遥感数字图像处理第七章图像分割1要点
- 格式:ppt
- 大小:4.64 MB
- 文档页数:130
第一.二章.采样,量化,数字图像的表示 基本的数字图像处理系统系统的层次结构I 应用程序 I 开发工具 操作系统 设备驱动程序I硬件I图像处理的主要任务: 图像获取与数字化 图像增强 图像恢复 图像重建 图像变换 图像编码与压缩 图像分割 特点:(1) 处理精度高。
(2) 重现性能好。
(3) 灵活性髙1•图像的数字化包括两个主要步骤:离散和量化2. 在数字图像领域,将图像看成是许多大小相同、形状一致的像素组成3. 为便于数字存储和计算机处理可以通过数模转换(A/D)将连续图像变为数字图像。
4•数字化包括取样和量化两个过程:取样:对空间连续坐标(x,y)的离散化量化:幅值f(x,y)的离散化(使连续信号的幅度用有限级的数码表示的过程。
)5.数字化图像所需的主要硬件:♦采样孔、图像扫描机构、光传感器、量化器、输岀存储体6•取样和量化的结果是一个矩阵 7.其中矩阵中的每个元素代表一个邃塞8•存储一幅图像的数据量又空间分辨率和幅度分辨率决定 9•灵敏度、分辨率、信噪比是三大指标第三章,傅里叶变换,DCT变换,WHT•余弦型变换:•傅里叶变换(DFT)和余弦变换(DCT)O•方波型变换:•沃尔什•哈达玛变换(DWT)1•二维连续傅里叶正反变换:F(u,v)= I f f(x.y)eJ_oc J_ocf g y)= \f F(u, v)ej27r(nA+vv)dwdvJ —oo J —oo二维离散傅里叶变换:M — 1 N — I=乏疋 Fgg 宀SS)if=o v=O。
F(u, v)即为f (x, y)的频谱。
频谱的直流成分说明在频谱原点的傅里叶变换尸(0,0)等于图像的平均灰度级 卷积定理:/(x,y)*^(x, y)= ss /O, n)g(x 一 m, y~n)/?/=() n=02•二维离散余弦变换(DCT)一维离散余弦变换:EO)=%)岳gfg 芈严 其中 c®=怜 ""DCT 逆变换为F(u.v)=1~MN A =0 y=02 A r -1/(«)=咅 C(0) + \1三工 F (gsn(2n +1)« ~~2N3•—维沃尔什变换核g (W ):1 X_JL£(乂申)=丄口(一 1)®(”)為一】一心)<N i=o• 厂、Cn 7V--1 ^T-l码3》=卡吝 /G 〉耳(—1)635—一 3«JC> =牙中 O )n (—O务i二维:•正变换: 1 N —l. N —!■H —1护(“*) = —X X /X%」)口( — 1)4(5—373$一_W] N 宜 U • JO■逆变换二1 AT-l JV-l 片_]/(X.y )=丄 £ 乞 疗(心巧 口弟-i -心)JN 為 v=o ~。
遥感数字图像处理主要研究的内容有以下几个方面:1、图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。
因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。
目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
2、图像编码压缩图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3、图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。
如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。
4、图像分割图像分割是遥感数字图像处理中的关键技术之一。
图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。
虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。
因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。
5、图像描述图像描述是图像识别和理解的必要前提。
作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。
对于特殊的纹理图像可采用二维纹理特征描述。
随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。
遥感数字图像处理遥感数字图像处理1.图像(image)就是对客观对象的一种相似性的描述或写真。
图像包含了这个客观对象的信息。
就是人们最主要的信息源。
2.数字图像指数字存储的、用计算机直接处理的图像,就是空间坐标与图像数值不连续的、用离散数值表示的图像,在计算机内部,数字图像表现为二维阵列(网格),属于不可见图像。
3.什么就是遥感数字图像,模拟图像(图片)与遥感数字图像有什么区别?遥感数字图像就是以数字形式存储与表达的遥感图像。
模拟图像:又称光学图像,以胶片、相纸等硬拷贝形式存储的图像。
图像就是自然景物的反映,人眼感知的景物一般就是连续的,照相机(非数码式)拍摄形成的照片也就是连续的,两者均称之为模拟图像。
广义的模拟图像还包括绘画。
区别:模拟图像的显著特点就是连续性: ①空间位置的变化就是连续的②每一空间位置上的亮度、色彩变化就是连续的③符合数学上微积分连续性的定义数字图像的特点:便于计算机处理与分析;图像信息损失低;抽象性强。
4.什么就是遥感数字图像处理?它包括那些内容?答:利用计算机对遥感数字图像进行一系列的操作,以求达到预期结果的技术,称作遥感数字图像处理。
其内容有:①图像转换。
包括模数(A/D)转换与数模(D/A)转换。
图像转换的另一种含义就是为使图像处理问题简化或有利于图像特征提取等目的而实施的图像变换工作,如二维傅里叶变换、沃尔什-哈达玛变换、哈尔变换、离散余弦变换与小波变换等。
②数字图像校正。
主要包括辐射校正与几何校正两种。
③数字图像增强。
采用一系列技术改善图像的视觉效果,提高图像的清晰度、对比度,突出所需信息的工作称为图像增强。
图像增强处理不就是以图像保真度为原则,而就是设法有选择地突出便于人或机器分析某些感兴趣的信息,抑制一些无用的信息,以提高图像的使用价值。
④多源信息复合(融合)。
⑤遥感数字图像计算机解译处理。
5.、什么就是图像增强?主要目的就是什么?主要有哪些方法?图像增强:使用多种处理方法压抑、去除噪声,增强显示图像整体或突出图像中特定地物的信息,使图像更容易理解、解译与判读。
遥感数字图像处理教程第一章名词解释1、遥感数字图像(P1):以数字形式存储和表达的遥感图像2、A/D 转换(P1):把模拟图像转变成数字图像称为模/数转换,记作A/D 转换3、D/A 转换(P1):把数字图像转 变成模拟图像称为数/模转换,记作D/A 转换简答题1、模拟图像(照片)与遥感数字图像有什么区别? (P2) 答表1.1遥感数字图像与印刷照片的区别颜色没有特定的规则,在处理过程「二可以根据需 要通过合成产生多个波段(3-8000) 2、怎么理解图像处理的两个观点? (P7)答:两种观点是:离散方法的观点和连续方法的观点。
1 .离散方法:图像的存储和表示均为数字形式,数字是离散的,因此,使用离散 方法进行图像处理才是合理的。
与该方法相关的一个概念是空间域。
空间域图像 处理以图像平面本身为参考,直接对图像中的像素进行处理。
2 .连续方法:图像通常源自物理世界,它们服从可用连续数学描述的规律,因此 具有连续性,应该使用连续数学方法进行图像处理。
