3.定量PCR实验设计和流程
- 格式:pdf
- 大小:273.25 KB
- 文档页数:25
荧光定量PCR实验操作流程1. 检查实验室条件在进行荧光定量PCR实验前,首先要检查实验室的环境是否适合实验。
实验室应该保持干燥、清洁和无菌。
检查PCR仪和读板器是否能正常运转,并准备所有必需的试剂和器械。
2. DNA/RNA的提取和纯化从组织和细胞中提取和纯化DNA/RNA是实验的第一步。
在提取和纯化DNA/RNA的过程中,需要保持无菌和正确的技术。
同时需要注意使用适当的缓冲液和酶切剂,以避免DNA/RNA的损伤和降解。
3. DNA/RNA质量检测检测DNA/RNA的质量和浓度,以确保实验结果的准确性。
可以使用紫外线光谱仪或其他质量检测设备。
同时,需要记录下每个样本的质量和浓度值。
4. 反转录如果需要检测RNA,需要首先进行反转录(Reverse Transcription,RT)。
反转录反应将RNA转录成相应的cDNA,可以使用逆转录酶和随机引物进行反转录反应。
5. 荧光定量PCR反应体系和引物设计荧光定量PCR反应体系包括模板DNA/RNA,荧光探针,引物和PCR反应缓冲液。
引物的设计是至关重要的,需要确保引物与目标序列的特异性和敏感性。
引物的设计可以使用NCBI或其他引物设计软件进行。
6. PCR反应设置PCR反应参数:温度梯度,反应时间和DNA量,浓度和样本装载量等。
注意反应器核心温度的控制,以确保反应的准确性和重复性。
7. 数据分析使用荧光定量PCR的结果进行数据分析。
可以使用数据分析软件,例如GenEx或其他软件。
计算出每个样本的阈值循环数(Ct值),并使用标准曲线法进行定量计算。
总之,荧光定量PCR是一种高灵敏度和高特异性的分子生物学检测技术,不仅可以用于基础研究,还可以用于临床诊断和治疗监测等领域。
在实验前需要认真准备,操作流程中需要注意无菌和正确的技术,以确保实验结果的准确性。
定量PCR实验设计和流程定量聚合酶链反应(quantitative polymerase chain reaction,qPCR)是一种用于测定DNA或RNA的相对或绝对数量的实验技术。
其基本原理是通过PCR扩增目标序列的DNA或RNA,然后利用荧光探针或染料测定PCR产物的数量。
以下是定量PCR实验的一般设计和流程:1.设计引物和探针:首先选择目标序列并设计引物和探针,引物应与目标序列能够特异性结合,而探针能够标记PCR产物并产生荧光信号。
设计引物和探针时需要考虑其长度、碱基组成和Tm值,以确保特异性扩增和最佳PCR反应条件。
2.样本处理:根据实验目的,收集样本并进行必要的处理,如提取DNA或RNA。
对于目标序列低浓度的样本,可能需要进行前处理步骤,如放大或浓缩。
3. 反应体系制备:准备PCR反应的组分,包括DNA或RNA模板、引物、探针、逆转录酶(如果需要进行逆转录反应)和PCR Master Mix(包含聚合酶、缓冲液和核苷酸等)。
4.PCR扩增反应:将反应体系加入PCR管或板中,然后进行PCR扩增反应。
PCR反应一般包括预变性(或逆转录)步骤、热循环扩增步骤和终止步骤。
热循环扩增步骤一般包括一系列温度变化,如变性、退火和延伸,以使DNA或RNA产生扩增。
热循环扩增的温度和时间可以根据实验设置。
5.荧光信号检测:采用荧光实时定量PCR仪检测PCR反应产物的荧光信号。
荧光探针一般会与PCR产物结合并产生荧光信号。
通过监测荧光信号的累积量,可以了解PCR反应的进程以及目标序列的相对或绝对数量。
6.数据分析:利用荧光信号检测得到的数据,进行相对或绝对定量。
相对定量是通过比较不同样本或不同时间点的荧光信号,来推断目标序列的相对数量。
绝对定量则需要使用标准曲线法,根据已知浓度的标准品的荧光信号,来计算未知样本中目标序列的绝对数量。
7.结果解读和验证:根据数据分析的结果来解读实验结果,比较不同样本之间的信号差异,并验证定量PCR实验的可靠性。
荧光定量pcr实验步骤荧光定量PCR实验步骤引言:荧光定量PCR(qPCR)是一种广泛应用于生物学研究和临床诊断的技术,可用于准确、快速地定量检测DNA的含量。
本文将介绍荧光定量PCR实验的步骤,以及注意事项和数据分析方法。
