热工学基础知识
- 格式:pdf
- 大小:311.70 KB
- 文档页数:2
答案:一、填空1. 物质种类、温度、0.2w/(m.k)2. 层流、紊流(湍流)、粘性、雷诺数3. 物体的性质、表面状况、温度4. 状态参数、强度参数、广延参数5. 气体分子本身不占有体积、气体分子之间没有相互作用力6. 增加、减少7.导热、对流、热辐射二、简答题1. 答:影响对流换热的因素:流体的流动起因、流体的流动状态、流体的相变、流体的物理性质、换热表面的几何尺寸、形状与大小。
2. 答:(1)黑体:若物体能完全吸收外来的投射能量,即=1,这样的物体称为绝对黑体,简称黑体;(2)白体:若物体能完全反射外来的投射能量,即=1,这样的物体称为绝对白体,简称白体;(3)透明体:若物体能完全透射外来的投射能量,即=1,这样的物体称为透明体或透热体。
3. 答:(1)准静态过程:若过程进行的极其缓慢,则系统在每一瞬间的状态都无限接近于平衡状态,或者说只是无限小地偏离平衡状态,该过程称为准静态过程。
(2)可逆过程:系统在经历某一过程之后沿原路线反向进行,若系统和外界都能够回复到它们各自的最初状态,则该过程称为可逆过程。
(3)二者的区别与联系:可逆过程必定是准静态过程,而准静态过程未必是可逆过程,它只是可逆过程的条件之一,没有机械摩擦等损失的准静态过程才是可逆过程。
4. 答:卡诺循环效率444.0540300112==-=T T c η 设计的热力设备的效率45.0145.0==η 因为ηc <η,故该热力设备不能实现。
三、计算题1. 课本例题3-2(P45)2. 课本例题4-1(P64)3. 课本例题1-4(P10)4. 课本例题0-1(P123)5. 课本例题12-1(P162)。
工热知识点总结一、理论基础1. 热力学基础热力学是研究热现象和能量转化规律的科学,其研究对象包括热力学系统的状态、过程和相互作用等。
热力学定律包括热力学第一、二、三定律,它们分别描述了能量守恒、熵增加和温度不可降的规律。
2. 热传导热传导是指物质内部热能的传递,根据导热介质的不同,可分为导热、导电、导磁等传导方式。
热传导的计算公式为热传导方程,其中包括热传导系数、温度梯度和距离梯度等。
在实际工程中,热传导的计算可以通过有限元分析、数值模拟等方法得到。
3. 对流传热对流传热是指通过流体的流动使热能传递的过程,可以是强迫对流或自然对流。
对流传热的传热系数和换热器的设计是工热领域的重要内容。
4. 热辐射热辐射是指物体由于温度差而发出或吸收的电磁波,热辐射的计算需要考虑辐射率、温度、表面发射率等参数。
热辐射通常可以通过辐射传热方程来描述,实际工程中可以应用黑体辐射、灰体辐射等模型进行计算。
二、热力学系统1. 封闭系统封闭系统是指不与外界交换物质,但与外界进行能量交换的系统。
热力学系统通常可以根据其与外界的物质交换情况分为封闭系统、开放系统和孤立系统。
2. 开放系统开放系统是指既与外界进行能量交换,又与外界进行物质交换的系统。
例如,蒸汽锅炉和汽轮机系统就是开放系统。
3. 孤立系统孤立系统是指既不与外界交换物质,也不与外界进行能量交换的系统。
孤立系统是理论假设中的一个重要模型,可以用于研究理想化的热力学系统。
三、热力学循环1. 卡诺循环卡诺循环是理想化的热力学循环模型,其效率最高,可用于分析和比较各种热力学循环系统的性能。
卡诺循环包括等温膨胀、绝热膨胀、等温压缩和绝热压缩四个过程,可以用来分析热机和热泵的性能。
2. 布雷顿循环布雷顿循环是一种热力学循环,广泛应用于蒸汽轮机、汽轮机和制冷机等系统。
