△DEF .求证:AC ∥DF 。
7.如图,△ACF ≌△ADE ,AD =9,AE =4,求DF 的长.1.5 全等三角形的判定(SSS)1、只给一个条件(一组对应边相等或一组对应角相等),•你可以画出多少三角形呢?画出的三角形一定都全等吗?2、给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.①三角形一内角为30°,一条边为3cm.②三角形两内角分别为30°和50°.③三角形两条边分别为4cm、6cm.学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流.结果展示:1.只给定一条边时:只给定一个角时:2.给出的两个条件可能是:一边一内角、两内角、两边.①3cm3cm3cm30︒30︒30︒②50︒50︒30︒30︒③6cm4cm4cm6cm可以看出来当只给出一个条件或两个条件时,我们不能保证画出来的三角形都是全等三角形,那么如果给出来三个条件时,又会有怎样的结果呢?给出三个条件时有下面四种情况:三条边、三内角、两边一内角、两内角一边,我们先来探索第一种情况.请按照下面的方法,用刻度尺和圆规画ΔDEF ,使其三条边分别为 1.3cm ,1.9cm ,2.5cm.画法:1、画线段EF=1.3cm ;2、分别以E 、F 为圆心,1.9cm ,2.5cm 长为半径画两条弧,交于点D ;3、连结DE ,DF ;ΔDEF 就是所求的三角形.按照上述方法你画出了几个三角形,它们有什么关系呢?通过上面的讨论我们有如下判定三角形全等的边边边定理:三边对应相等的两个三角形全等(简写为“边边边”或“SSS ”)用上面的规律可以判断两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SSS ”是证明三角形全等的一个依据.例1:如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .例2:如图,已知AC=FE 、BC=DE ,点A 、D 、B 、F 在一条直线上,AD=FB .要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?如何利用直尺和圆规作一个已知角的角平分线呢?FDCBEA按照下面的步骤,我们可以作出来一条直线,求证这条直线即是角平分线.1、以点A 为圆心,适当长为半径作圆弧,与角的两边分别交于E 、F 两点;2、分别以E 、F 为圆心,大于21EF 长的半径; 作圆弧,两条圆弧交于BAC ∠内一点D ; 3、过点A 、D 作射线AD.射线AD 就是所求作的BAC ∠的平分线.根据我们作出的图形,找到已知条件,并证明AD 是BAC ∠的平分线.把两根木条的一端固定在一起,木条会自由转动。
在转动过程中,连结另两个端点所组成的三角形的形状、大小会随之改变.如果把另外两个端点用一根木条固定住,那么构成的三角形的形状,大小就完全确定.这就告诉我们一个生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的,•而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的稳定性.所以日常生活中常利用三角形做支架.就是利用三角形的稳定性.1.5 全等三角形的判定(SAS)1、怎样的两个三角形是全等三角形?2.全等三角形的性质?3、上一节我们学习了什么方法来判定三角形全等?除了这个方法,还有没有其它的方法呢?如右图2,AC 、BD 相交于O ,AO 、BO 、CO 、DO 的长度如图所标,那么△ABO 和△CDO 是否能完全重合呢?如果把△OAB 绕着O 点顺时针方向旋转,因为OA =OC ,所以可以使OA 与OC 重合;又因为∠AOB =∠COD , OB =OD ,所以点B 与点D 重合.这样△ABO 与△CDO 就完全重合.根据这个图形我们来探讨一下判定三角形全等的另一个方法.不难看出,这ΔAOB 和ΔCOD 有三对元素是相等的,从而我们得到:ΔAOB ≌ΔCOD由此,我们得到启发:判定两个三角形全等,只需要这两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.这就是边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS ”)按下面的步骤画图:①画∠DAE =45°,②在AD 、AE 上分别取 B 、C ,使 AB =3.1cm ,AC =2.8cm .③连结BC ,得△ABC . ④按上述画法再画一个△A 'B 'C '. 观察△A 'B 'C '与△ABC 是否能够完全重合?任意给出三角形的两条边和一个角,我们画出的三角形是否都全等呢?已知△ABC 中A ∠=︒45,AC=3cm ,BC=2cm ,那么你可以画出怎样的三角形呢?试着画一画.AO=CO AOB=COD BO=DO ⎧⎪∠∠⎨⎪⎩BACl利用边角边定理判定三角形全等时,对应角一定要是对应边的夹角.例1:已知:如图,AB =AC ,F 、E 分别是AB 、AC 的中点.求证:△ABE ≌△ACF .例2:已知:点A 、F 、E 、C 在同一条直线上,AF =CE ,BE ∥DF ,BE =DF .求证:△ABE ≌△CDF .例3:直线l ⊥线段AB 于点D ,且AD=BD ,点C 是直线l 上任意一点,证明AC=BC像直线l 这样,垂直于一条线段,并且平分这条线段的直线叫做这条线段的垂直平分线,简称中垂线。
线段垂直平分线上的点到线段两端的距离相等.(1)如图3,已知AD ∥BC ,AD =CB ,要用边角边公理证明△ABC ≌△CDA ,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?).1.5 全等三角形的判定(ASA 或AAS)有两个角和它们的夹边对应相等的两个三角形一定全等吗?请用量角器和刻度尺画ΔABC ,使BC=3cm ,∠B=︒40,∠C=︒60.根据要求我们只能画出一个三角形,由此我们得到角边角定理: 有两个角和这两个角的夹边对应相等的两个三角形全等(简写为“角边角”或“ASA ”)在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ASA ”推出“两角和其中一角的对边对应相等的两三角形全等”呢?例1:如图,在△ABC 和△DEF 中,∠A=∠D ,∠B=∠E ,BC=EF ,△ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?D ABF E由此我们得到角角边定理: 两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”).例2:如图,D 在AB 上,E 在AC 上,AB=AC ,∠B=∠C .求证:AD=AE .(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注!)D C AB E。