桥梁深水基础施工方案及施工工艺[优秀工程方案]
- 格式:doc
- 大小:364.00 KB
- 文档页数:11
第1篇一、引言桥梁沉井是一种常见的桥梁基础施工方法,广泛应用于深水基础、软土地基等复杂地质条件下。
本文针对桥梁沉井方案及施工方法进行详细介绍,旨在为桥梁基础施工提供参考。
二、桥梁沉井方案1. 沉井类型根据沉井的结构形式和施工方法,桥梁沉井可分为以下几种类型:(1)圆形沉井:适用于深水基础和软土地基,结构简单,施工方便。
(2)方形沉井:适用于地基承载力较好的桥梁基础,可节省材料,降低成本。
(3)矩形沉井:适用于桥梁基础宽度较大的情况,结构稳定性较好。
(4)组合沉井:由多个沉井组合而成,适用于复杂地质条件下的桥梁基础。
2. 沉井尺寸沉井尺寸应根据桥梁基础尺寸、地质条件、施工设备等因素确定。
一般而言,沉井尺寸应满足以下要求:(1)沉井内部空间足够,满足施工和设备安装需求。
(2)沉井壁厚满足抗浮和抗渗要求。
(3)沉井尺寸与地质条件相匹配,确保施工安全。
3. 沉井结构沉井结构主要包括以下部分:(1)沉井壁:采用钢筋混凝土结构,壁厚应根据地质条件和抗浮、抗渗要求确定。
(2)底板:采用钢筋混凝土结构,厚度应满足抗浮和抗渗要求。
(3)隔水层:在沉井底部设置隔水层,防止地下水渗入沉井内部。
(4)导流系统:在沉井壁上设置导流系统,方便施工过程中的排水。
三、桥梁沉井施工方法1. 施工准备(1)现场勘察:对施工现场进行勘察,了解地质条件、水文条件等。
(2)施工方案编制:根据勘察结果,编制详细的施工方案。
(3)施工设备准备:准备挖掘机、起重机、混凝土搅拌车等施工设备。
(4)人员培训:对施工人员进行技术培训和安全教育。
2. 沉井制作(1)模板制作:根据沉井尺寸和结构,制作模板。
(2)钢筋绑扎:按照设计要求,绑扎钢筋。
(3)混凝土浇筑:在模板内浇筑混凝土,确保混凝土质量。
(4)养护:混凝土浇筑完成后,进行养护,确保混凝土强度。
3. 沉井下沉(1)排水:在沉井底部设置排水系统,排除地下水。
(2)导流:在沉井壁上设置导流系统,引导水流。
深水区桥梁基础施工渝怀铁路沿线经过重庆市、贵州省和湖南省,山高坡陡,溪河纵横,地形、地貌、地质条件非常复杂,使沿线桥隧分布较密,而且高桥、特大桥、多线桥、复杂桥以及长大隧道等分布较广。
本线桥梁基础分为扩大基础和桩基础两大类。
其中深水区桥梁基础施工方案叙述如下:㈠、工程概况()桥位于()省境内,上跨()河,该桥()墩位于深水中,水深约()米,设计为钻孔桩桩基础,设计为高桩承台。
上部为()。
地质水文情况为:()。
主要工程量为()。
㈡、总体施工方案⒈据我单位以往的深水区桥梁基础施工经验,总体方案设计如下:⑴方案一:搭设以钢管桩为支撑的施工平台形成水上施工场地。
利用双壁钢围堰围水进行水下圬工的施工。
采用施工便桥和舟船运输两条线路相结合的运输系统。
⑵方案二:采用双壁钢沉箱浮运方案。
㈢、双壁钢围堰方案1.主要施工顺序为:搭设施工平台→桩基础施工→双壁钢围堰围水→承台及墩身浇筑→拆除2.施工平台①结构形式施工平台的结构形式设计时不仅要考虑水上桩基的施工问题,而且还要考虑到下步双壁钢围堰拼装下沉及水下圬工的施工问题。