与该方法相关的一个主要概 念是频率域。
频率域基于傅里叶变换,频率域的图像处理是对傅里叶变换后产生 的反映频率信息的图像进行处理。
完成频率域图像处理后,往往要变换回到空间 域进行图像的显示和对比。
四、论述题1、什么是遥感数字图像处理,主要内容有哪些? (P2)答:遥感数字图像处理是通过计算机图像处理系统对遥感图像中的像素进行系列 操作的过程。
(1)图像增强:使用多种方法去除噪声,增强显示图像整体或突出图像中的特 定地物的信息,使图像更容易理解、解释和判读。
例:例如灰度拉伸、平滑、锐 化、彩色合成、主成分(K-L )变换、K-T 变换、代数运算、图像融合照片来自于模拟方式通过摄影系统产生没有像素没有行列结构没有才」推行o 表示投有数据任何点,都没有编号摄影受电黑波谱的成像范围限制遛感数字图像 来自干数字方式 通过扫描和数码相机产生 基本利成单位是像素 具有行和列 可能会观察到扫描行 。
测绘技术遥感图像分割方法总结测绘技术在遥感图像分割方法中的应用已经成为了现代测绘领域中的重要研究方向。
遥感图像分割的目的是将图像中不同的目标或区域进行区分和提取,以便进行后续的分析和处理。
而测绘技术则可以提供更加精确和准确的信息,帮助我们更好地完成图像分割的任务。
一种常见的遥感图像分割方法是基于像素的分割方法。
这种方法以图像的像素为基本单位,根据像素的灰度值进行分类。
根据像素的灰度值进行分类的基本原理是,不同的目标在遥感图像中通常会表现出不同的灰度特征。
通过分析和比较像素的灰度值,我们可以将具有相似灰度特征的像素划分到同一个类别中。
这种方法简单直观,容易实现,但是在处理复杂遥感图像时存在一定的局限性。
为了克服基于像素的分割方法的局限性,研究人员提出了基于区域的分割方法。
这种方法将相邻的像素组成一个连续的区域,通过分析区域的特征来实现图像分割。
基于区域的分割方法可以利用像素间的空间关系和灰度特征,更好地保持目标的连续性和一致性。
通过将像素分组形成区域,然后对区域进行合并或拆分,可以得到更加准确和稳定的分割结果。
而测绘技术可以提供对区域边界的测量和分析,帮助我们更好地确定区域的边界和特征。
此外,还有一种常用的遥感图像分割方法是基于多尺度的分割方法。
这种方法利用多个尺度下的图像信息来进行分割,以获取更全面和准确的目标信息。
首先,对图像进行多尺度的分解或滤波处理,然后在每个尺度上进行分割。
最后,将各个尺度上的分割结果进行融合,得到最终的分割结果。
测绘技术可以提供对多尺度图像的测量和分析,帮助我们更好地理解和处理不同尺度图像下的目标信息。
除了基于像素、区域和多尺度的分割方法外,还有一些其他的遥感图像分割方法,如基于边缘的分割方法、基于深度学习的分割方法等。
这些方法在不同的应用场景下具有一定的优势和适用性。
测绘技术可以为这些方法提供辅助信息和辅助分析,提高分割结果的准确性和可靠性。
综上所述,测绘技术在遥感图像分割方法中起到了重要的作用。
遥感数字图像处理-要点编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(遥感数字图像处理-要点)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为遥感数字图像处理-要点的全部内容。
遥感数字图像处理—要点1.概论遥感、遥感过程遥感图像、遥感数字图像、遥感图像的数据量遥感图像的数字化、采样和量化通用遥感数据格式(BSQ、BIL、BIP)遥感图像的模型:多光谱空间遥感图像的信息内容:遥感数字图像处理、遥感数字图像处理的内容遥感图像的获取方式主要有哪几种?如何估计一幅遥感图像的存储空间大小?遥感图像的信息内容包括哪几个方面?多光谱空间中,像元点的坐标值的含义是什么?与通用图像处理技术比较,遥感数字图像处理有何特点?遥感数字图像处理包括那几个环节?各环节的处理目的是什么?2。