一、实验准备1. 准备所需试剂和仪器:包括PCR反应体系的各种试剂(如引物、探针、酶等)和实时荧光定量PCR仪。
2. 根据实验设计,制定合适的实验方案。
确定需要扩增的目标序列,设计引物和探针。
二、样品处理1. 提取待测样品中的DNA,确保提取得到高质量的DNA。
可以使用商业DNA提取试剂盒进行提取,按照厂家说明进行操作。
2. 测定DNA的纯度和浓度,确保测量到的DNA适用于PCR扩增反应。
使用比色法或分光光度计检测DNA的纯度和浓度。
3. 对提取得到的DNA进行稀释,以便在PCR反应中使用。
确保稀释后的DNA浓度恰当,以避免PCR反应的干扰。
三、荧光定量PCR反应体系的准备1. 根据实验设计和目标序列的长度,计算出所需的试剂和反应体系的配比。
2. 根据计算结果,将引物、探针和模板DNA按照适当的比例加入PCR反应管中。
注意保持反应管的清洁和无菌。
3. 加入合适的PCR反应缓冲液、酶和核酸酶抑制剂等试剂。
根据实验设计的需要,可以在反应体系中添加适当的试剂,如酶切酶、胶束等。
四、PCR扩增反应1. 将PCR反应管放入实时荧光定量PCR仪中,设置好PCR反应的程序和参数。
通常包括预热、变性、退火和延伸等步骤。
2. 启动PCR反应,开始扩增。
在反应过程中,实时监测PCR产物的荧光信号强度,并记录下来。
五、数据分析与结果解读1. 在实时荧光定量PCR仪中,可以实时获得PCR反应体系中荧光信号的强度和变化趋势。
根据实验设计的需要,可以选择合适的荧光信号通道进行监测。
2. 根据荧光信号和PCR反应的周期数,可以绘制荧光增幅曲线。
通过观察曲线的形态和特征,可以初步判断PCR反应的特异性和效果。
PCR实验室操作流程PCR(聚合酶链反应,Polymerase Chain Reaction)是一种可以通过体外合成DNA的方法,也是现代生物技术中一项重要的分子生物学技术。
PCR技术的应用广泛,包括基因测序、基因突变检测、表达定量等。
下面是PCR实验室操作的一般流程。
1.设计引物:PCR实验的第一步是设计引物。
引物是用于扩增目标DNA片段的短链DNA序列。
两个引物分别对应目标序列的两端,其长度通常在18-24个碱基对之间。
引物的碱基序列必须与目标序列互补,以确保引物的结合和扩增特异性。
2. 制备PCR反应液:将PCR反应所需的试剂制备成PCR反应液。
PCR 反应液包括模板DNA、引物、聚合酶、反应缓冲液、dNTPs和Mg2+等。
聚合酶可以是常见的Taq聚合酶,也可以是其他高保真度的热稳定聚合酶。
反应缓冲液包含缓冲盐、pH调节剂和聚乙二醇等成分。
3.加热变性:PCR反应开始前,需要对DNA模板进行热变性,将其双链DNA解开成单链DNA,以供引物结合。
一般在95℃左右进行加热变性步骤,持续1-5分钟。
4.循环扩增:PCR实验主要包括循环扩增的步骤。
循环扩增主要分为三个步骤:变性、退火和延伸。
变性温度一般设置在94-98℃,可以使DNA双链变为单链;退火温度根据引物序列的特性来设计,一般设置在50-70℃之间,可以使引物与DNA模板序列结合;延伸温度一般为72℃,此温度下聚合酶能够合成新的DNA链。
5.PCR循环反复:PCR反应通常进行30-40个循环,每个循环包括变性、退火和延伸的三个步骤。
这样可以进行指数级扩增,生成大量目标DNA片段。
6. PCR产物检测:PCR反应结束后,可以通过凝胶电泳等方法对PCR产物进行检测。
将PCR产物与DNA分子量标记物一起电泳,可以通过与标准品比较得知扩增片段的大小。
也可以通过染色剂如SYBR Green等进行荧光定量,或者使用定量PCR方法定量扩增产物的数量。
7.结果分析和数据处理:根据PCR产物的结果进行数据分析和处理。
多重荧光定量pcr步骤
多重荧光定量PCR(Multiplex real-time PCR)是一种同时检
测多个靶标序列的PCR技术。
它利用荧光标记的探针来定量
检测多个靶标序列的扩增产物。
以下是多重荧光定量PCR的
一般步骤:
1. 设计引物和探针:根据需要检测的靶标序列设计引物和探针,确保引物和探针的特异性和互补性。
2. 制备PCR反应体系:根据引物和探针的浓度,配制PCR反
应液。
通常包括模板DNA、引物、探针、Taq酶、缓冲液和
核酸酶水。