本方案施工平台采用矩形平面,长()米,宽()米。
见下图。
平台顶面标高()米=洪水位()米+浪涌()米+安全高度0.8米。
平台基础采用Φ325钢管桩支撑,网格型布置,每根长度为()米,共计()根,支撑桩端部设置在()地质层上(据具体情况个别设计)。
平台上部采用I32a型工字钢做为纵横联,与支撑钢管焊接相连。
平台顶面铺设5cm的车行板,外围设防护栏杆。
②平台搭设施工工艺平台搭设施工工艺见下图平台搭设施工工艺框图平台搭设施工a.施工准备:施工机具:使用打桩船、水上浮吊、运输船等水上施工设备,采用电动打桩锤施打平台支撑桩,根据施工需要,加工所需的桩帽、桩卡、替打和送桩器等。
测量放样:在岸边测设大地四边形,计算墩位等相关数据,利用两台经纬仪,采用交会法准确测出每根支撑桩桩桩位。
纵向经纬仪控制桩及桩架的纵向垂直度,横向经纬仪控制导向桩及桩的预留斜度和横向垂直度;二者交会则定出桩位中心点。
桥梁深水基础施工方案1. 引言深水基础施工是指在水下的一种基础施工工艺,常见于桥梁的建设项目中。
由于深水区域的水深较大,传统的基础施工方法已无法适应深水建设需求,因此需要采用新的技术方法和工艺来解决深水桥梁基础的施工问题。
本文将根据深水桥梁基础施工的特点和要求,提出一套具体的施工方案,并对其进行详细的介绍和分析。
2. 深水桥梁基础施工方案2.1 数据准备在进行深水桥梁基础施工前,首先需要进行数据准备工作。
包括但不限于测量水深、水下地质勘探、海底地质调查等。
这些数据将为后续施工提供重要的依据。
2.2 桩基施工桩基施工是深水桥梁基础施工的关键环节,常见的桩基类型有钻孔灌注桩、钢管灌注桩等。
深水桥梁基础桩基施工的具体步骤如下:1.在水下用定位设备确定桩位,使用起重机将桩机吊装到预定位置。
2.根据设计要求,在水下钻孔取土,并进行相应的测量和监测。
3.在钻孔中注入预制筏板灌注桩桩体。
4.桩基完成后,进行桩身的检查和测试,并对不符合要求的桩体进行修补或更换。
2.3 埋管施工桥梁的深水基础中,埋管施工是常见的一种方式。
埋管的材质多为钢管、混凝土管等。
深水桥梁基础埋管施工的步骤如下:1.在水下用测量仪器确定管道的位置和长度。
2.使用沉管技术将管道沉入海底,其中包括管道的下沉、固定等工作。
3.对管道进行自流沉管或者使用定位器控制下沉过程。
4.完成管道的下沉后,进行管道连接和固定,确保管道的稳固和牢固。
2.4 其他施工工艺除了桩基和埋管施工外,深水桥梁基础施工还可以采用吹砂、砂水泥注浆等工艺。
这些工艺可以在施工过程中根据实际需求进行选择和应用。
3. 施工安全措施在深水桥梁基础施工过程中,为保障施工人员的安全,采取以下安全措施:1.现场人员必须配备防滑鞋、救生衣等个人防护装备,并接受相关安全培训。
2.严格按照操作规程进行操作,防止发生危险事故。
3.施工现场必须划定安全警戒区,禁止非施工人员进入施工区域。
4.安排专人进行安全监督和巡视,确保施工过程中的安全。
桥梁深水基础施工方案及施工工艺一、施工方案1.基坑开挖:先根据设计要求确定基坑范围和形状,然后进行土方开挖。
