数学试卷11
- 格式:doc
- 大小:2.86 MB
- 文档页数:3
2021学年苏教版六年级(上)期末数学试卷(11)一、认真读题,谨慎填写.每空1分1. 43×()()=()()−13=65×()()=()()+13=1.2. 李叔叔骑自行车54分钟行了25千米,他每分钟行________千米,行1千米需要________分钟。
3. 6小时15分=________时8.55立方米=________立方米________毫升1.75立方米=________立方分米4.5升=________毫升=________立方厘米。
4. 某班男生和女生人数的比是3:2,女生有16人,这个班共有学生________人。
5. 把下面各数按队小到大的顺序排列起来。
75%,54,0.775,57. ________<________<________<________.6. 实际投资比计划投资节约15%,实际投资是计划投资的________%.7. 学生合唱队中,男生、女生的人数比是3:7,男生人数是女生人数的________,女生人数是全班人数的________%.8. 一个长方体的长是20厘米、宽是10厘米,高是8厘米,从这块木头上切下一个最大的正方体后,剩下部分的体积是________立方厘米。
9. 工程队3天完成了一项工程的18,完成全项工程需________天。
10. 元旦期间同学们布置教室,一根彩带长20米,第一次用去它的12,第二次又用去12米,还剩________米。
11. 李明在做一道除法时,将除数34看成了43,得到的商为12,那么这题正确的商是________.113. 行一段路,甲要40分,乙要35分,甲、乙、的速度比是________.14. 水结成冰后,体积会增加10%,一块体积是121立方分米的冰化成水后,体积________立方分米。
二、慎重审题,细心计算.(共32分)直接写出得数:解方程:23x+8=1226.8x−1.4x=100.73×6−2x=1.5x÷25%=1651÷89.化简下列各比,并求出比值:102681:0.253 7:8 210.4小时:20分。
王朝霞三年级数学上册答案试卷11
三年级数学上册答案试卷11主要包含了几何变化和基本数量
思想的内容。
首先,学生要学习如何使用几何变化进行建模和求解问题,这必须从多边形的基本类型和几何变换的基本概念开始,例如旋转、对称和翻转,然后进行一系列的训练和练习,以让学生能够准确地应用几何变换原理,尤其要注意图形变换后的位置和形状的变化情况,以及实践的实践问题求解。
其次,学生要学习如何使用基本数量思想进行建模和求解问题,这也必须从数量关系、比例、比例变换和方程式等基本概念开始,然后要进行大量的训练和练习,以培养学生的正确推理能力,让学生能够深入学习和操作简单的例题,以及熟悉和掌握基本数量思想的重要性。
最后,学生要学习如何使用该课程所讲授的知识去解决实际问题,要强调的是,学生要学会将课堂学习的知识和现实生活中的实际问题结合起来,进行更加具体的思考,以期更好地求解实际问题。
总之,三年级数学上册答案试卷11包含了几何变化和基本数
量思想的内容,学生需要通过不断的训练和练习,掌握几何变换和基本数量思维的基本概念,并在实际的问题求解中的更加具体的思考,以提高数学能力。
考研数学二(一元函数积分学)-试卷11(总分56,考试时间90分钟)1. 选择题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1. 曲线y=x(x-1)(2-x)与x轴所围成的图形面积可表示为( ).A. B.C. D.2. 填空题1. =_______2. =_______3. =_______4. =_______5. =_______6. =______3. 解答题解答题解答应写出文字说明、证明过程或演算步骤。
设y=f(x)为区间[0,1]上的非负连续函数.1. 证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;2. 设f(x)在(0,1)内可导,且f"(x)>,证明(1)中的c是唯一的.3. 求圆x2+y2=2y内位于抛物线y=x2上方部分的面积.4. 求双纽线(x2+y2)2=a2(x2-y2)所围成的面积.5. 抛物线y2=2x把圆x2+y2=8分成两个部分,求左右两个部分的面积之比.6. 设C1,C2是任意两条过原点的曲线,曲线C介于C1,C2之间,如果过C上任意一点P 引平行于x轴和y轴的直线,得两块阴影所示区域A,B有相等的面积,设C的方程是y=x2,C1的方程是y=,求曲线C2的方程.7. 设曲线y=a+x-x3,其中a<0.当x>0时,该曲线在x轴下方与y轴、x轴所围成图形的面积和在x轴上方与x轴所围成图形的面积相等,求a.8. 曲线y=(x-1)(x-2)和x轴围成平面图形,求此平面图形绕y轴一周所成的旋转体的体积.9. 设平面图形D由x2+y2≤2x与y≥x围成,求图形D绕直线x=2旋转一周所成的旋转体的体积.10. 求曲线y=3-|x2-1|与z轴围成的封闭图形绕y=3旋转所得的旋转体的体积.11. 求由曲线y=4-x2与z轴围成的部分绕直线x=3旋转一周所成的几何体的体积.12. 曲线y=x2(x≥0)上某点处作切线,使该曲线、切线与x轴所围成的面积为,求切点坐标、切线方程,并求此图形绕x轴旋转一周所成立体的体积.13. 求摆线(a>0)的第一拱绕x轴旋转一周所得旋转体的体积.14. 设曲线(0<a<4)与x轴、y轴所围成的图形绕z轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.15. 设一抛物线y=ax2+bx+c过点(0,0)与(1,2),且a<0,确定a,b,c,使得抛物线与x 轴所围图形的面积最小.设直线y=kx与曲线y=所围平面图形为D1,它们与直线x=1围成平面图形为D216. 求k,使得D1与D2分别绕x轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;17. 求此时的D1+D2.18. 求摆线(0≤t≤2π)的长度.19. 设曲线,过原点作切线,求此曲线、切线及x轴所围成的平面图形绕x轴旋转一周所成的旋转体的表面积.20. 一半径为R的球沉入水中,球面顶部正好与水面相切,球的密度为1,求将球从水中取出所做的功.。
2021学年北师大版四年级(上)期末数学试卷(11)一、选择题(选择正确答案的字母填在括号内)1. 下面的四个数中最小的是()A.665040B.6550480C.665530D.65795000E.657950002. 当钟面的时间显示为4:00时,此时的分针和时针形成的夹角是一个()A.锐角B.直角C.钝角D.平角3. 下面四个图形中,存在互相平行线段的图形有()个。
A.1B.2C.3D.44. 在7和3的中间加入2个0,要使1个0也不读出来,在3的后面至少再添()个0.A.1B.3C.4D.65. 爸爸开车带着亮亮去公园,进入停车场时看到收费牌上写着:第一小时付款6元,以后每小时付款9元。
游玩结束后,爸爸付了42元停车费,收费员收了()小时的停车费。
A.4B.5C.6D.76. 下面的图片是明明在本学期的计算验收中,解答8×(125×5)这道题时的过程。
如果照他这样计算,他的结果与正确结果相比()A.不变B.扩大5倍C.扩大8倍D.扩大40倍7. 如图,下列描述错误的是()A.少年宫在学校的西偏北60∘B.超市在学校的东偏北45∘C.游泳馆在学校的东面D.图书馆在学校的西偏南40∘E.游泳馆在学校的东面8. 在算式□□6÷□=7...18中,除数可能是()A.6B.14C.26D.349. 货架上有大、中、小三种不同规格的饮料,每层货架上的总重量相等。
如果每重100克,那么每瓶重()克。
A.500B.400C.300D.20010. 某校组织四、五、六年级同学去看比赛,A区看台还有150个座位,()年级同学可以全部安排在A区。
四、五、六年级各班人数统计表A.四B.五C.六D.都不可以二、填空题七百万二千零三十写作________,比这个数大十万的数是________.在12∘C、−9∘C、0∘C、−1∘C四个温度中,温度最低的是________(∘C).请写出一个四舍五入到万位约等于10万的整数________;请写出一个四舍五入到万位约等于100万且最大的整数________.如果5□2÷56的商是两位数,□里最小填________;如果56×□□的积是一个四位数,这个□□最小是________.将一张圆形纸片对折三次,这时得到的角是________度。
