Meyer的体积压裂设计
- 格式:pptx
- 大小:1.41 MB
- 文档页数:11
体积压裂技术在油田开发中的适用性分析体积压裂技术是一种在油田开发中广泛应用的注入工艺,通过将高压液体注入井内,以破裂岩石层,提高油田产能和采收率。
本文将对体积压裂技术在油田开发中的适用性进行分析。
一、体积压裂技术概述体积压裂技术是一种通过将高压液体(通常为水和化学添加剂)注入井内,以破裂岩石层,增加岩石层渗透性,提高油气开采效率的工艺技术。
通过压裂,可以将岩石层内的油气资源释放出来,提高油气流体的渗透性,从而提高油井的产能和采收率。
在油田开发中,体积压裂技术是一种非常重要的增产手段。
二、体积压裂技术的适用性分析1. 地质条件的适用性体积压裂技术适用于对砂岩、页岩等不透水性较强的地层进行改造,提高其渗透性。
在一些较为坚硬的地层中,体积压裂技术可以起到良好的改善作用,提高油气产能。
在一些软弱易破碎的地层中,压裂作业可能会导致地层破裂不均匀或者塞曲,造成资源的浪费和地层的破坏。
在选择体积压裂技术时,需要根据具体地质条件进行合理的评估和分析。
在一些产能较低或者排采面积较小的油井中,采用体积压裂技术可以有效地提高油井的产能和采收率。
特别是对于老旧的油气井,在适当情况下采用体积压裂技术可以有效地延长井寿命,提高油气产量,实现提高采收率、增产和降本增效的目的。
3. 环境友好性体积压裂技术在进行作业时需要大量水资源以及添加剂,对于水资源的利用和环境的影响需要引起重视。
在水资源紧张的地区进行体积压裂作业需要谨慎处理,避免对当地水资源造成破坏。
体积压裂作业中所用的化学添加剂也需要对环境友好性进行考量,避免造成环境污染。
4. 成本控制问题体积压裂技术在进行作业时需要大量的设备和材料投入,成本较高。
因此在选择是否采用体积压裂技术时,需要综合考虑其投入成本和产出效益,从而实现成本控制和资源优化。
三、体积压裂技术在油田开发中的应用案例案例一:某油田开发单位在对一口老旧的油井进行改造时,采用了体积压裂技术,通过压裂作业将井下岩石层进行了改造,随后进行试采,结果取得了较好的效果,油井的产量得到了明显提高。
《致密气藏体积压裂伤害机理实验研究》篇一一、引言随着油气资源的日益紧缺,致密气藏的开发成为了国内外研究的热点。
体积压裂技术作为一种有效的致密气藏开发手段,得到了广泛的应用。
然而,在体积压裂过程中,往往会出现伤害气藏的现象,影响了气藏的产能和经济效益。
因此,研究致密气藏体积压裂伤害机理,对于提高压裂效果和保障气藏长期稳产具有重要意义。
本文旨在通过实验研究致密气藏体积压裂的伤害机理,为实际工程提供理论依据。
二、实验材料与方法1. 实验材料实验所需材料主要包括致密岩心、压裂液、添加剂等。
其中,致密岩心应具有与实际气藏相似的物理性质和力学性质,以保证实验结果的可靠性。
2. 实验方法(1)制备致密岩心,模拟实际气藏条件下的物理性质和力学性质;(2)进行体积压裂实验,记录压裂过程中的压力变化、裂缝扩展情况等;(3)对压裂后的岩心进行观察和测试,分析体积压裂对岩心的伤害程度和伤害机理;(4)改变压裂液和添加剂的种类和浓度,进行多组实验,分析不同因素对体积压裂伤害的影响。
三、实验结果与分析1. 体积压裂过程分析在体积压裂过程中,随着压力的逐渐升高,岩心内部开始出现裂缝。
裂缝的扩展受到多种因素的影响,如岩心的物理性质、力学性质、压裂液的种类和浓度等。
在裂缝扩展的过程中,压裂液会进入裂缝中,进一步扩大裂缝的规模。
2. 体积压裂伤害机理分析(1)机械伤害:在体积压裂过程中,由于裂缝的扩展和压力的变化,岩心内部的结构会受到破坏,导致机械伤害。