根据施工现场的实际情况,采用机械挖掘或者爆破的方式进行基坑开挖,确保基坑的形状和尺寸符合设计要求。
2.基坑处理:对基坑底部进行处理,去除杂质和松软土层,确保基坑底部坚硬、平整。
然后,在基坑底部铺设一层防渗隔水膜,以防止地下水的渗透。
3.沉井施工:沉井施工是桥梁深水基础施工的关键环节。
首先,根据设计要求,在基坑底部搭建沉井框架。
然后将预制的沉井箱或者模块沉入到基坑底部,并逐步下沉到设计高度。
在沉井过程中,需要进行水平调整和垂直控制,确保沉井的位置和高度准确。
4.筏板施工:在沉井完成后,施工人员将混凝土浇筑到沉井内部,形成一层厚度适当的筏板。
筏板的厚度和尺寸应根据设计要求进行控制。
在浇筑过程中,需要采取震捣措施,以确保混凝土的密实性和强度。
5.基坑回填:筏板浇筑完成后,进行基坑的回填工作。
首先,将沉井框架进行拆除,并在沉井周围进行填土,将基坑回填至地面平均高度。
在填土过程中,需要进行夯实和加水充实,以提高土体的稳定性和密实度。
6.护坡施工:基坑回填完成后,进行护坡施工。
根据设计要求,在基坑周围施工护坡结构,以防止土体的坍塌和滑坡。
护坡的形式可以是钢筋混凝土挡土墙、石方护坡等,具体的形式和尺寸应根据施工现场的实际情况进行确定。
二、施工工艺1.基坑开挖工艺:采用机械挖掘或者爆破的方式进行基坑开挖,根据设计要求确定开挖深度和形状。
在开挖过程中,需要进行土方的清理和坡度的控制,确保基坑的形状和尺寸符合设计要求。
2.沉井施工工艺:在基坑底部搭建沉井框架,再将预制的沉井箱或者模块沉入到基坑底部。
通过调整沉井箱或者模块的位置,逐步下沉至设计高度。
在沉井过程中,需要进行水平调整和垂直控制,以确保沉井的位置和高度准确。
3.筏板施工工艺:在沉井完成后,进行筏板的浇筑。
先在沉井内部安装螺旋钢筋,然后进行混凝土浇筑。
主桥墩深水基础施工方案深水基础是指在大江、湖泊、海洋等深水区域中,为支撑大型桥梁等工程设施而建设的基础。
主桥墩深水基础施工方案是指在主桥墩的建设过程中所采用的一系列施工方法和工艺。
主桥墩深水基础施工方案需要综合考虑工程施工的可行性、经济性和安全性等因素,以确保施工过程顺利进行,并确保建设的主桥墩能够牢固地承载桥梁的荷载。
1.墩柱施工方案:墩柱是主桥墩的核心承载组件,其施工方案应考虑墩柱的材料选择、加固策略和施工方法等。
在深水区域中,墩柱通常采用预制混凝土结构,可以利用浮吊等设备进行吊装和定位。
墩柱的加固策略可以采用液压圈封和加固钢筋等措施,以提高其抗浪力和抗流力。
2.基座施工方案:基座是主桥墩的承台,其施工方案应考虑基座的选址和固定、基座混凝土的浇筑和养护等。
基座的选址要考虑到水深、地质条件和航道要求等因素,选择合适的位置并采用合适的固定方法,如沉箱基础或挖孔灌注桩等。
基座混凝土的浇筑可以采用搅拌站输送混凝土,通过钢管、喷射泵等设备进行定向浇筑。
3.浮吊设备和施工平台方案:浮吊设备和施工平台是深水基础施工的关键设备和工具,其施工方案应考虑到浮吊设备的选型、布置和使用方法,以及施工平台的搭设和固定等。