2025届高三上学期月考(三)(11月)数学试卷一、单选题(本大题共8小题)1.若复数满足,则( )z 1i34i z +=-z =A .B .C .D .252.已知数列的前项和,则等于( ){}n a n 22n S n n =-345a a a ++A .12B .15C .18D .213.抛物线的焦点坐标为( )24y x =A .B .(1,0)(1,0)-C .D .1(0,)16-1(0,164.如图是函数的部分图象,则函数的解析式可为( )()sin y x ωϕ=+A .B .πsin 23y x ⎛⎫=- ⎪⎝⎭πsin 3y x ⎛⎫=+ ⎪⎝⎭C .D .πsin 26y x ⎛⎫=+ ⎪⎝⎭5πcos 26y x ⎛⎫=- ⎪⎝⎭5.1903年,火箭专家、航天之父康斯坦丁・齐奥尔科夫斯基就提出单级火箭在不考虑空气阻力和地球引力的理想情况下的最大速度满足公式:,其中v 1201lnm m v v m +=分别为火箭结构质量和推进剂的质量,是发动机的喷气速度.已知某单级火12,m m 0v 箭结构质量是推进剂质量的2倍,火箭的最大速度为,则火箭发动机的喷气8km /s 速度为( )(参考数据:,)ln20.7≈ln3 1.1,ln4 1.4≈≈A .B .C .D .10km /s 20km /s80km /s 340km /s6.若,,则的值为( )83cos 5αβ=63sin 5αβ=()cos αβ+A .B .C .D .7.如图,一个质点从原点O 出发,每隔一秒随机向左或向右移动一个单位长度,向左的概率为,向右的概率为,共移动4次,则该质点共两次到达1的位置的概2313率为( )A .B .C .D .42782729498.设为数列的前n 项和,若,且存在,,n S {}n a 121++=+n n a a n *N k ∈1210k k S S +==则的取值集合为( )1a A .B .{}20,21-{}20,20-C .D .{}29,11-{}20,19-二、多选题(本大题共3小题)9.如图,在正方体中,点,分别为,的中点,则下列说1111ABCD A B C D -E F 1AD DB 法正确的是( )A .直线与为异面直线B .直线与所成的角为EF 11D B 1D E1DC 60C .D .平面1D F AD⊥//EF 11CDD C 10.已知是圆上的动点,直线与P 22:4O x y +=1:cos sin 4l x y θθ+=交于点,则( )2:sin cos 1l x y θθ-=Q A .B .直线与圆相切12l l ⊥1l OC .直线与圆截得弦长为D .的值为2l O OQ11.已知三次函数有三个不同的零点,,,()32f x ax bx cx d=+++1x 2x ()3123x x x x <<函数也有三个零点,,,则( )()()1g x f x =-1t 2t()3123t t t t <<A .23b ac>B .若,,成等差数列,则1x 2x 3x 23b x a=-C .1313x x t t +<+D .222222123123x x x t t t ++=++三、填空题(本大题共3小题)12.已知随机变量服从二项分布,若,,则 .X (),B n p ()3E X =()2D X =n =13.已知平面向量,满足,,且在上的投影向量为,则a b 2a = 1= b b a 14a - 为 .a b+ 14.如图,已知四面体的体积为32,,分别为,的中点,,ABCD E F AB BC G 分别在,上,且,是靠近点的四等分点,则多面体的体积H CD AD G H D EFGHBD 为 .四、解答题(本大题共5小题)15.设的内角,,的对边分别为,,,已知.ABC A B C a b c sin cos 0a B A =(1)求;A(2)若,且的面积为的值.sin sin 2sin B C A +=ABC a 16.设,.()()221ln 2f x x ax x x=++a ∈R (1)若,求在处的切线方程;0a =()f x 1x =(2)若,试讨论的单调性.a ∈R ()f x 17.已知四棱锥,底面为菱形,为上的点,过的P ABCD -ABCD ,PD PB H =PC AH 平面分别交于点,且∥平面.,PB PD ,M N BD AMHN(1)证明:;MN PC ⊥(2)当为的中点,与平面所成的角为,求平面H PC ,PA PC PA ==ABCD 60︒与平面所成的锐二面角的余弦值.PAM AMN18.已知双曲线的左、右焦点为,,过的直线与双曲线交于,22:13y x Γ-=1F 2F 2F l ΓA 两点.B (1)若轴,求线段的长;AB x ⊥AB (2)若直线与双曲线的左、右两支相交,且直线交轴于点,直线交轴l 1AF y M 1BF y 于点.N (i )若,求直线的方程;11F AB F MNS S = l (ii )若,恒在以为直径的圆内部,求直线的斜率的取值范围.1F 2F MN l 19.已知是各项均为正整数的无穷递增数列,对于,设集合{}n a *k ∈N ,设为集合中的元素个数,当时,规定.{}*k i B i a k=∈<N ∣kb kB k B =∅0k b =(1)若,求,,的值;2n a n =1b 2b 17b (2)若,设的前项和为,求;2n n a =n b n n S 12n S +(3)若数列是等差数列,求数列的通项公式.{}n b {}n a参考答案1.【答案】C【详解】由可得,1i 34i z +=-()()()()1i 34i 1i 17i 34i 34i 34i 25z +++-+===--+故选:C 2.【答案】B 【详解】因为数列的前项和,{}n a n 22n S n n =-所以.34552=a a a S S ++-()2252522215=-⨯--⨯=故选:B.3.【答案】D【详解】解:由,得,24y x =214x y =所以抛物线的焦点在轴的正半轴上,且,y 124p =所以,,18p =1216p =所以焦点坐标为,1(0,16故选:D 4.【答案】A【详解】观察图象可得函数的最小正周期为,()sin y x ωϕ=+2ππ2π36T ⎛⎫=-= ⎪⎝⎭所以,故或,排除B ;2ππω=2ω=2ω=-观察图象可得当时,函数取最小值,π2π5π63212x +==当时,可得,,2ω=5π3π22π+122k ϕ⨯+=Z k ∈所以,,排除C ;2π2π+3k ϕ=Z k ∈当时,可得,,2ω=-5ππ22π122k ϕ-⨯+=-Z k ∈所以,,π2π+3k ϕ=Z k ∈取可得,,0k =π3ϕ=故函数的解析式可能为,A 正确;πsin 23y x ⎛⎫=- ⎪⎝⎭,D 错误5ππππcos 2cos 2sin 26233y x x x ⎛⎫⎛⎫⎛⎫=-=+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故选:A.5.【答案】B 【详解】由题意,,122m m =122200122lnln 82m m m m v v v m m ++===得,故,03ln82v =0888203ln3ln 2 1.10.7ln 2v ==≈=--故选:B 6.【答案】C 【详解】因为,,83cos 5αβ=63sin 5αβ=所以,,25(3cos 4)62αβ=2(3sin)2536αβ=即所以,2259cos co 6s 1042cos ααββ++=,229sin sin +10sin2536ααββ-=两式相加得,9)104αβ+++=所以cos()αβ+=故选:C .7.【答案】A【详解】共移动4次,该质点共两次到达1的位置的方式有和0101→→→,且两种方式第次移动向左向右均可以,0121→→→4所以该质点共两次到达1的位置的概率为.211124333332713⨯⨯+⨯⨯=故选:A.8.【答案】A 【详解】因为,121++=+n n a a n 所以,()()()()()()212342123+41=++++++37+41=212n n n n n S a a a a a a n nn --⋅⋅⋅=++⋅⋅⋅-=+假设,解得或(舍去),()2=21=210n S n n +=10n 21=2n -由存在,,所以有或,*N k ∈1210kk S S +==19k =20k =由可得,,两式相减得:,121++=+n n a a n +1223n n a a n ++=+22n n a a +-=当时,有,即,20k =2021210S S ==210a =根据可知:数列奇数项是等差数列,公差为2,22n n a a +-=所以,解得,()211+11120a a =-⨯=120a =-当时,有,即,19k =1920210S S ==200a =根据可知:数列偶数项也是等差数列,公差为2,22n n a a +-=所以,解得,()202+10120a a =-⨯=218a =-由已知得,所以.123a a +=121a =故选:A.9.【答案】ABD【详解】如图所示,连接,,,AC 1CD EF 由于,分别为,的中点,即为的中点,E F 1AD DB F AC 所以,面,面,1//EF CD EF ⊄11CDD C 1CD ⊆11CDD C 所以平面,即D 正确;//EF 11CDD C 所以与共面,而,所以直线与为异面直线,即A 正确;EF 1CD 1B ∉1CD EF 11D B 连接,易得,1BC 11//D E BC 所以即为直线与所成的角或其补角,1DC B ∠1D E 1DC 由于为等边三角形,即,所以B 正确;1BDC 160DC B ∠=假设,由于,,所以面,1D F AD ⊥1AD DD ⊥1DF DD D = AD ⊥1D DF 而面显然不成立,故C 错误;AD ⊥1D DF 故选:ABD.10.【答案】ACD 【详解】选项A :因,故,A 正确;()cos sin sin cos 0θθθθ+-=12l l ⊥选项B :圆的圆心的坐标为,半径为,O O ()0,02r =圆心到的距离为,故直线与圆相离,故B 错误;O 1l 14d r==>1l O 选项C :圆心到的距离为,O 1l21d ==故弦长为,故C正确;l ==选项D :由得,cos sin 4sin cos 1x y x y θθθθ+=⎧⎨-=⎩4cos sin 4sin cos x y θθθθ=+⎧⎨=-⎩故,()4cos sin ,4sin cos Q θθθθ+-故,故D 正确OQ ==故选:ACD 11.