进程同步与互斥(进程同步与互斥问题)
- 格式:pptx
- 大小:83.36 KB
- 文档页数:8
实验、进程的同步与互斥——⽣产者消费者1. 1. 实验⽬的两个或两个以上的进程,不能同时进⼊关于同⼀组共享变量的临界区域,否则可能发⽣与时间有关的错误,这种现象被称作进程互斥。
对CPU的速度和数⽬不做出任何假设的前提下,并发进程互斥访问临界资源,是⼀个较好的解决⽅案。
另外,还需要解决异步环境下的进程同步问题。
所谓异步环境是指:相互合作的⼀组并发进程,其中每⼀个进程都以各⾃独⽴的、不可预知的速度向前推进;但它们⼜需要密切合作,以实现⼀个共同的任务,即彼此“知道”相互的存在和作⽤。
实验⽬的:分析进程争⽤资源的现象,学习解决进程同步与互斥的⽅法。
本实验属于设计型实验,实验者可根据⾃⾝情况选⽤合适的开发环境和程序架构。
1. 2. 实验原理信号量的PV操作与处理相关,P表⽰通过的意思,V表⽰释放的意思。
1962年,狄克斯特拉离开数学中⼼进⼊位于荷兰南部的艾恩德霍芬技术⼤学(Eindhoven Technical University)任数学教授。
在这⾥,他参加了X8计算机的开发,设计与实现了具有多道程序运⾏能⼒的操作系统——THE Multiprogramming System。
THE是艾恩德霍芬技术⼤学的荷兰⽂Tchnische Hoogeschool Eindhov –en的词头缩写。
狄克斯特拉在THE这个系统中所提出的⼀系统⽅法和技术奠定了计算机现代操作系统的基础,尤其是关于多层体系结构,顺序进程之间的同步和互斥机制这样⼀些重要的思想和概念都是狄克斯特拉在THE中⾸先提出并为以后的操作系统如UNIX等所采⽤的。
为了在单处理机的情况下确定进程(process)能否占有处理机,狄克斯特拉将每个进程分为“就绪”(ready)、“运⾏”(running)和“阻塞”(blocking)三个⼯作状态。
由于在任⼀时刻最多只有⼀个进程可以使⽤处理机,正占⽤着处理机的进程称为“运⾏”进程。
当某进程已具备了使⽤处理机的条件,⽽当前⼜没有处理机供其使⽤,则使该进程处于“就绪”状态。
解释一下进程同步和互斥的概念,并提供一些实际应用的例子。
解释进程同步和互斥的概念,并提供实际应用例子进程同步和互斥是操作系统中重要的概念,用于确保并发执行的进程能够正确地共享资源和避免竞争条件的发生。
以下是对这两个概念的解释以及一些实际应用的例子:进程同步的概念进程同步是指多个进程在执行过程中按照一定的顺序和规则进行协调以达到预期的结果。
在并行执行的环境下,进程可能会相互依赖或者依赖于某些共享资源,因此需要通过某种机制来保证进程之间的协调与同步。
常见的进程同步机制有:1. 互斥锁(Mutex):一种二进制信号量,用于确保在某一时刻只有一个进程访问共享资源,其他进程需要等待。
2. 信号量(Semaphore):用于控制多个进程对共享资源的访问,可以通过增减信号量的值来实现协调。
3. 条件变量(Condition Variable):用于在某一进程等待某个条件满足时暂停执行,直到条件满足后继续执行。
进程互斥的概念进程互斥是指多个进程对于共享资源的访问被限制为互斥的,即同一时刻只能有一个进程访问共享资源。
这样可以防止并发时的竞争状况,确保每个进程得到正确的结果。
实际应用例子:1. 银行账户:多个用户同时进行转账或查询操作时,需要对账户进行同步操作,避免出现数据不一致的情况。
2. 打印机:多个进程同时请求打印机,需要通过互斥机制来控制打印机资源的访问顺序,避免打印内容交叉或重叠。
3. 多线程编程:在多线程编程中,多个线程共享同一数据结构时,需要使用锁或信号量等机制来保证线程之间的同步和互斥。
这些例子中,进程同步和互斥机制的应用确保了资源的正确使用和并发操作的有序性,提高了系统的稳定性和可靠性。
以上是关于进程同步和互斥的概念解释以及实际应用例子的内容。
进程同步和互斥在操作系统中扮演重要角色,对于确保并发操作的正确性至关重要。