浮吊设备的选型应根据桥梁的跨度和荷载要求确定,施工平台的搭设则可以采用悬垂链锚定、浮体固定或旋转浮吊等方法,以保证设备和施工人员的安全。
4.施工过程控制方案:深水基础施工过程控制方案包括施工进度控制、质量控制和安全控制等。
施工进度控制要根据进度计划和施工条件,合理安排施工任务和资源调度,确保按时完成施工目标。
质量控制要根据工程要求,制定相应的检验和测试方案,确保主桥墩的质量达到设计要求。
安全控制要依据安全规范和风险评估,制定相应的安全措施,例如设置安全警戒线、使用个人防护装备等,以确保施工过程的安全。
综上所述,主桥墩深水基础施工方案是一个系统工程,涉及到多个方面的考虑和决策。
通过合理的施工方案,并结合现代化的施工设备和技术,可以确保深水基础施工的顺利进行,为主桥墩的建设提供坚实可靠的支撑。
S316巢湖段(长江东路至湖光南路)改建工程K4+746.5裕溪河特大桥2425 # #深水桥墩基础施工方案安徽路港公司 S316巢湖段改建工程市政 02标二〇一三年十二月# 25裕溪河特大桥 24 、深水桥墩基础施工方案#一、工程概况1、桥型和结构本标段实施桩号 K4+013.1-K5+461.5,为裕溪河特大桥,桥梁全长 1454.4米;跨径组合为: 5×25+4×30+(23.4+4×25)+9×25+ (70+130+75)+23×25,按一级公路标准建设,设计速度 80km/小时,桥梁全宽 41m,双幅设置。
主桥平面位于 4600m 的圆曲线上、纵断面纵坡为 +2.48%和-2.48%,单幅桥面横坡为单向 2%。
跨裕溪河主桥长 280m(跨径布置: 75m+130m+75m),桥面宽度 41m。
桩基全部采用钻孔灌注嵌岩桩基础。
24#墩(高 16米)、25# 墩(高 17米)位于裕溪河河道内,桥位地处巢湖下游,是巢湖流域的主要入江水道,为 III级航道,河底高程为 1.70~0.60m,相应底宽100~110m,堤距约 200m,堤顶高程 9.80~11.40m,最高通航水位10.31m。
现场概况为横跨裕溪河、农田、沟塘等。
主墩 52根桩基(共2墩),桩径 2.0m,桩间距 3.0米,承台顶面标高 2.464m,河道常流水位 6.5m。
技术标准1.公路等级:公路— I级;2.设计行车速度: 80公里 /小时;3.桥梁设计汽车荷载等级:公路-Ⅰ级;4.设计基准年: 100年5.桥面宽度:全宽 41.0m,双幅设置,单幅标准宽度 19.0m,桥面布置为:2.5m(人行道)+3.5m(非机动车道) +0.5m(护栏)+12m (行车道) +0.5m(护栏)+3.0m(分隔带 );6.环境类别: I类环境;7.桥面铺装: 10cm沥青混凝土 +防水层 +10cmC40防水混凝土;8.设计洪水频率: 1/300;9.设计水位: 300年一遇水位: 11.59m,100年一遇水位:11.00m,最高通航水位: 10.31m。
桥梁大型基础深水基坑围堰施工方法发布时间:2021-03-12T03:51:45.535Z 来源:《建筑学研究前沿》2020年25期作者:李巨祥1 徐增威2[导读] 并通过拖轮拉动甲板驳船使得双壁钢围堰被运输至安装区域附近,并通过浮吊将双壁钢围堰吊装置安装区域。