【答案】ABD 【详解】因为,()32f x ax bx cx d=+++则,,对称中心为,()232f x ax bx c '=++0a ≠,33bb f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭对于A ,因为有三个不同零点,所以必有两个极值点,()f x ()f x 即有两个不同的实根,()2320f x ax bx c '=++=所以,即,故A 正确;2Δ4120b ac =->23b ac >对于B ,由成等差数列,及三次函数的中心对称性,123,,x x x 可知为的对称中心,所以,故B 正确;()()22,x f x ()f x 23b x a =-对于C ,函数,当时,,()()1g x f x =-()0g x =()1f x =则与的交点的横坐标即为,,,1y =()y f x =1t 2t 3t 当时,画出与的图象,0a >()f x 1y =由图可知,,,则,11x t <33x t <1313x x t t +<+当时,则,故C 错误;0a <1313x x t t +>+对D ,由题意,得,()()()()()()32123321231a x x x x x x ax bx cx d a x t x t x t ax bx cx d ⎧---=+++⎪⎨---=+++-⎪⎩整理,得,123123122331122331b x x x t t t ac x x x x x x t t t t t t a ⎧++=++=-⎪⎪⎨⎪++=++=⎪⎩得,()()()()2212312233112312233122x x x x x x x x x t t t t t t t t t ++-++=++-++即,故D 正确.222222123123x x x t t t ++=++故选:ABD.12.【答案】9【详解】由题意知随机变量服从二项分布,,,X (),B n p ()3E X =()2D X =则,即得,()3,12np np p =-=1,93p n ==故答案为:913.【答案】【详解】因为在上的投影向量为,b a14a -所以,又,14b a a a aa ⋅⋅=-2a =所以,又,1a b ⋅=-1= b 所以a b+==== 故答案为:14.【答案】11【详解】如图,连接,则多面体被分成三棱锥和四棱锥.,EG ED EFGHBD G EDH -E BFGD -因是上靠近点的四等分点,则,H AD D 14DHE AED S S =又是的中点,故,E AB 11114428DHE AED ABD ABD S S S S ==⨯= 因是上靠近点的四等分点,则点到平面的距离是点到平面的G CD D G ABD C ABD 距离的,14故三棱锥的体积;G EDH -1113218432G EDH C ABD V V --=⨯=⨯=又因点是的中点,则,故,F BC 133248CFG BCD BCD S S S =⨯= 58BFGD BCD S S =又由是的中点知,点到平面的距离是点到平面的距离的,E AB E BCD A BCD 12故四棱锥的体积,E BFGD -51532108216E BFGD A BCD V V --=⨯=⨯=故多面体的体积为EFGHBD 11011.G EDH E BFGD V V --+=+=故答案为:11.15.【答案】(1)π3A =(2)2a =【详解】(1)因为,即,sin cos 0a B A =sin cos a B A =由正弦定理得,sin sin cos A B B A ⋅=⋅因为,所以,则,sin 0B ≠sin A A =tan A =又,所以.()0,πA ∈π3A =(2)因为,由正弦定理得,sin sin 2sin B C A +=2b c a +=因为,所以,π3A =11sin 22ABC S bc A bc === 4bc =由余弦定理,得,2222cos a b c bc A =+-⋅224b c bc +-=所以,则,解得.()234b c bc +-=()22344a -⨯=2a =16.【答案】(1)4230--=x y (2)答案见解析【详解】(1)当时,,,因0a =()221ln 2f x x x x=+()2(ln 1)f x x x =+',1(1),(1)22f f '==故在处的切线方程为,即;()f x 1x =12(1)2y x -=-4230--=x y (2)因函数的定义域为,()()221ln 2f x x ax x x=++(0,)+∞,()(2)ln 2(2)(ln 1)f x x a x x a x a x =+++=++'① 当时,若,则,故,即函数在2a e ≤-10e x <<ln 10,20x x a +<+<()0f x '>()f x 上单调递增;1(0,e 若,由可得.1e x >20x a +=2a x =-则当时,,,故,即函数在上单调1e 2a x <<-20x a +<ln 10x +>()0f x '<()f x 1(,e 2a-递减;当时,,故,即函数在上单调递增;2a x >-ln 10,20x x a +>+>()0f x '>()f x (,)2a-+∞② 当时,若,则,故,即函数在2e a >-1e x >ln 10,20x x a +>+>()0f x '>()f x 上单调递增;1(,)e +∞若,则,故,即函数在上单调递减;12e a x -<<ln 10,20x x a +<+>()0f x '<()f x 1(,)2e a -若,则,故,即函数在上单调递增,02a x <<-ln 10,20x x a +<+<()0f x '>()f x (0,2a-当时,恒成立,函数在上单调递增,2e a =-()0f x '≥()f x ()0,+∞综上,当时,函数在上单调递增,在上单调递减,在2e a <-()f x 1(0,)e 1(,)e 2a -上单调递增;(,)2a-+∞当时,函数在上单调递增;2e a =-()f x ()0,+∞当时,函数在上单调递增,在上单调递减,在上2e a >-()f x (0,2a -1(,2e a -1(,)e +∞单调递增.17.【答案】(1)证明见详解【详解】(1)设,则为的中点,连接,AC BD O = O ,AC BD PO 因为为菱形,则,ABCD AC BD ⊥又因为,且为的中点,则,PD PB =O BD PO BD ⊥,平面,所以平面,AC PO O = ,AC PO ⊂PAC BD ⊥PAC 且平面,则,PC ⊂PAC BD PC ⊥又因为∥平面,平面,平面平面,BD AMHN BD ⊂PBD AMHN PBD MN =可得∥,所以.BD MN MN PC ⊥(2)因为,且为的中点,则,PA PC =O AC PO AC ⊥且,,平面,所以平面,PO BD ⊥AC BD O = ,AC BD ⊂ABCD ⊥PO ABCD 可知与平面所成的角为,即为等边三角形,PA ABCD 60PAC ∠=︒PAC 设,则,且平面,平面,AH PO G = ,G AH G PO ∈∈AH ⊂AMHN PO ⊂PBD 可得平面,平面,∈G AMHN ∈G PBD 且平面平面,所以,即交于一点,AMHN PBD MN =G MN ∈,,AH PO MN G 因为为的中点,则为的重心,H PC G PAC 且∥,则,BD MN 23PM PN PG PB PD PO ===设,则,2AB=11,32PA PC OA OC AC OB OD OP ========如图,以分别为轴,建立空间直角坐标系,,,OA OB OP ,,x y z 则,)()22,0,0,3,0,,1,0,,133AP M N ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭可得,()24,1,0,,0,33AM NM AP ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭设平面的法向量,则,AMN ()111,,x n y z =1111203403n AM y z n NM y ⎧⋅=++=⎪⎪⎨⎪⋅==⎪⎩ 令,则,可得,11x=110,y z ==(n = 设平面的法向量,则,PAM ()222,,m x y z =2222220330m AM y z m AP z ⎧⋅=++=⎪⎨⎪⋅=+=⎩ 令,则,可得,2x =123,1y z ==)m = 可得,cos ,n m =所以平面与平面所成的锐二面角的余弦值PAMAMN18.