布雷顿循环包括等压加热、等压膨胀、等压冷却和等压压缩四个过程,可以用来分析蒸汽发电系统和空气压缩系统的性能。
3. 斯特林循环斯特林循环是一种理想化的热力学循环模型,包括等温定压加热、绝热膨胀、等温定压冷却和绝热压缩四个过程。
ξ1、热工基础知识(一)、热力学基础1、温度温度是衡量物体冷热程度的尺度,是物质分子热运动平均动能的度量。
摄氏温标:1个标准大气压下纯水的冰点定为0℃,沸点定为100℃,在这个区域内划分100等分,每1等分为1度,单位为℃。
用t表示。
华氏温标:1个标准大气压下纯水的冰点定为320F,沸点定为2120F,在这个区域内划分180等分,每1等分为1度,单位为0F。
用F表示。
F=1.8t+32 (0F)绝对温标:又称热力学温标,开氏温标,每一度大小与摄氏温标相等,起点为物质内分子热运动完全停止时温度(-273.15℃),单位为K。
用T表示。
T=t+273.15(K)三种温标的换算关系:t=T-273.15=(5/9)(F-32)例题:单元式空调机组制冷工况时,进风干球温度27℃,湿球温度19℃,进风温度相当于华氏温度多少?t db27F db=27*1.8+32=80.6t wb19F wb=19*1.8+32=66.22、压力1 bar 巴 =100000 pa 帕斯卡=0.1MPa1 psi 磅/平方英寸=0.0703 kgf/cm21 kgf/cm2 千克力/平方厘米 =98000 pa 帕1 mm aq. 毫米水柱=9.8 pa 帕pgh1 mm hg 毫米汞柱=133.28 pa 帕1 m H2O 米水柱=9800 pa 帕=0.1 kgf/cm2 千克力/平方厘米工程上常将1大气压(B)看成1个工程大气压或0.1MPa,即B=1kgf/cm2,或B=0.1MPa表压:通过压力表读出的压力,为绝对压力减当地大气压。
真空度:压力比大气压低的程度。
真空度=B-绝对压力管道机要求抽真空到60~120pa3、热能:分子热运动强度的度量,是依靠温差传递的能量。
用Q表示1kcal=4.1868kJ1 kcal/h 大卡/时=1.163 W 瓦1 kW千瓦=860 kcal/h 大卡/时1 btu/h 英制热量单位/时=0.293 W瓦1BTH:把1磅水升温1F0所吸取的热量。
热工学部分基本概念与基本原理:热力系统:开口系、闭口系、绝热系、孤立系。
状态参数:p、v、T、u、h、s;过程量:q,w;可逆过程. p-v图,T-s图热力学第一定律能量方程式--闭口系统能量方程、开口系统稳定流动能量方程及其应用。
(计算与分析)理想气体的状态方程式、比热的性质,内能、焓、熵等状态参数的计算。
掌握理想气体的四个基本热力过程及多变过程的分析计算,并会使用p-v、T-s图进行定性分析。
理解正循环与逆循环及其经济性能指标、卡诺循环与卡诺定理、制冷循环与逆卡诺循环。
掌握水蒸气这种常用工质的热力性质,会用水蒸气热力性质表进行工程计算。
掌握湿空气的特性参数及其计算、焓湿图及其应用。
掌握傅立叶定律和一维稳态导热问题的求解,了解非稳态导热问题和集总参数法。
平壁和圆筒壁的导热。
了解对流换热的基本概念、边界层概念。
掌握流体受迫流动换热的计算和流体自由流动换热计算。
重点:常见的相关准则,受迫流动换热计算。
理解热辐射的基本概念和热辐射的基本定律,掌握辐射换热的基本计算方法。
基尔霍夫定律及灰体辐射换热分析法。
掌握传热过程的分析方法,了解换热器的设计、校核过程。
发动机原理部分1. 考试题型简答题,分析说明题。
主要考察利用基本原理分析与发动机相关的现象、技术与问题。