1南京南部路桥建设(集团)有限公司江苏南京 2113002淮安市洪泽区水利局岔河水利中心服务站江苏淮安 223100一、背景技术双壁钢围堰是一种常用的围堰结构,被广泛的应用于桥梁大型基础渗水基坑的建设中,在建造桥梁过程中,双壁钢围堰能够防止水和泥土进入到建筑物的修剪位置,以便在双壁钢围堰内进行排水、开挖基坑和修建建筑物。
双壁钢围堰一般是在工厂进行分块制造,并在码头进行组装,在组装完成后,双壁钢围堰通过码头的龙门吊机被放置在甲板驳船上,并通过拖轮拉动甲板驳船使得双壁钢围堰被运输至安装区域附近,并通过浮吊将双壁钢围堰吊装置安装区域。
现有技术缺陷:在进行桥梁大型基础深水基坑围堰的施工时,由于大型基础深水基坑的深度较深,导致对应的双壁钢围堰的高度较高,即对应的双壁钢围堰的重量较大,普通浮吊较难吊装上述双壁钢围堰,造成桥梁大型基础深水基坑围堰施工困难的问题。
二、技术方案针对现有技术存在的不足,提供一种桥梁大型基础深水基坑围堰施工方法,方便了桥梁大型基础深水基坑围堰的施工。
双壁钢围堰的剖面结构示意图桥梁大型基础深水基坑围堰施工方法,包括如下步骤:S1、预制双壁钢围堰,所述双壁钢围堰包括上围堰和下围堰;S2、清理安装区域的河床;S3、将所述下围堰运输至安装区域的附近,并通过浮吊将下围堰安装的安装区域,使得下围堰保持自浮状态;S4、向下围堰的壁仓内注水,使得下围堰下沉,直至下围堰的顶部壁水面高5米时,停止注水;S5、将上围堰运输至安装区域附近,并采用浮吊将上围堰安装至下围堰的顶部,且对上围堰和下围堰进行围焊固定形成双壁钢围堰;S6、向双壁钢围堰的壁仓注水,使得双壁钢围堰继续下沉,使得双壁钢围堰的刃脚插入至河床内;S7、通过空气吸泥机并采用空气吸泥下沉法使得双壁钢围堰继续下沉,直至双壁钢围堰至设计高度;S8、对双壁钢围堰围出的区域进行清基处理,并形成锅底基坑,向锅底基坑内注入封底混凝土;S9、待封底混凝土初凝后,将双壁钢围堰内的水抽出。
5.2.1.某桥梁深水基础施工方案及施工工艺5.2.1.1.概况大桥位于巴中侵蚀低山区,在曾口场下游约3km跨越某河,桥位处航道等级为Ⅶ级,航道尺度(航深×航宽×回旋半径)0.9×12×249m ,桥位处河面宽约110m。
本桥采用大跨混凝土连续梁桥,中心里程为D1K24+610,桥跨布置:8×32+(48+80+48)+7×3。
桥位处轨底至河底高50m。
两座桥梁下部结构均采用T形桥台,圆端形桥墩及圆端形空心墩,基础采用钻(挖)孔桩基础。
水中墩基础采用双壁钢围堰施工,需搭设水中栈桥及钻孔平台。
5.2.1.2.施工方案见“表5.2.1-1”。
5.2.1.3.施工方法及工艺本桥陆地桩基、浅水桩基、墩台、现浇连续梁施工法同“3.5.桥梁工程”,不再详述。
重点主要是深水基础施工,施工方法及措施如下:表5.2.1-1 深水基础施工方案表连续梁悬灌施工方案先施工0#梁段,根据具体情况选择落地支架或墩顶托架进行施工,落地支架采用钢管或制式器材搭设,托架采用制式杆件或型钢,立模、布设钢筋、钢绞线,泵送砼一次浇筑成型,张拉、压浆完成后,在0#块上安装挂蓝。