【答案】(1)线段的长为;AB 6(2)(i)直线的方程为;l 2x y =+(ii )直线的斜率的取值范围为.l 33()(44- 【详解】(1)由双曲线的方程,可得,所以22:13y x Γ-=221,3a b ==,1,2a b c ====所以,,若轴,则直线的方程为,1(2,0)F -2(2,0)F AB x ⊥AB 2x =代入双曲线方程可得,所以线段的长为;(2,3),(2,3)A B -AB 6(2)(i)如图所示,若直线的斜率为0,此时为轴,为左右顶点,此时不构成三角形,矛l l x ,A B 1,,F A B 盾,所以直线的斜率不为0,设,,l :2l x ty =+1122()A x y B x y ,,(,)联立,消去得,应满足,22132y x x ty ⎧-=⎪⎨⎪=+⎩x 22(31)1290t y ty -++=t 222310Δ14436(31)0t t t ⎧-≠⎨=-->⎩由根与系数关系可得,121222129,3131t y y y y t t +=-=--直线的方程为,令,得,点,1AF 110(2)2y y x x -=++0x =1122y y x =+112(0,)2y M x +直线的方程为,令,得,点,1BF 220(2)2y y x x -=++0x =2222y y x =+222(0,)2y N x +,121122221111|||||2||2|F F F B A A F B F S y F S S F y y y -=⨯-==- 111212221||||||222F M N M F MN N S y y x y y y y x x =-=-=-++ ,12122112212121212222(4)2(4)8()||||||44(4)(4)4()16y y y ty y ty y y ty ty ty ty t y y t y y +-+-=-==+++++++由,可得,11F AB F MN S S = 1212212128()||2||4()16y y y y t y y t y y -=-+++所以,所以,21212|4()16|4t y y t y y +++=222912|4()16|43131tt t t t ⨯+-+=--解得,,解得,22229484816||431t t t t -+-=-22916||431t t -=-22021t =经检验,满足,所以222310Δ14436(31)0t t t ⎧-≠⎨=-->⎩t =所以直线的方程为;l 2x y =+(ii )由,恒在以为直径的圆内部,可得,1F 2F MN 2190F MF >︒∠所以,又,110F F N M < 112211,22(2,)(2,22F y y N x x M F =+=+所以,所以,1212224022y y x x +⨯<++121210(2)(2)y y x x +<++所以,所以,1221212104()16y y t y y t y y +<+++2222931109124()163131t t t t t t -+<⨯+-+--所以,解得,解得或,22970916t t -<-271699t <<43t <<43t -<<经检验,满足,222310Δ14436(31)0t t t ⎧-≠⎨=-->⎩所以直线的斜率的取值范围为.l 33()(44- 19.【答案】(1)12170,1,4b b b ===(2)1(1)22n n +-⨯+(3)n a n=【详解】(1)因为,则,2n a n =123451,4,9,16,25a a a a a =====所以,,{}*11i B i a =∈<=∅N ∣{}*22{1}i B i a =∈<=N ∣,{}*1717{1,2,3,4}i B i a =∈<=N ∣故.12170,1,4b b b ===(2)因为,所以,2nn a =123452,4,8,16,32a a a a a =====则,所以,,**12{|1},{|2}i i B i a B i a =∈<=∅=∈<=∅N N 10b =20b =当时,则满足的元素个数为,122i i k +<≤ia k <i 故,121222i i i b b b i+++==== 所以()()()1112345672122822n n n n S b b b b b b b b b b b ++++=++++++++++++ ,1212222n n =⨯+⨯++⨯ 注意到,12(1)2(2)2n n nn n n +⨯=-⨯--⨯所以121321202(1)21202(1)2(2)2n n nS n n ++=⨯--⨯+⨯-⨯++-⨯--⨯ .1(1)22n n +=-⨯+(3)由题可知,所以,所以,11a ≥1B =∅10b =若,则,,12a m =≥2B =∅1{1}m B +=所以,,与是等差数列矛盾,20b =11m b +={}n b 所以,设,11a =()*1n n n d a a n +=-∈N 因为是各项均为正整数的递增数列,所以,{}n a *n d ∈N 假设存在使得,设,由得,*k ∈N 2k d ≥k a t =12k k a a +-≥12k a t ++≥由得,,与是等差数列矛盾,112k k a t t t a +=<+<+≤t b k <21t t b b k ++=={}n b 所以对任意都有,*n ∈N 1nd =所以数列是等差数列,.{}n a 1(1)n a n n =+-=。
考研数学一(高等数学)-试卷11(总分62, 做题时间90分钟)1. 选择题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设,则g[f(x)]为SSS_SINGLE_SELABCD该题您未回答:х该问题分值: 2答案:D2.当x→0时,变量是SSS_SINGLE_SELA 无穷小.B 无穷大.C 有界的,但不是无穷小.D 无界的,但不是无穷大.该题您未回答:х该问题分值: 2答案:D3.设数列xn 与yn满足,则下列断言正确的是SSS_SINGLE_SELA若xn 发散,则yn必发散.B若xn 无界,则yn必无界.C若xn 有界,则yn必为无穷小.D若为无穷小,则yn必为无穷小.该题您未回答:х该问题分值: 2答案:D4.设f(x)=2 x +3 x一2,则当x→0时SSS_SINGLE_SELA f(x)与x是等价无穷小.B f(x)与x是同阶但非等价无穷小.C f(x)是比x较高阶的无穷小.D f(x)是比x较低阶的无穷小.该题您未回答:х该问题分值: 2答案:B5.设x→0时,e tanx一e x是与x n同阶的无穷小,则n为SSS_SINGLE_SELA 1B 2C 3D 4该题您未回答:х该问题分值: 2答案:C6.设对任意的x,总有φ(x)≤f(x)≤g(x),且lim[g(x)一φ(x)]=0,则SSS_SINGLE_SELA 存在且一定等于零.B 存在但不一定为零.C 一定不存在.D 不一定存在.该题您未回答:х该问题分值: 2答案:D7.设函数在(一∞,+∞)内连续,且=0,则常数a,b满足SSS_SINGLE_SELA a<0,b<0.B a>0,b>0.C a≤0,b>0.D a≥0,b<0.该题您未回答:х该问题分值: 2答案:D8.设f(x)和φ(x)在(一∞,+∞)上有定义,f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则SSS_SINGLE_SELA φ[f(x)]必有间断点.B[φ(x)] 2必有间断点.C f[φ(x)]必有间断点.D 必有间断点.该题您未回答:х该问题分值: 2答案:D9.设函数f(x)=,讨论函数f(x)的间断点,其结论为SSS_SINGLE_SELA 不存在间断点.B 存在间断点x=1.C 存在间断点x=0.D 存在间断点x=一1.该题您未回答:х该问题分值: 2答案:B2. 填空题1.已知f(x)=sinx,f[φ(x)]=1一x 2,则φ(x)=___________的定义域为_____________.SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:arcsin(1一x 2 ),2.=__________SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:3.设函数f(x)=a x (a>0,a≠1),则=_____________.SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:4.=____________SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:5.=____________SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:26.若f(x)=____________在(一∞,+∞)上连续,则a=___________.SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:一23. 解答题解答题解答应写出文字说明、证明过程或演算步骤。
2024~2025 学年度上期高 2025届半期考试高三数学试卷考试时间:120 分钟总分:150 分注意事项:1.答卷前,考生务必将自己的姓名、班级、准考证号填写在答题卡上.2.回答选择题时,必须使用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上作答无效.5.考试结束后,请考生个人留存试卷并将答题卡交回给监考教师.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.复数i i 4321-+的虚部是( )A.51-B .5 1 C .5 2 - D .52 2.式子15tan 115tan 1-+的 值为() A.3 B .2 C .5 D .63.由正数组成的等比数列{}n a ,n S 为其前n 项和,若241a a =,37S =,则5S 等于() A.152 B.314 C.3 34 D .1 72 4.在24 3)1()1()1(+++++++n x x x 的展开式中,含2x 项的系数是() A.33+n C B .123- +n C C.133- +n C D .331+-n C 5.已知函数()f x 对x R ∀∈都有()(4)f x f x =-,且其导函数()f x '满足当2x ≠时(2)()0x f x '->,则当24a <<时,有()A.2(2)(2)(log )a f f f a << B.2(log )(2)(2)a f a f f <<C.2(log )(2)(2)a f a f f << D.2(2)(log )(2)a f f a f <<6.若向量,,abc 满足,22a b c == = ,则()()a b c b-⋅- 的最大值为()A.10B .12C . D . 