遥感图像的统计特征2。
1图像空间的统计量灰度直方图:概念、类型、性质、应用最大值、最小值、均值、方差的意义2.2多光谱空间的统计特征均值向量、协方差矩阵、相关系数、相关矩阵的概念及意义波段散点图概念及分析主要遥感图像的统计特征量的意义两个重要的图像分析工具:直方图、散点图3。
遥感数字图像增强处理图像增强:概念、方法空间域增强、频率域增强3.1辐射增强:概念、实现原理直方图修正,线性变换、分段线性变换算法原理直方图均衡化、直方图匹配的应用3。
2空间增强邻域、邻域运算、模板、模板运算空间增强的概念平滑(均值滤波、中值滤波)原理、特点、应用锐化、边缘增强概念方向模板、罗伯特算子、索伯尔算子、拉普拉斯算子的算法和特点•计算图像经过下列操作后,其中心象元的值:–3×3中值滤波–采用3×3平滑图像的减平滑边缘增强–域值为2的3×1平滑模板–Sobel边缘检测–Roberts边缘检测–模板3.3频率域处理高频和低频的意义图像的傅里叶频谱频率域增强的一般过程频率域低通滤波频率域高通滤波同态滤波的应用3。
遥感数字图像处理教程_图像分割
图像分割是指将一幅图像分成若干个具有一定语义的区域的过程。
在
遥感图像处理中,图像分割是一项重要的任务,可以用来提取地表覆盖类型、检测目标等。
图像分割方法有很多种,常见的包括基于阈值、基于边缘、基于区域
和基于特征的方法。
基于阈值的图像分割是最简单的方法之一,通过设定一个阈值,将图
像中灰度值高于或低于该阈值的像素分为不同的区域。
这种方法适用于目
标与背景之间的灰度差异明显的情况。
基于边缘的图像分割是通过检测图像中的边缘来进行分割的。
常见的
边缘检测算法有Sobel算子、Canny算子等。
通过检测边缘,可以将图像
中不同区域的边界分开。
基于区域的图像分割是将图像划分为具有一定连通性和一致性的区域。
该方法首先通过像素之间的相似性来合并区域,然后再根据区域的属性进
行进一步的合并和细分。
基于特征的图像分割是利用图像中的一些特征来进行分割,如颜色、
纹理、形状等。
通过提取图像中的特征并使用合适的分类算法,可以将图
像分割为具有不同特征的区域。
图像分割在遥感图像处理中有着广泛的应用,例如提取森林、湖泊等
地表覆盖类型,检测城市建筑、道路等目标,以及监测农作物、污染等环
境指标。
电⼦信息⼯程《数字图像处理》总复习题(第1-7章)(1)第⼀章引⾔⼀.填空题1. 图像可以分为物理图像和虚拟图像两种。
其中,采⽤数学的⽅法,将由概念形成的物体进⾏表⽰的图像是虚拟图像。
2. 数字图像是⽤⼀个数字阵列来表⽰的图像。
数字阵列中的每个数字,表⽰数字图像的⼀个最⼩单位,称为像素。
3. 数字图像处理可以理解为两个⽅⾯的操作:⼀是从图像到图像的处理,如图像增强等;⼆是从图像到⾮图像的⼀种表⽰,如图像测量等。
4. 数字图像处理包含很多⽅⾯的研究内容。
其中,图像重建的⽬的是根据⼆维平⾯图像数据构造出三维物体的图像。
⼆.简答题1. 数字图像处理的主要研究内容包含很多⽅⾯,请列出并简述其中的4种。
①图像数字化:将⼀幅图像以数字的形式表⽰。
主要包括采样和量化两个过程。
②图像增强:将⼀幅图像中的有⽤信息进⾏增强,同时对其⽆⽤信息进⾏抑制,提⾼图像的可观察性。
③图像的⼏何变换:改变图像的⼤⼩或形状。
④图像变换:通过数学映射的⽅法,将空域的图像信息转换到频域、时频域等空间上进⾏分析。
⑤图像识别与理解:通过对图像中各种不同的物体特征进⾏定量化描述后,将其所期望获得的⽬标物进⾏提取,并且对所提取的⽬标物进⾏⼀定的定量分析。
2. 简述图像⼏何变换与图像变换的区别。
①图像的⼏何变换:改变图像的⼤⼩或形状。
⽐如图像的平移、旋转、放⼤、缩⼩等,这些⽅法在图像配准中使⽤较多。