悬灌采用对称、同步浇筑施工。
边跨直线段,采用支架法现浇。
合拢时,先合拢边跨合拢段,拆除临时支墩进行第一次体系转换,然后合拢中跨合拢段。
合拢时采取临时固结刚性锁定,两端进行均衡压重。
悬灌梁的标高、线形控制采用铁科院开发的软件随时进行信息反馈和调整。
简支T梁施工方案采用预制架设法施工,T梁在制梁场预制,架桥机逐孔架设。
5.2.1.3.1.施工栈桥施工分别从两岸浅水区修建便道,再分别搭设栈桥,栈桥宽6m,栈桥为15m一跨,每个临时墩布置3根Φ80cm钢管桩、桩间设置横向剪刀撑连接系,桩顶设置钢结构分配梁,栈桥梁部采用贝雷梁拼装、铺设桥面板,栈桥与桥墩基础施工平台连接,以保证吊机到墩位作业。
具体见施工栈桥示意图5.2.1-1。
栈桥基础采用打入钢管桩,钢管桩顶部设型钢承台,承台上设钢支座,沿线路纵向架设贝雷梁,贝雷梁上部沿栈桥横纵向架设工字钢作桥面分配梁,与贝雷梁之间联结采用勾头螺栓连接,上部铺设钢板,与工字梁焊接。
贝雷梁横向之间设剪刀撑,确保施工栈桥整体稳定。
钢管桩直径采用Φ60cm,钢板壁厚12mm,长度根据设计荷载及地质状况综合考虑布设要求经计算确定。
(1)钢管桩施工履带吊停放在已施工完成的施工便道,吊装悬臂导向定位支架,悬臂导向定位支架精确就位后,运输钢管桩就位。
履带吊机起吊底节钢管桩吊至设计桩位并插桩,让钢管桩自沉入土,待一组全部钢管桩就位后,用履带吊将振动锤与液压夹钳吊至钢管桩顶口,用液压夹钳将钢管桩顶口夹住检查桩的垂直度满足要求后,开动振动锤振动,每次振动持续时间不宜超过10~15min,过长则振动锤易遭到破坏,太短则难以下沉。
每根桩的的下沉一气呵成,不可中途停顿或较长时间的间隙,以免桩周土恢复造成继续下沉困难。
单根桩节按起吊高度和重量控制最大为15m,单根桩长超过15m分为2节,底节钢管桩入土至导向架施工平台上0.5~1.0m高度时,移去振动锤进行接桩。
用履带吊将顶节钢管桩就位后,逐根就位,钢管桩就位后进行两节桩的焊接,同时履带吊换上桩锤和液压夹钳。
桩与桩之间焊接质量经检查合格后重新进行打桩,直至将桩打到设计深度。
栈桥纵断面布置图A--A断面说明:图中尺寸除注明以外,均以cm计。
6*1500=9000图5.2.1-1 施工栈桥结构示意图沉桩导向架设计:栈桥设计跨度为等跨15m,定位的思路考虑利用架桥机的原理,采用贝雷桁架与型钢加工形成一整体悬臂导向架,贝雷桁架长13m,导向架末端与已经铺设完成的栈桥前端贝雷梁销接,导向架前端按设计的桩位预留孔位并设置导向系统。
先利用已经形成的栈桥作为待施工钢管桩的粗定位导向,再利用前端导向架上的微调系统完成钢管桩的精确定位。
通过此导向架系统可以将水上定位转变为陆上定位,避免由于水流对定位的影响。
施工中将导向架加工为整体结构。
施工完一跨栈桥后,利用履带吊将导向架整体吊装与栈桥主梁连接,精确放出桩位,调整导向轮位置控制桩位后,履带吊配合振动锤沿测定孔位打桩。
一排钢管桩振打完毕将导向架移开,铺设分配梁、主梁及桥面系,然后转入下一孔便桥施工。
(2)栈桥架设打桩施工完成后,检查桩的偏斜及入土深度与设计无误后,在钢管桩之间安设型钢剪刀撑使其形成整体。