7.若对R x ∈∀,函数a x x f +=2)(的函数值都不超过函数⎪⎩⎪⎨⎧≥+<+=1,21,2)(x x x x x x g 的函数值,则实数a 的取值范围是()A.2-≥a B .2≤a C.22≤≤-a D.2<a 8.在三棱柱1 1 1C B A ABC -中, 1CC CB CA ==,3 =AB ,1C 在面ABC 的投影为ABC ∆的外心,二面角1 1B CC A --为3π,该三棱柱的侧面积为() A.33 4 +B .3 7 C .3 6 D .35在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到m 50.9以上(含m 50.9)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m ):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(I)估计甲在校运动会铅球比赛中获得优秀奖的概率;(II)设X 是甲、乙、丙在校运动会铅球比赛中获优秀奖的总人数,估计X 的数学期望)(X E .17.(本小题满分15分)如图,在三棱柱11 1 ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,1 3CC =, 点,D E 分别在棱1AA 和棱1CC 上,且12,AD C E M ==为棱11A B 的中点.(I )求证:11C M B D ⊥;(II )求二面角1B B E D --的正弦值;(III )求直线AB 与平面1DB E 所成角的正弦值.椭圆)0(1:2 2 2 2>>=+b a by a x E 左焦点F 和),0(),0,(b B a A 构成一个面积为)12 (2+的F AB ∆,且22cos =∠AFB .(I )求椭圆E 的标准方程;(II )点P 是E 在三象限的点,P A 与y 轴交于M ,PB 与x 轴交于N ①求四边形ABNM 的面积;② 求PMN ∆面积最大值及相应P 点的坐标.19.(本小题满分17分)已知函数1)(2---=x ax e x f x .( 其中71828.2≈e )(I )当0=a 时,证明:0)(≥x f (II )若0>x 时,0)(>x f ,求实数a 的取值范围;(Ⅲ)记函数x xe x g x ln 21)(--=的最小值为m ,求证:)1,2023(-∈e m2024~2025 学年度上期高 2025届半期考试高三数学试卷参考答案一、单选题DABC D BCC二、多选题9.ABD 1 0.AC 1 1.BCD三、填空题12.2 00 ,1x N x ∃ ∈≤13.25)2()3( 2 2=-+-y x 14.22四、解答题15.【解】(I )21cos cos sin 32=-C C C ,12cos 212sin 23=-∴C C ,即sin(216C π-=,π<<C 0 ,262 C ππ ∴-=, 解得3π=C 。
2023-2024学年佛山市石门中学高一数学上学期11月考试卷2023.10(考试满分:150分考试时间:120分钟)第I 卷(选择题)一、单选题(本大题共10小题,共50.在每小题列出的选项中,选出符合题目的一项)1.已知集合{}2|230A x x x =--≤,{}|24B x y x ==-,则()RA B ⋂=ð()A.()3,+∞ B.[)2,+∞ C.[)2,3 D.(],2-∞2.设a ,R b ∈,则“0a b <<”是11a b>的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知正数a ,b 满足1a b +=,则63a ab b++最小值为()A.25B.1926+ C.26D.194.已知0t >,则函数241t t y t-+=的最小值为A.2- B.12C.1D.25.不等式20x ax b --<的解集为{}23x x <<,则210bx ax -->的解集为()A.1123x x ⎧⎫-<<-⎨⎬⎩⎭B.1132x x ⎧⎫<<⎨⎬⎩⎭C.{}32x x -<<- D.{}23x x <<6.已知不等式2201x m x ++>-对一切(1)x ∈+∞,恒成立,则实数m 的取值范围是A.6m >- B.6m <- C.8m >- D.8m <-7.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“>”和“<”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远.已知,a b 为非零实数,且a b >;则下列结论正确的是()A.b aa b> B.22ab a b > C.22a b > D.2211ab a b>8.已知函数()21f x -的定义域为[]1,4,则函数()f x 的定义域为()A.[]1,4 B.()1,4 C.[]1,7 D.()1,79.下列四组函数中,表示同一函数的是()A.()f x x =,()2g x x = B.()2f x x =,()2(1)g x x =+C.()2f x x =()g x x = D.()11f x x x =+-,()21g x x =-10.函数2(5)2,2()2(1)3,2a x x f x x a x a x --≥⎧=⎨-++<⎩,若对任意12,x x R ∈,且12x x ≠都有1212()()0f x f x x x -<-成立,则实数a 的取值范围为()A.[1,4]B.(1,5)C.[1,5)D.[1,4)二、多选题(本大题共5小题,共25.在每小题有多项符合题目要求)11.已知集合()(){}221110A x a x a x =-+++=中有且仅有一个元素,那么a 的值为()A.1-B.1C.53D.012.若0a b >>,则下列不等式成立的是()A.11a b< B.11b b a a +>+ C.11a b b a+>+ D.11a b a b+>+13.下列说法正确的有()A.命题“()3,x ∃∈-+∞,29x ≤”的否定是“()3,x ∀∈-+∞,29x >”B.“21x >”是“1x >”的充分不必要条件C.“0m <”是“关于x 的方程220x x m -+=有一正根和一负根”的充要条件D.已知正数x ,y 满足11x y +=,则14y x+的最小值为914.已知()32f x x =-,()22g x x x =-,设()()()()()()(),,g x f x g x F x f x f x g x ⎧⎪=⎨<⎪⎩ ,则关于()F x 的说法正确的是()A.最大值为3,最小值为1-B.最大值为727-,无最小值C.单调递增区间为(,27-∞和(3,单调递减区间为()27,1和)3,+∞D.单调递增区间为(),0∞-和(3,单调递减区间为()0,1和)3,+∞15.函数()2121f x ax x =++的定义域为R ,则实数a 的可能取值为()A.0B.1C.2D.3第Ⅱ卷(非选择题)三、填空题(本大题共6小题,共30)16.已知命题[]:1,4,4ap x x x∃∈+>是假命题,则实数a 的取值范围是___________.17.已知0x >,0y >,且280x y xy +-=,则x y +的最小值为______.18.设,0,5a b a b >+=,1++3a b +________.19.若函数()f x ,()g x 满足14()22f x f x x x ⎛⎫-=-⎪⎝⎭,且()()6f x g x x +=+,则(1)(1)f g +-=________.20.函数223y x x =--的单调递增区间为_______________.21.已知()f x 是一次函数,且满足3(1)()29f x f x x +-=+,则函数()f x 的解析式为______四、解答题(本大题共4小题,共45.解答应写出文字说明,证明过程或演算步骤)22.已知集合{|522}A x x x x =-<<-,集合{|231}B x m x m =+≤≤+.(1)当4m =-时,求()R A B ⋃ð;(2)当B 为非空集合时,若x B ∈是x A ∈的充分不必要条件,求实数m 的取值范围.23.某农业合作社生产了一种绿色蔬菜共14吨,如果在市场上直接销售,每吨可获利0.2万元;如果进行精加工后销售,每吨可获利0.6万元,但需另外支付一定的加工费,总的加工P (万元)与精加工的蔬菜量x (吨)有如下关系:21,082038,81410x x P x x ⎧≤≤⎪⎪=⎨+⎪<≤⎪⎩设该农业合作社将x (吨)蔬菜进行精加工后销售,其余在市场上直接销售,所得总利润(扣除加工费)为y (万元).(1)写出y 关于x 的函数表达式;(2)当精加工蔬菜多少吨时,总利润最大,并求出最大利润.24.已知函数()4()11f x x x =>-(1)判断函数()f x 在()1+∞,上的单调性,并用定义证明;(2)若(2)(21)f a f a -+>+,求实数a 的取值范围.25.已知函数2()32,()f x ax x a =++∈R .(1)若函数()0f x >的解集为{}1x b x <<,其中1b <,求实数a ,b 的值;(2)当3a <时,求关于x 的不等式()(6)1f x a x >+-的解集.【答案】1.A【分析】利用一元二次不等式的解法、函数定义域的求法以及集合的补集、交集运算进行求解.【详解】因为{}2|230A x x x =--≤,所以{}|13A x x =-≤≤,所以{R |1A x x =<-ð或}3x >,因为{|24B x y x ==-,所以{}|2B x x =≥,所以(){}R |3A B x x => ð,故B ,C ,D 错误.