2.基本知识点A、术语充气效率、气门重叠、换气损失、VTEC(或VVT)、废气涡轮增压、辛烷值、十六烷值、过量空气系数、空燃比、自燃(压燃)、点燃、链式反应、预混燃烧、扩散燃烧、爆燃(爆震)、EGR、三元催化转化器(TWC)、工况、电控燃油喷射系统、氧传感器、ECU、汽油缸内直喷(GDI)、高压共轨系统B、基本知识1、发动机的性能指标:经济性、动力性、运转性能,及如何提高经济与动力性2、四冲程发动机的工作循环3、理解配气相位与气门重叠(换气过程)4、如何提高充气效率及其作用5、油品的主要指标6、着火方式与着火机理7、燃烧方式8、供油规律与喷油规律9、油束特性10、柴油机燃烧的四个阶段,放热规律11、柴油机燃烧的特点12、影响柴油机燃烧过程的运转因素13、柴油机工作过程粗暴的机理14、汽油机的燃烧过程,三个阶段15、爆燃与表面着火16、汽油燃烧室的要求与特点17、发动机的负荷特性、速度特性、万有特性及其应用(能读懂相关图表)18、汽车的主要排放物(HC、CO、NOx、PM)及其生成机理19、机内净化技术20、机外净化技术21、我国的排放法规22、电控燃油喷射系统组成,一般控制策略。
热工学基础第一章 工质与热力系统1、工质:各种形式能量的转换或转移,通常都要借助一种携带热能的工作物质来完成,这种工作物质称为工质。
2、温度:实用温标(t )、理论温标(T ) t=T —273.153、准静态过程、可逆过程及其联系与区别 准静态过程:若过程进行的极其缓慢,则系统在每一瞬间的状态无限接近平衡状态,或者说,只是无限小的偏离平衡状态,该过程则为准静态过程。
可逆过程:系统在经历某一过程之后沿原路线方向进行,若系统和外界都能够回复到它们各自的最初状态,这过程成为可逆过程(它是指可能性,不是指必须回到最初状态的过程)。
联系与区别:可逆过程必定是准静态过程,而准静态过程未必是可逆过程。
它只是可逆过程的条件之一,没有机械摩擦损失的准静态过程是可逆过程,可逆过程是准静态过程的进一步理想化。
4、系统储存能=系统内部储存能(内能)+系统外部储存能(动能和位能)5、功量和热量:功量是除温度差外,不平衡势差作用下外界传递的能量,包括膨胀功和轴功;热量是热力系统通过边界与边界交换的能量中除了功的部分,是外界与系统之间所传递的能量,不是系统本身具有的能量。
第二章 热力学第一定律1、热力学第一定律:主要说明热能与机械能在转换过程中能量守恒。
2、热力学第一定律的基本表达式:输入系统的能量—系统输出的能量=系统储存能的变化3、闭口系统热力学第一定律解析式:Q=△U+W ;对于1千克工质:q=△u+w ;对于微元热力过程:w du q δδ+=4、焓:是物质进出开口系统时带入或带出的热力学能与推动功之和,是随物质一起转移的能量,它是宏观的状态参数,同时存在于闭口系统中。
H=u+pv(j /kg)5、5kg 气体在热力过程中吸热70kj,对外膨胀做功50kj 。
该过程中内能如何变化,每千克气体内能的变化为多少?(p17例2-1、2-2)6、2Kg 气体在压力0.5Mpa 下定压膨胀,体积增大了0.12m 2,同时吸热60kj.求气体内能的变化。
大一热工学基础知识点总结热工学是工程热力学的一部分,研究热能与机械能之间的转化关系以及热力系统的性质和运行规律。
在大一的学习中,我们学习了一些热工学的基础知识点,下面将对这些知识点进行总结。
一、热力学基本概念1. 系统与环境:热力学中,我们研究的对象称为系统,而系统外部的一切都称为环境。