同时在桩顶按设计尺寸气割槽口,并保证底面平整;标准跨先吊放2根Ⅰ32a横向型钢分配梁,与钢管桩焊接固定;每联接头桩位置先吊装纵向分配梁,并与钢管桩焊接固定,在其上再吊放横向分配梁。
钢管桩施工完成以后,施工栈桥采用履带吊机架设贝雷桁架主桁纵梁,贝雷桁架在拼梁场分组拼装,汽车运至铺设位置,吊机起吊安装成主桁整体,并与分配梁连结。
施工栈桥钢梁架设详见图5.2.1-2。
桥面施工:在已架设好的贝雷桁架纵梁上安装桥面系,其中Ⅰ22a横梁与贝雷桁架纵梁的连接采用骑马螺栓连接,Ⅰ12.6a面板纵肋满焊在Ⅰ22a面板横肋上。
标准化模块间设置1cm的缝隙,用于防止因温度变化而引起的桥面板翘曲起伏。
栈桥栏杆立杆及横杆均采用Φ48×3.5mm普通钢管制作。
栏杆采用在岸上加工区统一制作连接成片,运至栈桥吊装焊接。
栈桥两侧均设置栏杆,在每联接头处断开。
栏杆按设计图纸设置立柱,焊接在桥面系横梁上。
栈桥栏杆通过粉刷不同颜色油漆以区分禁吊区和非禁吊区,并在栈桥上设置警示灯和夜间照明设施。
履带吊贝雷桁架图5.2.1-2 施工栈桥钢梁架设图5.2.1.3.2.深水桩基施工钻孔桩施工工艺流程:钻孔施工平台建立→插打钢护筒→安装钻机、钻孔→一次清孔→拆除钻具→检孔→安装钢筋笼、导管→二次清孔→浇筑水下混凝土→桩身混凝土质量检查。
(1)主要施工设备及机具①水上浮吊水上高架浮吊主要由六七式铁路战备舟桥器材的标准舟节、分水节、公路栈桥箱形梁、托架、电动锚机及动臂吊机组成的水上起重设备,岸上到水中及水中的所有起重吊装作业全部由浮吊来完成。
浮吊的性能:最大起重2021最大起重高度30米,起重幅度6—18米,起重臂旋转角度22021其拼组形式见图5.2.1-3。
顶 视 图图5.2.1-3 浮吊拼组形式图②运输船运输船由标准舟节、公路栈桥梁、电动锚机等拼组而成,由机动舟顶推,运送成孔钻机、钢护筒、钢筋笼、钢模板、混凝土或其它材料;根据现场施工的实际需要,可调整标准舟节的数量来改善运输能力,其拼组形式见图5.2.1-4。
③浮运龙门船浮运龙门船由中—60浮箱、六五式军用墩和六四式军用梁、天车等拼组而成,在浮运船上设立两组龙门吊。
④钢围堰拼组浮平台钢围堰拼组浮平台由中—60浮箱、箱形栈桥梁、电动锚机等组成,用于双壁钢围堰底节部分拼组时的作业平台。
⑤机动舟机动舟(300马力)是水上运输的主要动力设备,用来顶推浮吊、浮运龙门船、浮平台及运输船到位作业。
图5.2.1-4 运输船拼组形式图⑥钻机钻孔采用ZSD2500型气举反循环旋转钻机(每个主墩上二台),在砂性土及淤泥层采用三翼钻头钻进,在基岩中换成牙轮钻头钻进。
⑦泥浆机每台钻机配置ZX-500型泥浆制备分离系统一套,并将护筒间用泥浆槽(用钢板焊接而成)连接用于泥浆循环,墩旁配备泥浆船,满足钻孔废浆、废渣排放需要,采用膨润土按比例掺入CMC、PHP、Na2CO3配制的优质泥浆。
(2)钻孔平台深水中各墩桩基础均采用固定式水上平台法进行钻孔施工,栈桥施工完毕后,然后将履带吊机移动并固定在栈桥端头,同时用浮箱拼装水上导向架平台,定位。