故选:A.2.A【分析】利用不等式的性质,充分条件、必要条件的定义判断作答.【详解】因为11b a a b ab--=,所以当0a b <<时,0,0ab b a >->,所以110b a a b ab --=>即11a b>,当11a b >时,取1,1a b ==-,得不到0a b <<,所以0a b <<是11a b>充分不必要条件,故选:A.3.A【分析】先进行化简得3964ab b aa b =+++,再利用乘“1”法即可得到答案.【详解】因为正数a ,b 满足1a b +=,所以()63349349946a b a b a b a b a ab ab ab b b a a b ++++++⎛⎫===+=++ ⎪⎝⎭94941313225b a b aa b a b =++≥+⋅=,当且仅当94b a a b =,联立1a b +=,即32,55a b ==时等号成立,故选:A.4.A【分析】先分离,再根据基本不等式求最值,即得结果.【详解】2411142·42t t y t t t t t-+==+-≥-=-,当且仅当1t t =,即1t =时,等号成立.选A.【点睛】本题考查利用基本不等式求最值,考查基本分析求解能力,属基础题.5.A【分析】分析可知关于x 的方程20x ax b --=的两根分别为2、3,利用韦达定理可求得a 、b 的值,然后利用二次不等式的解法解所求不等式,即可得解.【详解】由题意可知,关于x 的方程20x ax b --=的两根分别为2、3,则2323a b +=⎧⎨⨯=-⎩,可得56a b =⎧⎨=-⎩,故所求不等式为26510x x --->,即()()31210x x ++<,解得1123x -<<-.故选:A.6.A【详解】不等式即:21221111m x x x x ⎛⎫>--=--++ ⎪--⎝⎭恒成立,则max 221m x x ⎛⎫>-- ⎪-⎝⎭结合1x >可得:10x ->,由均值不等式的结论有:()11211211611x x x x ⎛⎫⎛⎫--++≤--⨯+=- ⎪ ⎪ ⎪--⎝⎭⎝⎭,当且仅当2x =时等号成立,据此可得实数m 的取值范围是6m >-.本题选择A 选项.点睛:对于恒成立问题,常用到以下两个结论:(1)a ≥f (x )恒成立⇔a ≥f (x )max ;(2)a ≤f (x )恒成立⇔a ≤f (x )min .7.D【分析】根据各项不等式,利用作差法、特殊值,结合不等式性质判断正误即可.【详解】A :22b a b a a b ab--=,若0a b >>有220,0b a ab -<>,故b a a b <,A 错误;B :22()ab a b ab b a -=-,若0a b >>有0b a -<,又0ab >,故22ab a b <,B 错误;C :若1-2a b =>=,则22a b <,C 错误;D :222111110()a b ab a b ab b a ab -⎛⎫-=-=> ⎪⎝⎭,故2211ab a b>,D 正确.故选:D 8.C【分析】已知抽象复合函数定义域求原函数定义域.【详解】令21t x =-,则1[1,4]2t x +=∈,故17t ≤≤,所以()f x 的定义域为[]1,7.故选:C 9.C【分析】逐一判断四个选项中两个函数的定义域和对应关系是否相同即可得正确选项.【详解】对于A :()f x x =定义域为R ,()2g x x =的定义域为{}|0x x ≥,定义域不同不是同一函数,故选项A 不正确;对于B :()2f x x =与()2(1)g x x =+对应关系不一致,不是同一函数,故选项B 不正确;对于C :()2f x x x ==定义域为R ,()g x x =定义域为R ,两个函数的定义域和对应关系都相同,所以是同一函数,故选项C 正确;对于D :由1010x x +≥⎧⎨-≥⎩可得1x ≥,所以()11f x x x =+-{}|1x x ≥,由210x -≥可得1x ≥或1x ≤-,所以()21g x x =-定义域为{|1x x ≤-或}1x ≥,定义域不同不是同一函数,故选项D 不正确;故选:C.10.A【分析】若对任意12,x x R ∈,且12x x ≠都有1212()()0f x f x x x -<-成立,则可判断函数()f x 在R 上单调递减,进而根据分段函数的单调性列出不等式组,求解可得答案.【详解】 对任意12,x x R ∈,且12x x ≠都有1212()()0f x f x x x -<-成立,∴函数()f x 在R 上单调递减,则()()50124413252a a a a a ⎧-<⎪+≥⎨⎪-++≥--⎩,解得:14a ≤≤.故选:A【点睛】本题主要考查了函数单调性的定义,分段函数的单调性求参数范围,解题的关键是能够由定义判断出函数()f x 在R 上为减函数.11.BC【分析】根据题意分类讨论求解即可.【详解】因为集合()(){}221110A x a x a x =-+++=中有且仅有一个元素,所以当210a -=,即1a =±时,若1a =,则{}12102A x x ⎧⎫=+==-⎨⎬⎩⎭符合题意,若1a =-,则{}10A x ===∅不符合题意;当210a -≠,即1a ≠±时,则()()2221413250a a a a ∆=+--=-++=,解得1a =-(舍)或53a =.所以a 的值可能为1,53.故选:BC 12.AC【分析】根据不等式的性质判断A ,C ;利用作差法比较大小判断B ,D.【详解】解:对于A ,因为0a b >>,所以11a b<,故A 正确;对于B ,()()()()111111b a a b b b b a a a a a a a +-++--==+++,由于0a b >>,所以()0,10b a a a -<+>,则101b b a a +-<+,即11b b a a +<+,故B 错误;对于C ,因为0a b >>,所以11b a >,所以11a b b a+>+,故C 正确;对于D ,()()()11111b a ab a b a b a b a b a b a b ab ab --⎛⎫⎛⎫⎛⎫+-+=-+-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由于0a b >>,则0,0a b ab ->>,但ab 与1的大小不确定,故D 错误.故选:AC .13.ACD 【解析】【分析】由存在性命题的否定判断A ;由211x x >⇔<-或1x >可判断B ;由一元二次方程的根的分布判断C ;由均值不等式及1的变形确定D 选项.【详解】由含量词命题的否定知,“()3,x ∃∈-+∞,29x ≤”的否定是“()3,x ∀∈-+∞,29x >”,故A 正确;因为21x >成立推不出1x >,所以“21x >”是“1x >”的充分不必要条件错误,故B 错误;因为方程220x x m -+=有一正根和一负根等价于20200m -⨯+<,即0m <,故C 正确;因为11x y +=,所以1111144545·49y x y xy xy x y x xy xy ⎛⎫⎛⎫+=++=++≥+= ⎪⎪⎝⎭⎝⎭,当且仅当=14xy xy ,即当==13,32x y 时,等号成立,故D 正确.故选:ACD 14.【答案】BC 【解析】【分析】在同一坐标系中由()f x 与()g x 的图象得出函数()F x 的图象,结合图象即可得出()F x 的性质,判断各选项.【详解】在同一坐标系中先画出()f x 与()g x 的图象,当()()f x g x <时,()()F x f x =,表示()f x 的图象在()g x 的图象下方就留下()f x 的图象,当()()f x g x 时,()()F x g x =,表示()g x 的图象在()f x 的图象下方就留下()g x 的图象,然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值,故A 错误,当0x <时,由2322x x x +=-,得27x =+舍)或27x =,此时()F x 的最大值为:77-,无最小值,故B 正确,0x >时,由2322x x x -=-,解得:3x=3舍去),故F ()x 在(27-∞,,(3,递增,在()27,和)3,+∞递减故C 正确,D 错误,故选:BC .15.CD 【解析】【分析】由题设有2210ax x ++≠在x ∈R 上恒成立,列不等式组求参数范围.【详解】由题设2210ax x ++≠在x ∈R 上恒成立,所以01Δ440a a a ≠⎧⇒>⎨=-<⎩,故A 、B 不符合,C 、D 符合.故选:CD第Ⅱ卷(非选择题)三、填空题(本大题共6小题,共30)16.(,0]-∞【分析】将问题等价转化为[1,4]x ∀∈,4ax x+≤恒成立,利用二次函数的性质即可求解.【详解】命题[]:1,4,4ap x x x∃∈+>是假命题,即命题[1,4]x ∀∈,4ax x+≤是真命题,也即24a x x ≤-+在[1,4]上恒成立,令22()4(2)4f x x x x =-+=--+,因为[1,4]x ∈,所以当4x =时函数取最小值,即min ()(4)0f x f ==,所以0a ≤,故答案为:(,0]-∞.17.18【解析】【分析】等式280x y xy +-=变形为281y x +=,则28()(x y x y y x+=++根据基本不等式即可得到答案.【详解】解:已知0x >,0y >,且280x y xy +-=.28x y xy +=,即:281y x +=.