3. 负控和阳性对照:制备负控和阳性对照,用于检测PCR反
应系统的特异性和敏感性。
4. PCR反应:将PCR反应体系加入PCR管或板中,进行PCR 反应。
PCR反应包括一系列的循环,通常包括初始变性步骤、扩增步骤和终止步骤。
5. 数据采集和分析:通过实时荧光检测仪器实时监测PCR反
应过程中荧光信号的变化,得到荧光强度 vs. PCR周期数的曲线。
通过设置阈值,用于计算Ct值(循环阈值),并根据标
准曲线计算出待测样本中靶标序列的初始浓度。
6. 结果解读:根据Ct值和标准曲线,计算出待测样本中各个
靶标序列的相对数量和浓度。
需要注意的是,进行多重荧光定量PCR时,需要确保引物和探针的特异性和互补性,避免扩增产物的交叉反应。
另外,对于多重荧光定量PCR的反应体系和参数的优化,需要根据具体的实验要求和样本特点进行调整。
以上是一般步骤,具体操作可以根据实验条件进行调整。
定量PCR的实验流程及注意事项一、实验流程:1. Primer设计:为了进行定量PCR实验,需要设计一对与目标DNA 或RNA序列特异性结合的引物。
确保引物的特异性和互补性,通过使引物的浓度相等可以最大限度地提高PCR反应的扩增效率。
2.模板DNA或RNA提取:从细胞或组织中提取目标DNA或RNA。
可以使用商业化的DNA/RNA提取试剂盒或其他方法进行提取。
注意保持样品的完整性,避免污染和降解。
3.RNA逆转录(如果需要):如果目标是RNA,则需要使用反转录酶将mRNA转换为cDNA。
通常,使用逆转录酶和随机引物进行逆转录反应。
4. qPCR反应体系:准备PCR反应体系,其中包含引物、模板DNA或cDNA、酶(如Taq DNA聚合酶、逆转录酶等)和反应缓冲溶液。
同时还可以加入SYBR Green等荧光染料或探针以实现实时监测PCR反应的进行。
5.PCR反应条件:设置合适的PCR反应条件,如温度和时间等。
通常情况下,PCR反应会进行多个循环,每个循环包括退火、延伸和变性三个步骤。
6.实时检测PCR反应:在PCR反应过程中,使用实时荧光检测系统实时监测PCR产物的积累。
根据荧光信号变化的阈值周期数(Ct值),可以推断出目标DNA或RNA的初始浓度。
7.标准曲线构建:通过使用已知浓度的目标DNA或RNA来构建标准曲线。
将标准曲线与待测样品的Ct值进行比较,可以计算出目标物浓度。
8.数据分析:根据标准曲线和待测样品的Ct值,计算出目标物的相对或绝对浓度。
可以使用专业的数据分析软件对实验结果进行统计分析和解释。
二、注意事项:1.特异性引物设计:确保引物与目标DNA或RNA的特异性结合,避免引物与非目标序列的扩增。
2.制备PCR反应的质量控制:采用无菌、无核酸污染的试剂和实验环境,避免引入杂质干扰PCR反应。
3.避免PCR反应产物的污染:使用专门用品和设备进行PCR实验,避免引入外源性DNA或RNA。
4.逆转录反应的标准化:如果进行RNA定量PCR,应尽量标准化逆转录反应的条件,以获得准确的cDNA模板。
定量pcr实验报告定量PCR实验报告引言:PCR(聚合酶链反应)是一种重要的分子生物学技术,通过扩增目标DNA片段,可以在短时间内生成大量的DNA。
定量PCR是PCR的一种应用,可以精确测量目标DNA的数量。
本实验旨在使用定量PCR技术,对一种特定基因的DNA进行定量分析。
材料与方法:1. DNA样本:从人体组织中提取的DNA。
2. 基因特异性引物:设计用于扩增目标基因的引物。
3. TaqMan探针:与目标基因序列互补,携带荧光染料和荧光素。
4. 定量PCR试剂盒:包括PCR反应缓冲液、聚合酶、dNTPs等。
5. 实时荧光定量PCR仪:用于检测PCR反应过程中的荧光信号。
实验步骤:1. 样本制备:将DNA样本提取并纯化。
2. 引物设计:根据目标基因序列设计特异性引物。
3. PCR反应体系制备:将PCR反应缓冲液、引物、探针、聚合酶、dNTPs和DNA样本混合。
4. PCR扩增:在热循环仪中进行PCR扩增,包括一系列的变温步骤。
5. 荧光信号检测:实时荧光定量PCR仪会在每个循环结束后检测PCR反应体系中的荧光信号。
6. 数据分析:根据荧光信号的变化,计算目标基因的相对表达量。
结果与讨论:通过实时荧光定量PCR仪检测,我们获得了PCR反应体系中的荧光信号数据。