进程的同步与互斥实验报告1.实验目的进程(线程)的同步与互斥是操作系统中非常重要的概念,本实验旨在通过实际操作,加深对这些概念的理解和掌握。
通过编写多个进程(线程),并在其间进行同步与互斥操作,验证同步与互斥的实际效果。
2.实验环境本实验在Linux系统下进行,使用C/C++语言编程。
3.实验内容3.1同步在实验中,我们编写了两个进程A和B,这两个进程需要按照特定的顺序执行。
为了实现同步,我们使用信号量机制来确保进程A和B按照正确的顺序执行。
3.2互斥在实验中,我们编写了多个进程C和D,这些进程需要同时对一个共享资源进行访问。
为了实现互斥,我们使用互斥锁机制来确保同一时刻只有一个进程访问共享资源。
4.实验过程4.1同步实验编写进程A和进程B的代码,使用信号量机制实现同步。
进程A先运行,然后通过信号量唤醒进程B,进程B再开始执行。
通过观察进程的运行顺序,验证同步机制是否起作用。
4.2互斥实验编写进程C和进程D的代码,使用互斥锁机制实现互斥。
进程C和进程D同时对一个共享资源进行访问,通过互斥锁来确保同一时刻只有一个进程访问共享资源。
观察进程的输出结果,验证互斥机制是否起作用。
5.实验结果5.1同步实验结果进程A开始执行进程A执行完毕进程B开始执行进程B执行完毕5.2互斥实验结果进程C开始执行进程C访问共享资源进程C执行完毕进程D开始执行进程D访问共享资源进程D执行完毕6.实验分析通过上述结果可以看出,同步实验中进程A和进程B按照正确的顺序执行,证明了同步机制的有效性。
互斥实验中进程C和进程D能够正确地交替访问共享资源,证明了互斥机制的有效性。
7.实验总结通过本次实验,我深刻理解了进程(线程)的同步与互斥,并通过实际操作加深了对这些概念的理解。
同步和互斥是操作系统中非常重要的概念,对于应对资源竞争和提高程序性能具有重要意义。
在实际开发中,我们应该合理使用同步和互斥机制,以确保程序的正确性和并发执行的效率。
详解进程同步与互斥机制⽬录⼀、什么是进程同步⼆、什么是进程互斥三、常见的进程同步与互斥机制⼀、什么是进程同步在多道批处理系统中,多个进程是可以并发执⾏的,但由于系统的资源有限,进程的执⾏不是⼀贯到底的,⽽是⾛⾛停停,以不可预知的速度向前推进,这就是进程的异步性。
那么,进程的异步性会带来什么问题呢?举个例⼦,如果有 A、B 两个进程分别负责读和写数据的操作,这两个线程是相互合作、相互依赖的。
那么写数据应该发⽣在读数据之前。
⽽实际上,由于异步性的存在,可能会发⽣先读后写的情况,⽽此时由于缓冲区还没有被写⼊数据,读进程 A 没有数据可读,因此读进程 A 被阻塞。
进程同步(synchronization)就是⽤来解决这个问题的。
从上⾯的例⼦我们能看出,⼀个进程的执⾏可能影响到另⼀个进程的执⾏,所谓进程同步就是指协调这些完成某个共同任务的并发线程,在某些位置上指定线程的先后执⾏次序、传递信号或消息。
再举个⽣活中的进程同步的例⼦,你想要喝热⽔,于是你打了⼀壶⽔开始烧,在这壶⽔烧开之前,你只能⼀直等着,⽔烧开之后⽔壶⾃然会发⽣响声提醒你来喝⽔,于是你就可以喝⽔了。
就是说⽔烧开这个事情必须发⽣在你喝⽔之前。
注意不要把进程同步和进程调度搞混了:进程调度是为了最⼤程度的利⽤ CPU 资源,选⽤合适的算法调度就绪队列中的进程。
进程同步是为了协调⼀些进程以完成某个任务,⽐如读和写,你肯定先写后读,不能先读后写吧,这就是进程同步做的事情了,指定这些进程的先后执⾏次序使得某个任务能够顺利完成。
⼆、什么是进程互斥同样的,也是因为进程的并发性,并发执⾏的线程不可避免地需要共享⼀些系统资源,⽐如内存、打印机、摄像头等。
举个例⼦:我们去学校打印店打印论⽂,你按下了 WPS 的 “打印” 选项,于是打印机开始⼯作。
你的论⽂打印到⼀半时,另⼀位同学按下了 Word 的 “打印” 按钮,开始打印他⾃⼰的论⽂。