则282828()(101018x y x yx y x y y x y x y x+=++=++⋅= ,当且仅当28x yy x=,212x y ==时取等号,所以x y +的最小值为18.故答案为:18.18.32【详解】由222ab a b ≤+两边同时加上22a b +得222()2()a b a b +≤+两边同时开方即得:222()a b a b ++(0,0a b >>且当且仅当a b =时取“=”),1++3a b +2(13)2932a b ≤+++=⨯=(当且仅当13a b +=+,即73,22a b ==时,“=”成立)故填:.考点:基本不等式.【名师点睛】本题考查应用基本不等式求最值,先将基本不等式222ab a b ≤+转化为222()a b a b +≤+(a>0,b>0且当且仅当a=b 时取“=”)再利用此不等式来求解.本题属于中档题,注意等号成立的条件.19.9【分析】根据方程组法求解函数()f x 的解析式,代入求出(1)f ,(1)f -,再利用(1)f -代入求出(1)g -.【详解】由14()22f x f x x x ⎛⎫-=-⎪⎝⎭,可知()1()242f f x x x x -=-,联立可得()2f x x =,所以(1)2f =,(1)2f -=-又因为(1)(1)165f g -+-=-+=,所以(1)527g -=+=,所以(1)(1)9f g +-=.故答案为:9【点睛】求函数解析式常用方法:(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法;(2)换元法:已知复合函数(())f g x 的解析式,可用换元法,此时要注意新元的取值范围;(3)方程法:已知关于()f x 与1f x ⎛⎫⎪⎝⎭与()f x -的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出()f x .20.()1,1-和()3,+∞【分析】作出函数223y x x =--的图象,利用数形结合可得结果.【详解】作出函数223y x x =--的图象如下图所示,由图象可知,函数223y x x =--的单调递增区间为()1,1-和()3,+∞.【点睛】判断函数单调性的一般方法:1.利用基本初等函数的单调性与图象:只需作出函数的图象便可判断函数在相应区间上的单调性;2.性质法:(1)增函数+增函数=增函数,减函数+减函数=减函数,增函数-减函数=增函数,减函数-增函数=减函数;(2)函数()f x -与函数()f x 的单调性相反;(3)0k >时,函数()f x 与()k f x 的单调性相反(()0f x ≠);0k <时,函数()f x 与()k f x 的单调性相同(()0f x ≠).2.导数法:()0f x '≥在区间D 上恒成立,则函数()f x 在区间D 上单调递增;()0f x '≤在区间D 上恒成立,则函数()f x 在区间D 上单调递减.4.定义法:作差法与作商法(常用来函数单调性的证明,一般使用作差法).【注】分段函数的单调性要求每段函数都满足原函数的整体单调性,还需注意断点处两边函21.()3f x x =+【分析】由题意设(),,R f x ax b a b =+∈,根据3(1)()29f x f x x +-=+,可得到方程组,求得a,b ,即得答案.【详解】根据题意,设(),,R f x ax b a b =+∈,且0a ≠,()()11f x a x b ∴+=++,()()()()3131f x f x a x b ax b ⎡⎤∴+-=++-+⎣⎦()23229ax a b x =++=+,22329a a b =⎧∴⎨+=⎩,解得()1,3,3a b f x x ==∴=+,故答案为:()3f x x =+.22.(1)()R {|5A B x x ⋃=<-ð或2}x -≥(2){|43}m m <-<-【解析】【分析】(1)分别求出集合,A B ,然后计算A B ⋃,最后()R A B ⋃ð;(2)由题意知集合B 是集合A 的真子集,建立不等式组求解即可.【小问1详解】∵{|522}A x x x x =-<<-,∴{|52}A x x =-<<-.当4m =-时,{|53}B x x =-≤≤-.∴{|52}A B x x =-≤<- ,所以,()R {|5A B x x ⋃=<-ð或2}x -≥.【小问2详解】∵B 为非空集合,x B ∈是x A ∈的充分不必要条件,则集合B 是集合A 的真子集,∴23123512m m m m +≤+⎧⎪+>-⎨⎪+<-⎩,解得:243m m m ≤-⎧⎪>-⎨⎪<-⎩,∴m 的取值范围是{|43}m m <-<-.23.(1)212140820551281410x x x y x x ⎧-++≤≤⎪⎪=⎨⎪+≤⎪⎩,,<;(2)精加工4吨时,总利润最大为185万元.【解析】【分析】(1)利用已知条件求出函数的解析式;(2)利用二次函数的性质,转化求解函数的最值.【详解】解:(1)由题意知,当0≤x ≤8时,y =0.6x +0.2(14-x )-120x 2=-120x 2+25x +145,当8<x ≤14时,y =0.6x +0.2(14-x )-3810x +=110x +2,即y =212140820551281410x x x x x ,,<⎧-++≤≤⎪⎪⎨⎪+≤⎪⎩(2)当0≤x ≤8时,y =-120x 2+25x +145=-120(x -4)2+185,所以当x =4时,y max =185.当8<x ≤14时,y =110x +2,所以当x =14时,y max =175.因为185>175,所以当x =4时,y max =185.答:当精加工蔬菜4吨时,总利润最大,最大利润为185万元.【点睛】本题考查实际问题的应用,二次函数的简单性质的应用,考查转化思想以及计算能力.24.(1)函数f (x )在()1+∞,上为减函数,证明见解析;(2)1,13⎛⎫⎪⎝⎭.【分析】(1)根据定义法证明函数单调性的步骤:取值,作差,变形,定号,下结论,即可证明;(2)利用(1)问函数单调性即可求解.【详解】解:(1)任取()12,1x x ∈+∞,,且12x x <,则121244()()11f x f x x x -=---()()()()2112414111x x x x ---=--()()()2112411x x x x -=--121x x << ,21120,10,10x x x x ∴->->->,12()()0,f x f x ∴->即12()()f x f x >,所以函数f (x )在()1+∞,上为减函数;(2)由(1)得21211221a a a a -+>⎧⎪+>⎨⎪-+<+⎩1101313a a a a ⎧⎪<⎪⇒>⇒<<⎨⎪⎪>⎩,所以实数a 的取值范围1,13⎛⎫⎪⎝⎭.25.(1)5a =-,25b =-(2)当0a =时,不等式的解集为{|1}<x x ;当3a =时,不等式的解集为{|1}x x ≠;当0<<3a 时,不等式的解集为3{|x x a >或1}x <;当a<0时,不等式的解集为3{|1}x x a<<.【解析】【分析】(1)根据一元二次不等式的解集确定一元二次方程的根,结合韦达定理列方程求解实数a ,b 的值即可;(2)化简不等式()()310ax x -->,由3a <再分类讨论求不等式的解集即可.【小问1详解】解:根据题意,2320ax x ++>的解集为{|1}x b x <<,则1,b 是方程2320ax x ++=的解,且a<0,则有3121b a b a ⎧+=-⎪⎪⎨⎪⋅=⎪⎩,解得:5a =-,25b =-;【小问2详解】解:不等式()(6)1f x a x >+-,即()2330ax a x -++>,则有()()310ax x -->,其中3a <,①当0a =时,不等式为()310x -->,则不等式的解集为{|1}<x x ;②当3a =时,不等式为()2310x ->,则不等式的解集为{|1}x x ≠,③当0<<3a 时,则31a<,不等式的解集为3{|x x a >或1}x <,④当a<0时,则31a <,不等式的解集为3{|1}x x a<<.综上,当0a =时,不等式的解集为{|1}<x x ;当3a =时,不等式的解集为{|1}x x ≠;当0<<3a 时,不等式的解集为3{|x x a >或1}x <;当a<0时,不等式的解集为3{|1}x x a<<.。
期末数学试卷(11)一、填空题.(20分)1.(3分)三千零八十万零六百写作: ,5000600读作:.2.(3分)据统计,今年我县植树二百零七万六千棵,写作:,省略“万"后的尾数约是.3.(3分)1里面有个.4.(3分)50平方千米= 公顷,600平方分米= 平方米= 平方厘米.5.(3分)在横线上填上>、<或=200公顷2平方千米,400平方米4公顷,300万300000,630÷45 630÷9÷5.6.(1。