根据这些数据,我们计算出了目标基因的相对表达量。
通过对多个样本进行定量PCR实验,我们可以比较不同样本中目标基因的表达水平。
本实验的结果表明,在不同样本中目标基因的表达水平存在差异。
这些差异可能与个体的遗传背景、环境因素以及疾病状态等有关。
通过定量PCR技术,我们可以更加准确地研究基因表达的变化,从而深入了解相关生物学过程。
定量PCR技术的优点在于其高灵敏度和高特异性。
相比于传统的PCR技术,定量PCR可以提供更加准确的结果。
此外,定量PCR还可以同时检测多个基因的表达水平,从而为生物学研究提供更多的信息。
然而,定量PCR也存在一些局限性。
首先,PCR反应的成功与否取决于引物和探针的设计。
PCR定量实验方案实验目的本实验旨在通过聚合酶链式反应(PCR)定量检测目标DNA的数量。
通过PCR 定量实验,可以快速、准确地确定目标DNA的含量,为后续实验提供数据支持。
实验原理PCR定量实验基于聚合酶链式反应的基本原理,通过反复复制目标DNA序列,使其数量呈指数增加,并通过荧光信号在PCR循环的各个阶段实时监测目标DNA的增长情况。
荧光信号的强度与目标DNA的初始量成正比,从而可以定量测量目标DNA的数量。
实验步骤1.样本处理:–收集待检测样本,并提取目标DNA。
–使用核酸定量仪检测目标DNA的浓度,并计算出适当的稀释倍数。
–将目标DNA按照所需的浓度稀释,并制备出一系列不同浓度的DNA标准曲线样品。
2.PCR反应体系准备:–准备PCR反应混合液,包括模板DNA、引物、荧光探针、酶和缓冲液等。
–按照所需的PCR反应体系,按比例向反应管中加入相应的试剂,确保反应混合液的配制准确。
3.反应条件设置:–设置PCR反应的温度和时间参数,包括初始变性、循环变性、退火和延伸等步骤。
–根据目标序列的特性和引物设计,调整PCR反应的温度梯度、循环次数等参数,以实现最佳放大效果。
4.PCR反应实施:–将PCR反应混合液分装到反应管中,注意避免产生交叉污染。
–将反应管放入PCR仪中,按照设定的温度和时间参数运行PCR反应。
–实时监测PCR反应过程中荧光信号的强度变化,记录关键点的荧光信号值。
5.数据分析:–将PCR反应过程中记录的荧光信号值绘制成实时荧光曲线图。
–根据所制备的DNA标准曲线样品,通过荧光信号值反推目标DNA的初始量。
–根据目标DNA的初始量和稀释倍数,计算样本中目标DNA 的浓度。
实验注意事项1.实验操作前,准备好PCR反应所需的所有试剂和设备,并保持反应管和工作台的清洁。
2.操作过程中,注意避免产生交叉污染,尤其是在样本处理和PCR反应准备阶段。
3.严格按照PCR反应体系准备说明书中的比例和操作要求进行试剂的配制和混合。
以下实验步骤仅供参考:1 样品RNA的抽提①取冻存已裂解的细胞,室温放置5分钟使其完全溶解。
②两相分离每1ml的TRIZOL试剂裂解的样品中加入0.2ml的氯仿,盖紧管盖。
手动剧烈振荡管体15秒后,15到30℃孵育2到3分钟。
4℃下12000rpm离心15分钟。
离心后混合液体将分为下层的红色酚氯仿相,中间层以及无色水相上层。
RNA全部被分配于水相中。
水相上层的体积大约是匀浆时加入的TRIZOL 试剂的60%。
③RNA沉淀将水相上层转移到一干净无RNA酶的离心管中。
加等体积异丙醇混合以沉淀其中的RNA,混匀后15到30℃孵育10分钟后,于4℃下12000rpm 离心10分钟。
此时离心前不可见的RNA沉淀将在管底部和侧壁上形成胶状沉淀块。
④RNA清洗移去上清液,每1mlTRIZOL试剂裂解的样品中加入至少1ml的75%乙醇(75%乙醇用DEPCH2O配制),清洗RNA沉淀。
混匀后,4℃下7000rpm 离心5分钟。
⑤RNA干燥小心吸去大部分乙醇溶液,使RNA沉淀在室温空气中干燥5-10分钟。
⑥溶解RNA沉淀溶解RNA时,先加入无RNA酶的水40μl用枪反复吹打几次,使其完全溶解,获得的RNA溶液保存于-80℃待用。
2 RNA质量检测1)紫外吸收法测定先用稀释用的TE溶液将分光光度计调零。
然后取少量RNA溶液用TE稀释(1:100)后,读取其在分光光度计260nm和280nm处的吸收值,测定RNA 溶液浓度和纯度。