机械伤害的程度与岩心的物理性质和力学性质有关。
(2)化学伤害:压裂液中可能含有一些化学物质,这些化学物质可能会与岩心中的某些成分发生反应,导致岩心的化学性质发生变化,从而产生化学伤害。
化学伤害的程度与压裂液的种类和浓度有关。
(3)综合伤害:机械伤害和化学伤害往往同时存在,相互影响,导致综合伤害。
综合伤害的程度取决于机械伤害和化学伤害的相对大小和作用方式。
3. 不同因素对体积压裂伤害的影响(1)压裂液种类:不同种类的压裂液对岩心的伤害程度不同。
石油工程学院(系) 2018届毕业设计(论文)答辩工作安排
一、院(系)答辩委员会
主任:江厚顺教授副院长
副主任:付美龙教授、许明标教授史宝成副教授
成员:夏宏南王越之廖锐全欧阳传湘喻高明张公社唐善法顾晓婷管英柱李菊花王红波秘书:文守成何淼李元风
二、答辩分组情况
三、答辩日程安排(答辩时间:上午:8:00~11:30;下午:14:00~17:30;
2018届石油工程系毕业设计(论文)答辩安排
2018届石油工程系毕业设计(论文)答辩安排
2018届石油工程系毕业设计(论文)答辩安排
2018届石油工程系毕业设计(论文)答辩安排
2018届石油工程学院毕业设计(论文)答辩安排
2018届石油工程院毕业设计(论文)答辩安排
2018届石油工程院毕业设计(论文)答辩安排
2018届石油工程院毕业设计(论文)答辩安排
2018届石油工程院毕业设计(论文)答辩安排
2018届石油工程院毕业设计(论文)答辩安排。
储集层改造技术进展及发展方向雷群;王臻;管保山;才博;王欣;胥云;童征;王海燕;付海峰;刘哲【摘要】通过对储集层改造技术发展历史的总结,明确了国内外储集层改造技术的新进展,总结出国内外储集层改造技术的差距,指出未来面临的技术难点及发展方向.中国与国外储集层改造技术的差距主要表现在储集层改造裂缝扩展机理、软件研发、压裂车装备、工具的耐温耐压性、支撑剂替代、大数据信息化数据库等6个方面;未来面临技术难点主要有地质与工程一体化的深度融合不够、水平井体积改造多裂缝的扩展形态及影响因素不清楚、降本空间小环保压力大、新技术缺乏室内实验及现场试验装备、压裂液体系关键技术欠成熟、工厂化压裂设备功效低等.在此基础上,结合中国储集层改造技术发展现状,提出了6个方面的建议:①做好非常规储集层改造机理研究;②加快地质-工程一体化软件研发;③促进提高采收率改造工艺升级;④开展低成本多功能压裂液配方实验;⑤尽快完成高效压裂装备配备;⑥全面建设储集层改造大数据、信息化平台及远程决策系统.【期刊名称】《石油勘探与开发》【年(卷),期】2019(046)003【总页数】8页(P580-587)【关键词】非常规储集层;储集层改造;压裂装备;压裂材料;压裂设计;远程决策;技术进展【作者】雷群;王臻;管保山;才博;王欣;胥云;童征;王海燕;付海峰;刘哲【作者单位】中国石油天然气集团有限公司油气藏改造重点实验室,河北廊坊065007;中国石油勘探开发研究院,北京100083;中国石油天然气集团有限公司油气藏改造重点实验室,河北廊坊065007;中国石油勘探开发研究院,北京100083;中国石油天然气集团有限公司油气藏改造重点实验室,河北廊坊065007;中国石油勘探开发研究院,北京100083;中国石油天然气集团有限公司油气藏改造重点实验室,河北廊坊065007;中国石油勘探开发研究院,北京100083;中国石油天然气集团有限公司油气藏改造重点实验室,河北廊坊065007;中国石油勘探开发研究院,北京100083;中国石油天然气集团有限公司油气藏改造重点实验室,河北廊坊065007;中国石油勘探开发研究院,北京100083;中国石油天然气集团