5分)一个数由32个万、54个千、20个一组成,这个数写作:.7.(1.5分)一个正方形的周长是2000米,这个正方形的面积是公顷.8.(3分)3个边长为2厘米的小正方形拼成一个长方形后的面积是,周长是.二.判断.(5分,每题1分)9.(1分)面积相等的正方形,周长一定相等.(判断对错)10.(1分)把一个正方形分成8份,每份是它的..(判断对错)11.(1分)近似数是25万的最大数是249999..12.(1分)分子相同的两个分数,分母大的分数值就小..(判断对错)13.(1分)在减法算式中,被减数、减数、差的和是被减数的2倍..(判断对错)三.选择.(6分,每题1分)14.(1分)我国陆地面积大约是960万( )A.平方米B.平方千米 C.公顷D.公里15.(1分)下列各数中,一个零也不读的数是()A.500400 B.504000 C.504004 D.50040016.(1分)在除法算式中,被除数不变,商扩大10倍,除数()A.扩大10倍B.缩小10倍C.不变D.无法确定17.(1分)把一根长20分米的铁线围成一个正方形框架,它的面积是( )A.400平方分米B.25平方分米C.20平方分米D.80平方分米18.(1分)把一条3米长的铁丝平均分成8段,每段是这条铁丝的.19.(1分)甲乙两同学看同样一本书,甲同学看了这本书的,乙同学看了这本书的,谁看的多些?()A.甲同学B.乙同学C.同样多D.无法确定四.计算.(38分)20.(8分)口算.260+370=830﹣250=260+90=62万﹣25万=500×13=8400÷40=80×50=0×125×8=25×12=770+140=9900÷900=21.(10分)用简便方法计算.365﹣199183+9825×48360÷5÷6247﹣43﹣57.22.(8分)求未知数:532﹣x=196x÷62=43874×x=9102x+634=856.23.(6分)递等式计算:3500﹣25×362000÷(25×4)2091÷(806﹣789)24.(6分)列式计算.(1)48除一个数得16,这个数是多少?(2)一个数的38倍是1560,这个数大约是多少?五.应用题.(30分,每题5分)25.(5分)图书馆有故事书7260本,是文艺书的6倍,文艺书有多少本?26.(5分)农场有一块长方形的水稻田,长250米,宽80米,每公顷要施化肥120千克,这块地要施肥多少千克?27.(5分)育红小学有一块长方形操场,它的面积为4800平方米,宽40米,它的周长是多少?28.(5分)一块布,做衣服用去这块布的,做床单用去这块布的,(提一个问题,并列式解答)29.(5分)学校食堂运来一批煤,原计划每天烧60千克,可以烧12天;由于改进了烧煤的装置,结果每天只烧了45千克,这批煤可以烧多少天?30.(5分)王平沿着60米的直道走了4次,第一次走了101步,第二次走了100步,第三次走了99步,第四次走了101步,他从家到学校走了650步,他家离学校有多远?2016—2017学年人教版四年级(上)期末数学试卷(11)参考答案与试题解析一、填空题.(20分)1.(3分)三千零八十万零六百写作: 30800600 ,5000600读作:五百万零六百.【分析】写这个数时,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0;读5000600这个数时,从高位到低位,一级一级地读,每一级末尾的0都不读出来,其余数位一个零或连续几个0都只读一个零.【解答】解:三千零八十万零六百写作:30800600;5000600读作:五百万零六百.故答案为:30800600;五百万零六百.【点评】本题考查整数的读、写法,分级读、写或借助数位顺序表读、写数能较好的避免漏写0、读错0或写错位数的情况.2.(3分)据统计,今年我县植树二百零七万六千棵,写作:2076000 ,省略“万”后的尾数约是208万.【分析】这是一个七位数,最高位百万位上是2,万位上是7,千位上是6,写这个数时,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0;省略“万"后面的尾数求它的近似数,要把万位的下一位千位上的数进行四舍五入,再在数的后面写上“万”字.【解答】解:二百零七万六千写作:2076000;2076000≈208万;故答案为:2076000,208万.【点评】本题主要考查整数的读法、改写和求近似数,注意改写和求近似数时要带计数单位.3.(3分)1里面有 5 个.【分析】1=,判定一个分数含有几个分数单位,看分子,分子是几,就有几个这样的分数单位;据此解答即可.【解答】解:1=,分子是5,所以1里面有5 个.故答案为:5.【点评】本题考查了分数的意义和分数单位的意义的灵活应用,把单位“1”平均分成若干份,表示这样的一份或几份的数.4.(3分)50平方千米= 5000 公顷,600平方分米= 6 平方米= 60000 平方厘米.【分析】(1)把50平方千米换算成公顷数,用50乘进率100得5000公顷;(2)把600平方分米换算成平方米数,用600除以进率100得6平方米;再把600平方分米换算成平方厘米数,用600乘进率100得60000平方厘米.【解答】解:(1)50平方千米=5000公顷;(2)600平方分米=6平方米=60000平方厘米.故答案为:5000,6,60000.【点评】此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率;把低级单位的名数换算成高级单位的名数,就除以单位间的进率.5.(3分)在横线上填上>、<或=200公顷= 2平方千米,400平方米<4公顷,300万>300000,630÷45 = 630÷9÷5.【分析】根据整数大小比较的方法:位数多的大于位数少的;如果位数相同,最高位上大的数就大,如果最高位上的数字相同,再比较下一位,依此类推.据此进行比较即可.【解答】解:(1)因为2平方千米=200公顷,所以200公顷=2平方千米;(2)因为400平方米=0。
山东省菏泽市菏泽经济技术开发区2022年人教版小升初考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、填空题1.在﹢16,﹣32,0,﹣8.9,58﹢中,( )是正数,( )是负数,( )既不是正数,也不是负数。
2.如果﹣700元表示支出700元,﹢900元表示( )。
3.()()=30∶( )=60%=( )÷25=( )折=( )(填成数)。
4.王大伯家今年水稻产量比去年增产一成,也就是增产了( )%,今年产量是去年的( )%。
5.一个圆柱的底面半径是2cm ,高是5cm ,它的底面积是( )cm 2,侧面积是( )cm 2,体积是( )cm 3。
6.如果3a =4b (b≠0),那么b∶a =( )∶( )。
7.在一个比例中,两个外项互为倒数,其中一个内项是37,另一个内项是( )。
8.一种精密零件长度为6毫米,画在图纸上长度为12厘米,这幅图纸的比例尺为( )。
9.如果y =6x ,则x 与y 成( )比例;如果y =6x,则x 与y 成( )比例。
10.一个圆锥的底面积是12平方厘米,高是3厘米,则它的体积是( )立方厘米。
11.一个圆柱和圆锥等底等高,体积相差8dm 3,这个圆锥的体积是( )dm 3,圆柱的体积是( )dm 3。
12.一个盖着瓶盖的瓶子里装着一些液体(如图所示),瓶子的容积是( )立方厘米。
二、判断题14.底面积一定,圆锥的体积和高成正比例。
( )15.求利息就是用本金乘以利率。
( )16.0和﹣6之间有5个负数。
( )17.两个成反比例的量,在图像上描的点连接起来是一条光滑的曲线。
( ) 18.体积相等的两个圆柱,它们一定等底等高。
( )三、选择题19.若甲地的海拔高度为﹣100米,乙地的海拔高度为100米。
则甲乙两地海拔高度相差为()。
A.0米B.﹣200米C.100米D.200米20.利息的计算公式是()。
义务教育课程标准实验教科书数学一年级(下册)
期末调查卷2011年6月班级姓名成绩
一、直接写出得数(共30分)
11-2 = 13-5 = 24-8 = 41-6 =
4 + 5
5 = 29 + 4 = 8 + 18 = 7
6 + 6 =
43-9 = 56-7 = 12-3 = 17-8 =
5 + 87 = 88-3 = 40 + 21 = 65-30 =
82-6 = 21-4 = 33-7 = 54-5 =
30 + 70 = 90-60 = 74-70 = 53-3=
25 + 5-8 = 9 + 3-6 = 18-3-9 =
10 + 5-7 = 32-4-8 = 11-6 + 9 =
二、填空(各题依次为3、4、4、3、4、3分,共21分)
1. 看图写算式。
☆☆☆☆☆★★★★★★
☆☆☆☆☆★★★★★★
□+□=□□-□=□□-□=□
2.左边图形①是形,
图形②是形,
图形③是形,
图形①②③④拼成的是形。
3.按规律继续写下去。
42、44、46、48、()。
80、85、90、95、()。
73、72、71、70、()。
40、30、20、10、()。
4.(1)(2)1张可以换
张。
()元()角
(3)1张可以换1张和张。
5.个位上和十位上都是6的数是;
个位上是6,十位上是4的数是;
十位上是6,个位上是4的数是。
上面三个数中, 最大, 最小。
6. 12-7 =
□-□ 16-7 >16-□ 11-6 <□-6
三、用竖式计算(共8分)
24 + 42 = 90-57 = 18 + 69 = 62-35 =
四、选择合适的答案,在□里画“√”(共10分)
1.
小方可能拍了多少下?
26下□ 62下□ 88下□
2.
这个计数器表示的数是多少?
1□ 10□ 100□
3.在已经认识的数中,比60大、比70小的一共有多少个? 8个□
9个□ 10个□
4. 如果74-□6的差是四十多,□里的数是几? 2□ 3□ 4□
5.
买这辆汽车,付的都是 ,至少要付多少张? 2张□ 5张□ 6张□
五、在点子图上画一个正方形和一个平行四边形(共4分)
小红 小方
六、解决实际问题(依次为5、5、8、9分,共27分)
1. 已经停了( )辆汽车,
还有25个空位。
这个停车场一共可以停多少辆汽车?
2. 一年级1班有36名学生。
每人发1瓶牛奶,发
了一些后,还有( )瓶
没有发。
已经发了多少瓶?
3. 两种颜色的花一共有多少盆?
再搬来多少盆黄花,两种花的盆数
同样多?
4. 先想想算算,再填表。
60箱72箱( )箱。