①浓度测定A260下读值为1表示40 µg RNA/ml。
样品RNA浓度(µg/ml)计算公式为:A260 ×稀释倍数× 40 µg/ml。
具体计算如下:RNA溶于40 µl DEPC水中,取5ul,1:100稀释至495µl的TE中,测得A260 = 0.21RNA 浓度= 0.21 ×100 ×40 µg/ml = 840 µg/ml 或0.84 µg/µl取5ul用来测量以后,剩余样品RNA为35 µl,剩余RNA总量为:35 µl × 0.84 µg/µl = 29.4 µg②纯度检测RNA溶液的A260/A280的比值即为RNA纯度,比值范围1.8到2.1。
实时荧光定量PCR具体实验步骤1.提取样本RNA/DNA:首先,从研究对象中提取出所需的RNA或DNA样本。
可以使用商业化的提取试剂盒来完成这一步骤。
2. 反转录酶链反应(RT):如果提取的样本为RNA,则需要先进行反转录酶链反应,将RNA转录成cDNA(即DNA拷贝),反转录酶具有多样性(M-MLV逆转录酶)和过程性(RTase)。
3.准备PCR反应体系:根据实验所需的扩增模板和引物,将PCR反应体系按照厂家提供的信息制备,通常需要包括PCR反应缓冲液、dNTPs、引物、酶、模板DNA/cDNA和稀释水。
4. 调整荧光探针的浓度:如果实验中使用到了荧光探针(如TaqMan探针、MGB探针等),需要根据实验要求对荧光探针的浓度进行调整。
5.放置PCR板:将所需的PCR试管或板放置在适当的位置,以便加载反应体系。
6.反应体系加载:按照实验所需的样品数量和模板浓度,依次向PCR反应管或板中加入反应体系。
注意,需要设置相应的阳性对照和阴性对照。
7.封闭PCR反应管/板:闭合PCR反应管或板,以防止反应体系的挥发和样品的交叉污染。
8.准备PCR仪:根据PCR仪的要求,调整PCR仪的温度和时间参数。
9.PCR扩增:将已封闭的PCR反应管或板放置在预热的PCR仪中,开始PCR扩增。
根据实验需要,设置不同的PCR程序(如热启动PCR、两步PCR和三步PCR等)。
10. 实时监测PCR过程:在PCR反应过程中,实时监测PCR反应管或板中产生的荧光信号,并记录下每个周期(cycle)的荧光值。
11. 数据分析:根据荧光信号的变化,结合标准曲线法或相对表达量法,对PCR反应中目标序列的数量进行定量分析。
常见的分析软件包括Stratagene MxPro QPCR软件和Applied Biosystems SDS软件等。
12.结果分析和解释:根据数据分析的结果,对实验结果进行解释和讨论,并在图表中呈现。
13. 结果验证:可以使用其他方法验证RT-qPCR的结果,如Western blotting、细胞免疫化学分析等。
PCR实验室工作流程PCR(聚合酶链反应)是一种可以大量复制DNA片段的技术,广泛应用于生物医学研究、疾病诊断、基因工程等领域。
PCR实验室工作流程主要包括实验前准备、实验操作和结果分析三个阶段。
下面将详细介绍PCR实验室的工作流程。
实验前准备阶段:1.设计引物:PCR实验首先需要设计引物,引物是用于扩增目标DNA片段的两个短链DNA寡核苷酸序列。
引物应选择在目标序列的两侧,通常长度在18-25个碱基之间,碱基的配对应尽量避免自身互补。
引物的设计要考虑目标序列的长度、GC含量、互补度等因素。
2.扩增条件的优化:PCR实验通常需要优化扩增条件,以提高扩增效率和特异性。
扩增条件的优化包括反应体系的组成、引物浓度、温度和时间的调整等。
具体优化方法可以通过不同引物浓度、温度和时间的试验,选择出最佳扩增条件。
实验操作阶段:1.PCR反应体系的配置:根据扩增体系的设计,配置PCR反应的体系。
PCR反应体系主要包括DNA模板、引物、dNTPs(四个碱基)、PCR缓冲液、聚合酶和延伸酶等组分。
反应体系中不同组分的浓度和配比会影响PCR的效果。
2.PCR反应的设置:将PCR反应体系装入PCR管或者微孔板,然后放入PCR仪中进行扩增反应。
PCR反应通常包含预变性、变性、退火和扩增等步骤,这些步骤的温度和时间根据引物的特性和扩增体系的设计而定。
3.PCR产物的检测:PCR反应结束后,需要对扩增产物进行检测。
常用的检测方法包括琼脂糖凝胶电泳、荧光定量PCR、实时定量PCR等。