有限公司油气藏改造重点实验室,河北廊坊065007;中国石油勘探开发研究院,北京100083;中国石油天然气集团有限公司油气藏改造重点实验室,河北廊坊065007;中国石油勘探开发研究院,北京100083;中国石油天然气集团有限公司油气藏改造重点实验室,河北廊坊065007;中国石油勘探开发研究院,北京100083;中国石油天然气集团有限公司油气藏改造重点实验室,河北廊坊065007;中国石油勘探开发研究院,北京100083【正文语种】中文【中图分类】TE370 引言1947年石油行业第1次尝试水力压裂储集层改造获得成功,从此储集层改造作为一项持久发展的科学技术,经历了70多年的发展历史[1-3]。
致密油藏体积压裂水平井产能评价新方法1. 引言1.1 背景介绍致密油藏是指储层孔隙度低、渗透率小、孔隙结构较为复杂,导致原油难以流出的油藏。
在传统的压裂工艺中,采用垂直井无法有效开采致密油藏储层中的油藏,因此水平井的应用成为了一种重要的手段。
水平井可以增加油藏的开采面积,提高整体的产能。
然而,对于致密油藏水平井来说,如何评价其产能仍然是一个挑战。
传统的致密油藏产能评价方法主要依靠采集的地质信息和试油数据进行分析,然而由于复杂的油藏结构和多峰产量曲线的影响,传统方法存在一定的局限性。
因此,寻找一种新的产能评价方法显得尤为重要。
本文旨在探讨一种新的致密油藏体积压裂水平井产能评价方法,通过结合压裂数值模拟和产能指数的评价方法,提高对产能的准确评估。
希望通过新方法的研究,能够为致密油藏水平井产能评价提供一种有效的技术支持,为油田开发提供新的思路和方法。
1.2 研究意义致密油藏是指储层孔隙度低、孔隙连通性差、渗透率低的油气藏。
由于致密油藏的特殊性质,使得原油开采难度较大,产能评价显得尤为重要。
在当前技术水平下,对致密油藏进行产能评价主要基于传统的方法,如经验公式、解析模型等。
这些方法存在一定局限性,难以准确评价致密油藏的产能。
致密油藏体积压裂水平井产能评价是目前研究的热点之一。
其研究意义主要表现在以下几个方面:致密油藏的开发对我国油气资源的储备具有重要意义,通过有效评价产能,可以为油田开发提供可靠依据;随着油价波动不断,提高产能评价的准确性可帮助企业制定更科学的开发策略,降低勘探开发成本;致密油藏体积压裂水平井产能评价方法的研究可以促进该领域的技术创新,为实际生产提供更为有效的指导。
研究致密油藏体积压裂水平井产能评价新方法具有重要的现实意义和科学价值。
通过开展相关研究,可以进一步提高对致密油藏产能的评价准确性,促进我国油气资源的有效开发利用。
1.3 研究目的研究目的是为了提出一种适用于致密油藏体积压裂水平井产能评价的新方法,以解决传统评价方法在该类油藏中存在的不足之处。
Meyer三维增产措施模拟设计(专家)系统软件介绍GNT国际公司(北京办事处)2011年Meyer三维增产措施模拟设计系统一、Meyer 软件基本情况介绍及模块清单Meyer软件是Meyer & Associates, Inc.公司开发的水力措施模拟软件,可进行压裂、酸化、酸压、泡沫压裂/酸化、压裂充填、端部脱砂、注水井注水、体积压裂等模拟和分析。
该软件从1983年开始研制,1985年投入使用。
目前该软件在世界范围内拥有上百个客户,包括油公司、服务公司、研究所和大学院校等。
Meyer软件是一套在水力措施设计方面应用非常广泛的模拟工具。
软件可提供英语和俄语两种语言版本。
其模块有:软件目前更新版本是Meyer2010- Ver. 5.60,更新日期是2010年7月。
二、Meyer功能模块介绍1. MFrac_常规水力措施模拟与分析模块MFrac是一个综合模拟设计与评价模块,含有三维裂缝几何形状模拟和综合酸化压裂解决方案等众多功能。