想象⼀下如果两个进程可以随意的、并发的共享打印机资源,会发⽣什么情况?显然,两个进程并发运⾏,导致打印机设备交替的收到 WPS 和 Word 两个进程发来的打印请求,结果两篇论⽂的内容混杂在⼀起了。
进程同步与互斥总结
进程同步和互斥是操作系统中非常重要的概念,它们都是为了保证多个进程能够在正确的时间顺序和正确的方式下运行。
进程同步是指多个进程之间协调执行的过程,而互斥是指多个进程之间竞争有限资源的过程。
以下是关于进程同步与互斥的一些总结:
1. 进程同步方式:
- 信号量:通过对共享资源的访问进行限制,实现多个进程之间的同步。
- 互斥锁:通过对共享资源的访问进行互斥,实现多个进程之间的同步。
- 条件变量:通过对进程状态的检查,实现多个进程之间的同步。
2. 进程互斥方式:
- 临界区:多个进程同时访问共享资源时,只允许一个进程访问。
- 互斥量:多个进程同时访问共享资源时,通过加锁和解锁来实现互斥。
- 读写锁:多个进程同时访问共享资源时,允许多个进程同时读取,但只允许一个进程写入。
3. 进程同步与互斥的优缺点:
- 信号量:优点是可以同时处理多个进程,缺点是容易出现死锁。
- 互斥锁:优点是简单易用,缺点是只能处理两个进程之间的同步。
- 条件变量:优点是可以检查进程状态,缺点是只能处理两个进
程之间的同步。
- 临界区:优点是简单易用,缺点是只能处理两个进程之间的同步。
- 互斥量:优点是可以同时处理多个进程,缺点是容易出现死锁。
- 读写锁:优点是可以允许多个进程同时读取,缺点是会出现写入延迟的问题。
综上所述,进程同步与互斥是操作系统中非常重要的概念,需要根据具体的场景选择适合的同步方式或互斥方式来保证多个进程之
间的协调执行和有限资源的竞争。
16、进程同步的四种⽅法?1. 临界区对临界资源进⾏访问的那段代码称为临界区。
为了互斥访问临界资源,每个进程在进⼊临界区之前,需要先进⾏检查。
2. 同步与互斥同步:多个进程因为合作产⽣的直接制约关系,使得进程有⼀定的先后执⾏关系。
互斥:多个进程在同⼀时刻只有⼀个进程能进⼊临界区。
3. 信号量信号量(Semaphore)是⼀个整型变量,可以对其执⾏ down 和 up 操作,也就是常见的 P 和 V 操作。
down : 如果信号量⼤于 0 ,执⾏ -1 操作;如果信号量等于 0,进程睡眠,等待信号量⼤于 0;up :对信号量执⾏ +1 操作,唤醒睡眠的进程让其完成 down 操作。
down 和 up 操作需要被设计成原语,不可分割,通常的做法是在执⾏这些操作的时候屏蔽中断。
如果信号量的取值只能为 0 或者 1,那么就成为了互斥量(Mutex),0 表⽰临界区已经加锁,1 表⽰临界区解锁。
使⽤信号量实现⽣产者-消费者问题问题描述:使⽤⼀个缓冲区来保存物品,只有缓冲区没有满,⽣产者才可以放⼊物品;只有缓冲区不为空,消费者才可以拿⾛物品。
因为缓冲区属于临界资源,因此需要使⽤⼀个互斥量 mutex 来控制对缓冲区的互斥访问。
为了同步⽣产者和消费者的⾏为,需要记录缓冲区中物品的数量。
数量可以使⽤信号量来进⾏统计,这⾥需要使⽤两个信号量:empty 记录空缓冲区的数量,full 记录满缓冲区的数量。
其中,empty 信号量是在⽣产者进程中使⽤,当 empty 不为 0 时,⽣产者才可以放⼊物品;full 信号量是在消费者进程中使⽤,当 full 信号量不为 0 时,消费者才可以取⾛物品。
注意,不能先对缓冲区进⾏加锁,再测试信号量。
也就是说,不能先执⾏ down(mutex) 再执⾏ down(empty)。
如果这么做了,那么可能会出现这种情况:⽣产者对缓冲区加锁后,执⾏ down(empty) 操作,发现 empty = 0,此时⽣产者睡眠。
实验一进程的同步与互斥一、实验目的(1)加深对进程概念的理解,明确进程和程序的区别。
(2)进一步认识并发执行的实质。
(3)分析进程竞争资源现象,学习解决进程互斥的法。
(4)了解Windows对进程管理的支持。
二、实验类型观察/分析型。