琼脂糖凝胶电泳可以观察到扩增产物的大小和数量,荧光定量PCR和实时定量PCR则可以定量测量扩增产物的丰度。
结果分析阶段:1.电泳图的分析:通过电泳分析可以判断PCR反应的效果。
如果在目标位置能够观察到预期大小的条带,说明PCR扩增成功。
如果没有观察到条带,可能是PCR反应体系的问题,需要进一步优化扩增条件。
2. 产物序列分析:如果PCR扩增反应得到了预期的条带,可以进一步进行序列分析。
qpcr实验步骤详细引言real-time定量聚合酶链反应(qPCR)是一种快速、敏感并具有高度准确性的分子生物学技术,广泛应用于基因表达、DNA定量和病原体检测等领域。
本文将详细介绍qPCR的实验步骤。
材料和试剂•qPCR仪器设备•PCR反应管•DNA模板•引物•DNA聚合酶•dNTP混合液•磷酸盐缓冲液•MgCl2•荧光探针•模板DNA稀释液实验步骤步骤1:实验室准备准备实验室工作台,并清洁工作台表面以消除任何潜在的污染源。
确保所有实验器材和试剂处于合适的工作温度。
步骤2:qPCR反应物的制备1.在干燥的PCR反应管中,向每个样品管中加入以下组分:•磷酸盐缓冲液:根据试剂盒说明书加入适量的磷酸盐缓冲液。
•dNTP混合液:加入适量的dNTP混合液。
•MgCl2:根据试剂盒说明书加入适量的MgCl2。
•引物:根据实验需要加入适量的引物。
•DNA聚合酶:根据试剂盒说明书加入适量的DNA聚合酶。
2.轻轻混合反应管,以确保所有反应物均匀混合。
步骤3:样品处理1.准备待测样品DNA。
可以通过提取DNA、RNA逆转录制备cDNA等方法获取。
2.将待测样品DNA加入PCR反应管中。
步骤4:qPCR条件设置1.预热qPCR仪器到适当的温度。
2.设置qPCR仪器的程序:•95°C:预热反应管,持续2-5分钟。
•95°C:变性步骤,持续15-30秒。
•Tm温度(引物特异性):退火步骤,持续30秒-1分钟。
•72°C:延伸步骤,持续30秒-1分钟。
•重复步骤2-4,通常为25-40个循环。
步骤5:数据收集和分析1.使用qPCR仪器实时收集PCR数据。
2.通过仪器软件对数据进行分析。
结论经过上述步骤,我们可以成功进行qPCR实验。
这项技术可用于快速、准确地定量检测和分析DNA样品,对于研究基因表达调控、疾病诊断和药物研发等领域具有重要意义。
请注意,本篇文章是一种原创性的解释文章,旨在介绍qPCR实验步骤。
分子诊断荧光定量pcr流程
分子诊断荧光定量PCR的流程包括以下步骤:
1. 设计引物:根据目标基因的序列,设计特异性引物。
2. 构建标准品:将已知浓度的目标基因片段进行扩增,构建标准品。
3. 样品处理:对临床样本进行处理,提取出其中的DNA或RNA。
4. 配制反应液:根据荧光定量PCR的反应体系,将引物、探针、模板等组分按照一定的比例混合。
5. 运行程序:将反应液放入荧光定量PCR仪中,运行扩增程序。
6. 结果分析:通过荧光定量PCR仪的软件分析结果,计算出目标基因的拷贝数或浓度。
7. 解读报告:将结果解读为临床意义,为医生提供诊断依据。
请注意,荧光定量PCR技术有实时荧光定量PCR和数字荧光定量PCR等不同的方法,具体流程可能略有差异。
另外,进行荧光定量PCR实验时,需要严格遵守实验室安全要求,防止交叉污染和意外事故的发生。
荧光定量pcr实验步骤荧光定量PCR实验步骤荧光定量PCR(Quantitative PCR,qPCR)是一种用于测量特定DNA序列数量的技术。
它可以快速、准确地定量检测目标DNA的含量,广泛应用于基因表达分析、病原体检测、遗传变异分析等领域。
下面将介绍荧光定量PCR实验的步骤。
一、实验前准备在进行荧光定量PCR实验之前,需要做好实验前的准备工作。
1. 设计引物和探针:根据目标DNA序列设计引物和探针,确保其特异性和互补性。
2. 准备模板DNA:从样品中提取目标DNA,并进行纯化和定量。
3. 制备PCR反应体系:根据PCR反应的需要,准备好PCR反应体系,包括引物、探针、模板DNA、Taq DNA聚合酶、缓冲液和dNTP等。
4. 验证引物和探针的特异性:使用目标DNA和非目标DNA进行聚合酶链式反应,通过凝胶电泳验证引物和探针的特异性。