该软件拥有灵活的用户界面和面向对象的开发环境,结合压裂支撑剂传输与热传递的过程分析,它可以进行压裂、酸化、酸压、压裂充填、端部脱砂、泡沫压裂等模拟。
MFrac还可以针对实时和回放数据进行模拟,当进行实时数据模拟时,MFrac与MView数据显示与处理连接在一起来进行分析。
模块性能∙根据预期的结果(裂缝长度和导流能力)自动设计泵注程序∙不同裂缝参数与多方案优选∙压裂、酸化和泡沫压裂/酸化、端部脱砂(TSO)和压裂充填FRAC-PACK 模拟和设计优化∙根据实时数据和回放数据进行施工曲线拟合及模型校准∙预期压裂动态分析(例如裂缝延伸、效率、压力衰减等)∙综合应用MFrac、MProd和MNpv开展压裂优化设计研究模块主要功能∙压裂数据的实时显示和回放∙井筒和裂缝中热传递模拟∙酸化压裂设计∙精确的斜井井筒模型(包括水平井)设计∙支撑剂传输设计∙(射孔)孔眼磨蚀计算∙可压缩流体设计(泡沫作业时)∙近井筒压力影响分析(扭曲效应)∙多层压裂(限流法)∙综合的支撑剂、压裂液、酸液、油套管和岩石数据库∙多级压裂裂缝模拟(平行或者多枝状的)∙2D和水平裂缝设计∙先进的裂缝端部效果分析(包括临界压力)∙根据时间和泵注阶段统计漏失量∙3D绘图∙端部脱砂(TSO)和压裂充填FRAC-PACK高传导性裂缝的模拟,与其它模块的联合应用MFrac进行回放数据和实时数据模拟分析时,数据要从MView模块导入,数据包括:随时间变化的排量、井底压力、井口压力、支撑剂浓度、氮气或二氧化碳注入量等。
《致密气藏体积压裂伤害机理实验研究》篇一一、引言随着全球能源需求的增长,致密气藏的开发变得日益重要。
在致密气藏开发过程中,体积压裂技术被广泛使用以提高采收率。
然而,体积压裂过程中可能对气藏造成伤害,影响其长期开采效益。
因此,对致密气藏体积压裂伤害机理的实验研究变得至关重要。
本文将探讨致密气藏体积压裂的伤害机理,并基于实验结果进行分析与讨论。
二、实验方法与材料2.1 实验材料实验所需材料包括致密岩心、压裂液、支撑剂等。
岩心取自特定地区的致密气藏,以保证实验结果的代表性。
2.2 实验方法实验采用体积压裂模拟装置,模拟实际生产过程中的压裂过程。
通过改变压裂液的性质、压裂压力等参数,观察岩心的变形、破裂及裂缝扩展情况。
同时,采用扫描电镜、能谱分析等手段对岩心进行微观结构分析。
三、实验结果与分析3.1 压裂过程中的岩心变形与破裂在体积压裂过程中,岩心表现出明显的变形与破裂现象。
随着压裂压力的增加,岩心逐渐产生裂缝,裂缝扩展速度与压裂液的性质、岩心的物理性质等因素密切相关。
裂缝的形态、方向及扩展距离对后续气藏的开采具有重要影响。
3.2 压裂液对岩心的伤害机理压裂液在压裂过程中起到关键作用,但也可能对岩心造成伤害。
实验发现,压裂液中的化学成分可能对岩心产生腐蚀作用,导致岩心物理性质的改变。
此外,压裂液在裂缝中残留可能堵塞裂缝,降低气藏的渗透率。
3.3 支撑剂对裂缝的影响支撑剂在体积压裂过程中起到支撑裂缝、防止裂缝闭合的作用。
然而,支撑剂的粒度、形状等因素可能影响裂缝的形态及稳定性。
粒度过大的支撑剂可能导致裂缝不规则扩张,影响气藏的开采效率。
四、讨论通过对实验结果的分析,我们得出以下结论:致密气藏体积压裂过程中,岩心的变形与破裂、压裂液对岩心的伤害及支撑剂的影响是造成伤害的主要机理。
为减小伤害,我们建议采取以下措施:优化压裂液配方,减少对岩心的腐蚀作用;选择合适的支撑剂粒度与形状,以保持裂缝的稳定性;在压裂过程中实时监测岩心变形与破裂情况,以调整压裂参数,保证气藏的长期开采效益。