纳米材料的制备及应用_杨佳伟
- 格式:pdf
- 大小:2.50 MB
- 文档页数:2
氢氧化铝纳米材料的制备与应用氢氧化铝(Al(OH)3)是一种常见的无机化合物,广泛用于水处理、塑料填充剂、焰火制造等领域。
与传统的氢氧化铝相比,纳米氢氧化铝具有更高的比表面积和更好的物理化学性能,因此在药物、电子、航空航天等领域具有广泛的应用前景。
一、氢氧化铝纳米材料的制备1、溶胶凝胶法溶胶凝胶法是制备氢氧化铝纳米材料的常用方法之一。
该方法的核心是利用化学反应将溶解溶胶、胶体粒子和成核晶体逐渐转化为凝胶,并将凝胶热处理制成氢氧化铝纳米颗粒。
该方法制备出的氢氧化铝纳米材料具有颗粒度小、比表面积高、热稳定性好等特点。
2、水热法水热法是利用高温高压水溶液中的化学反应生成氢氧化铝纳米晶体的方法。
水热法制备氢氧化铝纳米材料的关键是控制反应条件,如温度、压力、pH值等。
该方法制备的氢氧化铝纳米晶体具有颗粒均匀、晶形良好、表面活性高等优点。
但是,该方法的制备成本相对较高,需要专门设备。
3、机械合成法机械合成法是通过机械碾磨或高能球磨等机械作用,将粗颗粒的氢氧化铝转化为纳米颗粒的方法。
该方法简单易行,成本低,适用于中小规模制备。
但是,机械作用对氢氧化铝纳米颗粒的晶格、结构和形貌等均有影响,制备出的氢氧化铝纳米材料质量不稳定。
二、氢氧化铝纳米材料的应用1、药物氢氧化铝纳米材料具有优异的生物相容性和药物承载能力,可用于构建纳米药物载体。
将药物包裹在氢氧化铝纳米颗粒中,可以提高药物的稳定性、肝素化速度和生物利用度,促进药物对病变组织的作用。
2、电子氢氧化铝纳米材料具有良好的电学性能,在电子领域具有广泛的应用。
将氢氧化铝纳米材料制成电子器件,可用于热敏红外探测器、光电传感器、场效应晶体管等电子器件的制备。
3、航空航天氢氧化铝纳米材料具有优异的耐高温性和耐腐蚀性,可用于航空航天领域。
将氢氧化铝纳米材料用于制备航空航天部件,可以提高部件的耐高温、抗氧化性能和耐腐蚀性能,提高飞行器的可靠性和安全性。
总之,氢氧化铝纳米材料的制备和应用具有广泛的应用前景。
科研应用纳米Fe 3O 4的制备及在油墨中的应用研究杨勃(湖南工业大学湖南·株洲412007)中图分类号:O614.81文献标识码:ADOI :10.16871/ki.kjwhb.2016.05.080作者简介:杨勃(1994—),就读于湖南工业大学印刷工程专业。
摘要磁性防伪油墨是一种新型防伪技术,其防伪技术的核心是磁性材料。
Fe 3O 4是目前最常使用的磁性材料。
本文采用共沉淀法,利用硫酸亚铁为单一铁源,以醋酸钠作静电保护剂,在一定条件下成功制备了形貌基本均一、平均粒径为100nm 的棒状Fe 3O 4。
然后利用实验室自制的Fe 3O 4纳米材料作为磁性防伪材料和颜料,配以一定比例的连接料和助剂,制备出了磁性能良好防伪油墨,其细度均匀、墨色浓厚,流动性能良好,适于印刷。
关键词纳米Fe 3O 4磁性油墨共沉淀法磁性能印刷适性Research on the Preparation of Nano Fe 3O 4and Its Appli 原cation to Painting Ink //Yang BoAbstract Magnetic anti-counterfeiting ink is a new anti-coun-terfeiting technique,whose core is magnetic materials.Fe 3O 4is the most commonly used magnetic material at present.Through co-precipitation method,with ferrous sulfate as the single source of iron and sodium acetate as the static protection agent,rod-like Fe 3O 4,with generally average appearance and an average diame-ter of 100nm,is prepared under certain conditions.Then with laboratory made Fe 3O 4nano material as the magnetic anti-coun-terfeiting material and pigment,supplemented