利用拼装吊机及60T 电动振动锤插打平台支撑钢管桩和拼装钻孔平台,配合导向架插打钢护筒。
平台以打入Φ600mm钢管作支撑,平台顶面标高高于施工水位以上1.0m,平台由钢管桩、工字钢梁、牛腿及木板组成。
各桩位置除了考虑工字钢梁的受力外,也要考虑到下护筒、钢套箱时方便导向、定位等因素。
为防止涨退潮对钢管桩的冲击,需加大钢管桩的壁厚及增加钢管桩之间的横向连接系。
经初步计算,钢管桩单根承载力按2021虑,打入深度视不同位置的地质情况以满足承载力要求经计算确定。
为了保证平台基础钢管桩的垂直度,避免基础钢管桩侵入桥墩桩基后造成后续施工困难,平台钢管桩施工前采用全站仪进行精确定位,施工过程中采用2台经纬仪来控制钢管桩的倾斜度。
位于主航道上的桥墩基础,运输、拼组、布设双壁钢围堰作业,主要由水上施工设备来完成。
(3)钻孔①钢护筒制作桩护筒采用厚度12mm的钢板螺旋形卷制而成,在工厂整体加工焊接好后运至工地,直径误差一般小于1cm,所有焊缝要求采用坡口双面焊,钢护筒进场后有专人检查焊缝以保证不漏水。
②护筒埋设平台搭设时将钢护筒的位置预留出来,护筒埋设前在平台上精确测放出钢护筒的中心十字线,并安装导向框架。
导向框架用工字钢焊接而成,平台顶面以上1.5m,平台以下1.5m,高度3m,平台以下用导链拉结固定于钢管桩基础上,框架与平台工字钢焊接为整体,钢护筒采用浮吊、吊车起吊,靠自重自然下沉至河床面,然后用DZ90振动锤振动下沉,边振打边采用经纬仪纠偏,直至达到要求的护筒底标高。
护筒埋设垂直度要求小于0.5%,平面中心偏差±2cm。
护筒击打到位后,采用角钢与平台钢管焊接成为整体,以防止水流冲击倾斜和增加平台的稳定和抗扭能力。
③泥浆拌制、泥浆循环及排渣主墩钻进时主要利用相邻的3~4个护筒和平台上的滤渣筒作为泥浆循环用。
泥浆拌制是本桥桩基施工的重点之一,钻进速度和成孔质量与泥浆及泥浆循环系统有密切关系。
钻孔时由相邻的几个护筒相通并和泥浆船、泥浆净化器构成循环系统,钻孔前运浆船将岸上拌制的泥浆运到墩位,由输送管将泥浆泵送供应到各钻孔桩护筒内。
钻进过程中泥浆及钻渣的混合物进入泥浆净化器,进行泥浆净化,分离出的钻渣用运渣船运到岸上处理,净化后的泥浆再输送回各钻孔护筒内使用。
泥浆按墩位处地质情况进行反复试配,钻孔泥浆选用优质粘土或膨润土,经试验室配比试验确定,在生产区用拌浆机拌制。
钻孔时泥浆比重选1.05~1.15左右,清孔时选1.10左右,粘度22s,新制泥浆含砂率小于3%,胶体率大于95%,PH值大于8.5。
④钻孔顺序由于承台下桩基数量较多,间距较小,为防止两相邻钻机作业时由于振动或相互间水头作用影响,使下部的地层因扰动而发生塌孔乃至串孔,按隔桩钻进的原则施工,严禁相邻两根桩同时开钻;对已灌混凝土的桩基至少静置24h后周围桩才可开钻。
⑤成桩施工钢筋笼在岸上集中加工并按要求设声测管,通过栈桥、运输船运送至墩旁,吊机配合安装。
混凝土由两岸混凝土拌合站生产,通过栈桥上输送泵管道输送至桩位漏斗,导管法浇筑水下混凝土。
(4)双壁钢围堰施工钻孔桩完毕后双壁钢围堰下沉封底进行承台及墩身桩施工,承台、墩身施工施工完毕后拆除钢围堰。