二、荧光定量PCR实验步骤1. 反应体系配置:按照实验设计,配置好PCR反应体系。
将引物、探针、模板DNA、Taq DNA聚合酶、缓冲液、dNTP等加入反应管中,然后加入适量的去离子水。
2. PCR反应条件设定:根据引物和探针的特性,设定PCR反应的温度和时间参数。
一般来说,PCR反应包括预变性、变性、退火和延伸四个阶段,其中变性温度为95℃,变性时间为30秒,退火温度为60℃,退火时间为30秒,延伸温度为72℃,延伸时间根据目标片段的长度而定。
3. PCR反应体系装入仪器:将装有PCR反应体系的反应管放入荧光定量PCR仪器中。
4. 荧光定量PCR实验运行:启动荧光定量PCR仪器,按照预设的PCR反应条件进行PCR反应。
仪器会根据设定的温度和时间参数进行PCR反应,并实时检测荧光信号。
5. 数据分析与结果解读:荧光定量PCR仪器会自动记录PCR反应过程中的荧光信号,根据荧光信号的变化可以计算出目标DNA的数量。
通过对比不同样品的荧光信号差异,可以定量分析目标DNA 的含量。
荧光定量PCR(Quantitative Real-Time PCR,简称qPCR)是一种分子生物学技术,用于精确测定样本中特定核酸序列的数量。
其基本原理基于PCR(聚合酶链式反应)技术和实时荧光检测,能够在PCR扩增过程中连续监测荧光信号的变化,从而实现对起始模板量的定量分析。
荧光定量PCR原理简述:1.PCR扩增:qPCR采用传统的PCR方法,包括变性(DNA双链解开成单链)、退火(引物与靶序列配对)和延伸(DNA聚合酶合成新链)这三个基本步骤,反复进行使得目标序列指数级扩增。
2.荧光标记与检测:SYBR Green法:SYBR Green是一种非特异性的双链DNA结合染料,在游离状态下几乎不发出荧光,但一旦与双链DNA结合后,荧光强度显著增强。
因此,随着PCR过程中的产物增加,荧光信号也相应增加,荧光强度与PCR产物的数量成正比。
TaqMan探针法:此方法更为特异,使用一种特殊的寡核苷酸探针,其两端分别标记了荧光报告基团和淬灭基团。
在PCR反应中,当探针与靶序列配对时,位于中间的探针被Taq 酶水解,导致荧光报告基团与淬灭基团分离,从而产生荧光信号。
只有当特定的扩增产物生成时才会释放荧光。
荧光定量PCR实验步骤概览:1.样品制备:RNA提取:从组织、细胞或其他生物样本中提取总RNA,常用TRIZOL或类似试剂进行裂解、离心分相和乙醇沉淀来纯化RNA。
cDNA合成:对于mRNA的定量,需要先将RNA逆转录为cDNA。
2.设计与合成引物:针对目标基因设计一对特异性的PCR引物,用于扩增目的片段。
3.PCR反应体系构建:将纯化的cDNA或DNA模板、特异性引物、Taq聚合酶、缓冲液、dNTPs和其他必要成分如SYBR Green染料或TaqMan探针等加入至PCR管中,配置成最终的PCR反应体系。
4.实时荧光PCR扩增与检测:在荧光定量PCR仪上进行PCR反应,仪器在每次循环的适当阶段收集荧光信号,并记录下来。
Module 2: 定量PCR实验设计和流程
定量PCR的实验设计
•准确定量样品的三个基本要求•定量PCR的实验要素
•定量PCR的实验中的误差校正
准确定量样品的三个基本要求
•重复性好
•准确度高
•动力学范围宽
1. 重复性: 曲线一致性
重复性好
40个相同样本重复
2. 准确度
与正确检测数据的接近程度
3.动力学范围
能得到高质量数据的线性范围
(范围越大越好)
定量PCR的实验要素
●目的基因样品
●标准曲线标准品●监控系统阳性对照●监控污染阴性对照
●分光光度计检测:
–
DNA 纯度:OD 260/OD 280=1.8–RNA 纯度:OD 260/OD 280=2.0
●Qubit ®
荧光定量:–
分别定量DNA 、RNA 及蛋白质–
准确性、灵敏度和简便性–Qubit ®Assay (dsDNA, ssDNA, RNA, protein)
模板质量:纯度和浓度
目的基因: 样品
标准曲线:标准品
●目的:生成标准曲线,建立Ct值与浓度之间的线性关系
●要求:
–绝对定量实验:标准品浓度已知
–相对定量实验:标准品与待测样品的PCR效率一致,且接近
100%
•试剂质量一致:模板纯度、引物和探针的Tm值、酶活性、缓
冲液成分
•反应条件一致:循环参数相同