by a certain pro-portion of binder and auxiliary,anti-counterfeiting painting ink with good magnetic property is prepared,and it is well suitable for printing with its average size,ink density and good flowability.Key words nano Fe 3O 4;magnetic painting ink;co-precipitation method;magnetic property;printability1引言当今社会假冒伪劣产品充斥市场,各种防伪技术层出不穷。
第1篇一、实验名称纳米材料的制备二、实验目的1. 了解纳米材料的制备原理和方法。
2. 掌握纳米材料的制备过程及注意事项。
3. 通过实验验证制备方法的有效性,并对制备的纳米材料进行表征。
三、实验原理纳米材料是指尺寸在1-100纳米之间的材料,具有特殊的物理、化学和生物学性质。
纳米材料的制备方法主要包括化学气相沉积(CVD)、物理气相沉积(PVD)、溶液法、溶胶-凝胶法等。
本实验采用溶胶-凝胶法制备纳米材料。
溶胶-凝胶法是一种通过溶胶、凝胶和干燥三个阶段制备纳米材料的方法。
其原理是将金属盐或金属氧化物溶解于溶剂中,形成溶胶,然后在一定的条件下,溶胶逐渐转化为凝胶,最终干燥得到纳米材料。
四、实验材料与仪器1. 实验材料:金属盐、金属氧化物、溶剂、催化剂等。
2. 实验仪器:磁力搅拌器、恒温水浴锅、干燥箱、电子天平、超声波清洗器、扫描电子显微镜(SEM)、X射线衍射仪(XRD)等。
五、实验步骤1. 配制溶胶:将金属盐或金属氧化物溶解于溶剂中,加入适量的催化剂,搅拌均匀,形成溶胶。
2. 形成凝胶:将溶胶在恒温水浴锅中加热,使其逐渐转化为凝胶。
3. 干燥:将凝胶放入干燥箱中,在一定的温度下干燥,得到纳米材料。
六、实验结果与分析1. 实验结果本实验制备的纳米材料为球形,粒径约为30纳米,具有较好的分散性。
2. 分析通过SEM观察,发现制备的纳米材料为球形,粒径分布均匀。
通过XRD分析,证实了纳米材料的晶体结构。
七、实验讨论1. 溶剂的选择对纳米材料的制备影响较大,本实验中采用水作为溶剂,具有良好的效果。
2. 催化剂的选择对纳米材料的制备也有一定影响,本实验中采用碱性催化剂,有利于纳米材料的形成。
3. 干燥过程中,温度和时间的控制对纳米材料的质量有较大影响,本实验中通过实验确定最佳干燥条件。
八、实验结论本实验采用溶胶-凝胶法制备纳米材料,成功制备了球形纳米材料,粒径约为30纳米,具有较好的分散性。
实验结果表明,该方法制备纳米材料具有操作简单、成本低、易于控制等优点,适用于实验室制备纳米材料。
聚合物纳米粒子的制备与应用研究聚合物纳米粒子,作为一种重要的纳米材料,具有广泛的应用前景。
本文主要介绍了聚合物纳米粒子的制备方法以及常见的应用领域,旨在更好地了解这一纳米材料。
一、制备方法目前,聚合物纳米粒子的制备方法主要有两种:溶液聚合和乳液聚合。
溶液聚合是指将单体溶解在有机溶剂中,加入引发剂后进行聚合反应,最终得到聚合物纳米粒子。
该方法具有操作简单、反应体系稳定等优点,但需要使用有机溶剂,且粒子大小分布较广。
乳液聚合则是采用乳化剂将单体分散在水中,再加入引发剂进行聚合反应,得到聚合物纳米乳液。
该方法具有反应条件温和、粒径分布窄等优点,但需要较高的乳化剂浓度,且乳化剂可能对部分应用性能产生影响。
二、应用领域1.生物医药领域聚合物纳米粒子在生物医药领域的应用十分广泛。
例如,用于癌症治疗的药物纳米粒子可以通过控制其大小和形状,实现对癌细胞的靶向性识别,提高治疗效果并减少药物副作用。
此外,聚合物纳米粒子还可以作为输送载体,用于传递RNA 或DNA等生物分子,以及制备仿生人工器官等方面。
2.材料科学领域聚合物纳米粒子在材料科学领域也有许多应用。
例如,多层壳聚合物纳米粒子可以被用做表面改性剂,以改善纳米材料的组装和性能。
此外,聚合物纳米粒子还可以被用来制备聚合物复合材料、能量转换材料等功能材料。
3.环境保护领域最近,聚合物纳米粒子在环境保护领域的应用也受到了广泛关注。
例如,通过将聚合物纳米粒子添加到水中,可以改善水质,减少水体中的重金属和有机物污染物。
此外,还可以将聚合物纳米粒子用于固体废物处理、大气净化等方面。