2. 状态和过程:系统在某一时刻的特定条件下所具有的性质称为系统的状态,而系统从一个状态变化到另一个状态的过程称为过程。
3. 热平衡与热力学平衡:系统与环境之间无热交换和无功交换的状态称为热平衡,而系统内各部分之间无微观流动和无宏观运动等变化的状态称为热力学平衡。
二、热力学定律1. 第一法则(能量守恒定律):能量不会凭空消失或产生,只能从一种形式转化为另一种形式,即能量的输入和输出必须平衡。
2. 第二法则(热力学第一定律):能量自发流动的方向是从高温物体向低温物体,不可逆过程中总是有熵增加。
三、气体状态方程1. 理想气体状态方程:PV = nRT,其中P为气体压力,V为体积,n为物质的摩尔数,R为气体常数,T为温度。
2. van der Waals方程:(P + a/V^2)(V - b) = nRT,修正了理想气体状态方程对实际气体性质的不足。
四、热力学循环1. 卡诺循环:由两个等温过程和两个绝热过程组成的循环,是一个完全可逆的循环。
2. 热机效率:热机的等效传热效率为η = (Q1 - Q2) / Q1,其中Q1为热量输入,Q2为热量输出。
3. 逆卡诺循环:是卡诺循环的逆过程,用来冷却物体。
4. 热泵效率:热泵的等效传热效率为η = Q1 / (Q1 - Q2),其中Q1为热量输入,Q2为热量输出。
五、热力学性质1. 焓:在常压下,单位质量物质的焓称为比焓,表示为h。
比焓可以用来计算物质的热量变化。
2. 熵:熵是一个系统的无序程度的度量,表示为S。
熵增加代表系统向着混乱状态发展。
3. 压力、体积、温度、比容、比熵等物理量之间的关系可以通过热力学过程和状态方程得到。
热工学基础期末总结一、引言热工学是工程热力学的基础学科,主要研究能量的转化与传递规律,涉及到热能的产生、利用和转换。
通过本学期的学习,我对热工学的基本概念和原理有了更深入的理解,并且掌握了一些基本的计算方法和实际应用技能。
在此总结中,我将对本学期学习的内容进行回顾和总结,以加深对热工学的理解。
二、热力学基本概念与原理1. 热力学系统:热力学系统是指一个物体或一组物体,通过边界与外界分隔开来,系统内部可以发生能量和物质的相互作用。
2. 热力学性质:包括压力、温度、体积、质量等,是描述系统状态的物理量。
3. 状态方程:描述热力学系统各状态参数之间的关系,例如理想气体状态方程和柯西状态方程等。
4. 热力学过程:系统从一个状态到另一个状态的变化过程,包括等温过程、等容过程、绝热过程等。
5. 热力学第一定律:能量守恒定律,系统的内能变化等于吸收的热量减去对外界做的功。
6. 热力学第二定律:能量的不可逆流动定律,热量只能从高温物体传向低温物体,不可逆过程总是产生熵增。
7. 热通量:单位时间内通过某个表面的热量。
8. 热工作:系统通过吸收的热量产生的对外界做的功。
三、热力学计算方法与工程应用1. 热力学图表:利用热力学图表可以根据系统参数的变化情况,直观地了解系统的状态变化和各个热力学性质的数值。
2. 热力学计算方法:可以根据系统参数和热力学性质的关系方程,计算系统的内能、熵、功、热量等。
3. 热力学循环:基于热力学的概念和原理,可以设计各种热力学循环来实现能源的转化和利用,例如卡诺循环、斯特林循环等。
4. 热力学工程应用:热力学的基本概念和原理在各个工程领域都有广泛的应用,例如燃烧工程、制冷工程、发动机等。
四、实例分析在本学期的实践教学环节中,我们开展了一系列的实验和工程应用案例分析,以加深对热工学的理解和应用。
例如,在燃烧工程实验中,我们通过控制不同燃料和氧气的比例,调整燃烧室内的温度和压力,从而改变燃烧过程的效果。