标准曲线:如何制备标准曲线
•Don’t:
•制备3个点的2倍标准曲线
•Do:
•推荐制备至少5个点的10倍标准曲线(4 logs)
标准曲线:标准品梯度稀释方法
10倍连续梯度稀释方法:
1v原液(标准品i) +9v稀释缓冲液,得标准品ii
1v标准品ii+9v稀释缓冲液,得标准品iii
1v标准品iii +9v稀释缓冲液,得标准品iv
1v标准品iv +9v稀释缓冲液,得标准品v
不可由标准品i分别加不同体积的稀释缓冲液直接得到标准品ii、iii、iv、v
E = 10(-1/斜率)-1R 2≥0.99
R 2≥0.99 E = 92.85%
标准曲线: PCR 扩增效率的确定
监控系统:阳性对照
●100%能扩增出荧光信号的对照组
●正常实验中可当做阳性对照的反应孔
•标准品
•内参(管家基因)
监控污染:阴性对照
类型
•无模板对照(No Template Control,NTC)
•无反转录酶对照(No RT Control)
•……
通过扩增图谱、熔解曲线、电泳、测序等手段对阴
性对照结果进行分析,以确认反应体系中是否存在
污染
定量PCR的实验要素小结
●目标基因
样品:模板质量
●标准曲线
标准品:生成标准曲线,建立Ct值与浓度之间的线性关系
●监控系统
阳性对照:标准品,内参(管家基因)
●监控污染
阴性对照:无模板对照,无反转录酶对照
定量PCR的实验中的误差校正
●校准生物学误差内参(管家基因)●校准物理误差参比荧光
●降低随机误差重复实验
校准生物学误差:内参(管家基因)
内参基因(Endogenous Control)
用于校准实验过程中样品本身对定量结果的影响
•原因:核酸提取时通常以重量,体积或细胞数为单位取样,提取过程中存在得率差异和操作误差,造成等量样品不一定获得等量提取物
•目的:将定量结果校准为以基因组(或单个细胞)为单位,不同样品之间才具有可比性
•校准方法:[目的基因]/[内参]=均一化的目的基因表达量
内参的选择
●在所有待测样品中,内参的表达量应当恒定不变
●常用内参基因,如18S rRNA、GAPDH等
●Human/Mouse/Rat Endogenous Control
Product Name Part Number TaqMan® Array Human Endogenous Control Panel 4367563 TaqMan® Array Mouse Endogenous Control Panel 4378702 TaqMan® Array Rat Endogenous Control Panel 4378704
●Master Mix中ROX浓度固定
●ROX不参与PCR扩增,信号强度只与Master Mix用量有关●ROX的功能:校准物理误差
–耗材质量、管盖厚度、透光性能
–反应体系监控:蒸发、操作
Reporter
ROX
R n=R FAM/ R ROX
Reporter
ROX
Rn Rn
校准物理误差:参比荧光(ROX)
ROX校准增加数据精度
降低随机误差: 重复实验
●生物学重复:样品三次重复
●技术重复:每个样品做3-4个复孔
定量PCR的实验中的误差校正小结
●生物学方面的误差:内参校正
细胞数量的差异、抽提效率、纯化损失、反转录效率等
●物理方面的误差:ROX校正
耗材质量(如管盖厚度、透光性能不一致)所导致的光学误差;反应体系监控(蒸发)。
●随机误差:统计校正
重复实验,取平均值
定量PCR 的实验流程
1)样品采集2)选择提取方法5)购买RT 和PCR 试剂6)验证实验
扩增效率
动力学范围
准确度
精密度7)正式实验
反应板设置
软件设置8)数据分析
4)选择靶基因自行设计订购试剂盒
3)选择化学方法探针法
染料法
日常实验中的注意事项
●实验室分区:样品处理区、定量PCR反应制备区、扩增区●标准品的稀释最好使用独立的一套移液器
●移液器使用带滤芯的枪头
●先加阴性对照,后加样品,再由低浓度到高浓度加标准品,最后加阳性对照
●反应后的PCR管应当直接废弃,切不可在实验区域内开启●PCR管/ 8联管/板上不可用记号笔标记
●PCR管/ 8联管/板使用光学平盖或光学膜,不要裸手触摸盖或膜表面
●PCR管或8联管要对称放置
Questions?。