②图像变换:通过数学映射的⽅法,将空域的图像信息转换到频域、时频域等空间上进⾏分析。
⽐如傅⾥叶变换、⼩波变换等。
3. 简述数字图像处理的⾄少4种应⽤。
①在遥感中,⽐如⼟地测绘、⽓象监测、资源调查、环境污染监测等⽅⾯。
②在医学中,⽐如B超、CT机等⽅⾯。
③在通信中,⽐如可视电话、会议电视、传真等⽅⾯。
④在⼯业⽣产的质量检测中,⽐如对⾷品包装出⼚前的质量检查、对机械制品质量的监控和筛选等⽅⾯。
⑤在安全保障、公安⽅⾯,⽐如出⼊⼝控制、指纹档案、交通管理等。
遥感数字图像处理智慧树知到课后章节答案2023年下河海大学河海大学第一章测试1.遥感在广义上泛指一切非接触的远距离探测技术,但在实际工作中,遥感探测的是()。
答案:电磁场2.遥感图像有哪些分辨率特性?()。
答案:空间分辨率;辐射分辨率;时间分辨率;光谱分辨率3.遥感可以观测哪些谱段的电磁波?()。
答案:可见光;无线电波;紫外线;红外线4.由于电磁波与大气发生了何种散射导致天空是蓝色的?()答案:瑞利散射5.空间分辨率与辐射分辨率之间没有关系。
()答案:错第二章测试1.轨道运行周期等同于轨道重复周期。
()。
答案:错2.高光谱遥感属于何种工作方式?()答案:被动遥感3.轨道运行周期与轨道重复周期相等。
()答案:错4.遥感成像方式有摄影成像和扫描成像答案:对5.扫描成像有哪两种工作模式?摆扫型成像和推扫型成像。
答案:对第三章测试1.辐射校正包括哪些方面?()答案:太阳高度和地形校正;大气校正;辐射定标(传感器校正)2.在3次多项式几何校正中,需要的控制点个数最少为几个?()答案:103.哪些因素会导致几何畸变的产生?()答案:大气折射和投影方式;遥感平台因素:包括由于平台的高度、速度、轨道偏移及姿态变化引起的图像畸变;传感器内部因素:包括透镜、探测元件、采样速率、扫描镜等引起的畸变;地球因素:地球自转、地形起伏、地球曲率4.在辐射定标中,表达式中的Lλ是波段λ的辐射亮度值,k是增益,c是偏移答案:对5.将消除或修正图像数据辐射失真的过程称为辐射校正答案:对第四章测试1.调整两幅图像的色调差异,使图像重叠区域的色调过渡柔和,改善图像融合和图像镶嵌效果的图像处理方法是什么?()答案:直方图匹配2.常用的图像变换算法有哪些?()答案:小波变换;主成分变换;颜色空间变换;傅里叶变换3.灰度变换图像增强常见的变换函数有哪些?()答案:线性变换;分段线性变换;非线性变换4.图像锐化增强的作用是什么?()答案:目标识别;形状提取;图像分割5.在图像上任意位置做一条横向的扫描线,通过分析扫描线的灰度分布曲线及其一阶、二阶曲线可知哪些特性?()答案:图像上的窄带在一阶、二阶曲线上的表现与孤立点类似;图像上的平坦带在一阶、二阶微分曲线上都表现为过零点;图像上的孤立点在一阶微分曲线上为过零点,在二阶微分曲线上为极小值点;图像上的灰度渐变区域在一阶微分曲线上是常数,在二阶微分曲线上的起始点非零,中间为零;图像上的灰度跃迁在一阶微分曲线上表现为极大值点,在二阶微分曲线上表现为过零点第五章测试1.常见的图像变换方法有哪些?()答案:傅里叶变换;主成分分析;缨帽变换;小波变换;最小噪声分离;颜色空间变换2.主成分分析是根据什么进行特征压缩的?()答案:方差3.最小噪声分离变换是根据什么进行特征压缩的?()答案:信噪比4.缨帽变换是根据什么进行特征压缩的?()答案:物理特征5.傅里叶变换图像增强中,噪声、边缘、跳跃部分代表图像的什么分量?()答案:高频分量第六章测试1.常用的空间域图像去噪声的方法有哪些?()答案:中值滤波;边缘保持平滑滤波;均值滤波;数学形态学2.从噪声的概率密度函数来看,图像噪声主要有哪些?()答案:均匀分布噪声;瑞利噪声;伽玛噪声;指数分布噪声;高斯噪声;脉冲噪声3.中值滤波是将中心像元替换为邻域内的像元中间值,已达到去噪声的目的。