三、预习内容预习进程管理有关理论和VC++对进程管理的支持, 包括进程的基本操作和经典的进程同步与互斥问题。
四、实验要求本实验通过学习和分析三个简单的Windows 线程编程编写一个简单的生产者/消费者问题实例程序。
利用(1)和(2)中的Windows 进程和线程创建法实现一个简单的读者,写者程序,读者将1~10 十个数字依次填入临界资源区gData,当且仅当gData 被读者消费后,写者才可以写入下一个数。
五、实验代码#include "windows.h"#include <conio.h>#include <stdio.h>#include <math.h>const int writerNum = 1;const int readerNum = 1;int gData = 0;bool continu = true;HANDLE hmutex;HANDLE hfullsemaphore;HANDLE hemptysemaphore;DWORD WINAPI reader(LPVOID lppara){while(continu){WaitForSingleObject(hemptysemaphore,INFINITE);WaitForSingleObject(hmutex,INFINITE);if(gData >= 11){continu = false;break;}Sleep(100);printf("readers gets data:%d\n", gData);printf("\n");ReleaseMutex(hmutex);ReleaseSemaphore(hfullsemaphore,1,NULL);}return NULL;}DWORD WINAPI writer(LPVOID lppara){while(continu){WaitForSingleObject(hfullsemaphore,INFINITE);WaitForSingleObject(hmutex,INFINITE);if(gData >= 10){continu = false;break;}Sleep(100);gData++;printf("writer gets data:%d\n", gData);printf("\n");ReleaseMutex(hmutex);ReleaseSemaphore(hemptysemaphore,1,NULL);}return NULL;}int main(){hmutex = CreateMutex(NULL,false,NULL);hfullsemaphore = CreateSemaphore(NULL,1,1,NULL);hemptysemaphore = CreateSemaphore(NULL,0,1,NULL);DWORD readerdata;DWORD writerdata;for (int i=0;i<writerNum;i++){if(CreateThread(NULL,0,writer,NULL,0,&writerdata)==NULL) return -1;}for (int j=0;j<readerNum;j++){if(CreateThread(NULL,0,reader,NULL,0,&readerdata)==NULL) return -1;}printf("Program ends successfully\n");return 0;}。
什么是进程互斥,什么是进程同步,同步和互斥这两个概念有什
么联系和区别?
在操作系统中,当某⼀进程正在访问某⼀存储区域时,就不允许其他进程进⾏读写或者修改该存储区的内容,否则就会发⽣后果⽆法估计的错误。
进程之间的这种相互制约的关系成为进程互斥。
并发进程在⼀些关键点上可能需要互相等待与互通消息,这种相互制约的等待与互通信息称为进程同步。
实际上进程互斥也是⼀种同步,他协调多个进程互斥进⼊同⼀个临界资源对应的临界区。