三、总结聚合物纳米粒子是一种重要的纳米材料,可以通过溶液聚合和乳液聚合等方法制备得到。
在生物医药、材料科学和环境保护等领域都有广泛的应用。
随着纳米技术的不断进步和发展,聚合物纳米粒子必将在更多领域发挥重要作用,为人类创造更美好的生活。
钼酸盐纳米材料的制备及应用研究进展
钼酸盐纳米材料是一种应用广泛的纳米材料,其制备方法和应用研究一直备受关注。
下面是钼酸盐纳米材料的制备及应用研究进展:
1. 制备方法:
钼酸盐纳米材料的制备方法有很多,如溶剂热法、水热法、微波法、化学气相沉积法、电化学合成法等。
其中,溶剂热法是纳米材料制备中常用的一种方法。
在该方法中,利用水热反应的高温高压条件,将化学反应物混合在一起,形成纳米颗粒。
2. 应用研究:
2.1 催化作用
钼酸盐纳米材料在催化领域有着广泛的应用,可以用于有机合成、油品加氢、酸碱催化等方面。
2.2 光催化作用
钼酸盐纳米材料在光催化反应中具有良好的活性和稳定性,可以应用于环境治理、水净化、空气净化等方面。
2.3 生物医学应用
钼酸盐纳米材料在生物医学领域的应用也备受关注,主要用于肿瘤治疗、癌症检测等方面。
总之,钼酸盐纳米材料具有广泛的应用前景,其制备方法和应用研究还有很多待深入探索和发展。
碳纳米管/高分子复合材料的制备及应用研究进展
顾玲玲;陈彧;林楹;冯苗;何楠;庄小东
【期刊名称】《高分子材料科学与工程》
【年(卷),期】2009(25)11
【摘要】将碳纳米管掺杂到聚合物母体中形成的碳纳米管/高分子复合材料具有良好的力学、导电和非线性光学性质。
在聚合物中添加少量碳纳米管可以明显改变聚合物的结晶和形貌。
大量研究表明,这些复合材料在诸如太阳能电池、有机发光器件、光限幅、光学开关、防护涂料以及人造肌肉等方面具有潜在的实际应用价值。
文中介绍了碳纳米管/高分子复合材料的制备方法及其在高科技领域中的应用潜能。
【总页数】5页(P165-169)
【关键词】碳纳米管;高分子复合材料;制备;应用
【作者】顾玲玲;陈彧;林楹;冯苗;何楠;庄小东
【作者单位】结构可控先进功能材料及其制备教育部重点实验室,华东理工大学化
学与分子工程学院,上海200237;福州大学材料科学与工程学院,福建福州350002【正文语种】中文
【中图分类】TB383
【相关文献】
1.取向碳纳米管高分子新型复合材料的制备及应用 [J], 李佳伦
2.高分子纳米复合材料研究进展(I)高分子纳米复合材料的制备、表征和应用前景[J], 曾戎;章明秋;曾汉民
3.取向碳纳米管/高分子新型复合材料的制备及应用 [J], 丘龙斌;孙雪梅;仰志斌;郭文瀚;彭慧胜
4.高分子纳米复合材料研究进展(Ⅰ)──高分子纳米复合材料的制备、表征和应用前景 [J], 曾戎;章明秋;曾汉民
5.多壁碳纳米管/向列型液晶高分子复合材料的制备与表征 [J], 李攀;郭艳青;张莹;胡建设
因版权原因,仅展示原文概要,查看原文内容请购买。
纳米材料技术在生产中的广泛应用
佚名
【期刊名称】《纳米科技》
【年(卷),期】2012(009)001
【摘要】效应颜料。
这是纳米材料最重要、最有前途的用途之一,特别是在汽车的涂装业中,因为纳米材料具有随角度变化色彩的性能,使汽车面漆大增光辉,深受配漆专家的喜爱。
【总页数】1页(P88-88)
【正文语种】中文
【中图分类】TQ637
【相关文献】
1.未来材料技术对全球技术变革的影响——生物、纳米、材料技术的共协式发展[2015年预测] [J], 傅原
2.酿酒微生物太空育种及在生产中的应用研究(Ⅲ)芝麻香型白酒太空菌种在生产中的应用 [J], 张彬;庄名扬;武金华;杨涛
3.酿酒微生物太空育种及在生产中的应用研究(Ⅰ)己酸菌太空育种及在生产中的应用 [J], 张彬;庄名扬;武金华;杨涛
4.浅谈变频运行在生产中的广泛应用 [J], 张卫东;胡彬;殷功合;丁传红
5.浅谈纳米技术在生活生产中的应用 [J], 李冉;吴霜;付鹏辉
因版权原因,仅展示原文概要,查看原文内容请购买。
《纳米SiO2杂化材料的制备及其在紫外光固化涂料中的性能研究》篇一一、引言随着科技的进步和材料科学的快速发展,纳米材料因其独特的物理和化学性质在众多领域中得到了广泛的应用。
其中,纳米SiO2杂化材料因其高比表面积、优异的机械性能和良好的化学稳定性,在涂料、塑料、橡胶等多个领域都有重要应用。
本篇论文旨在探讨纳米SiO2杂化材料的制备方法,以及其在紫外光固化涂料中的应用和性能表现。
二、纳米SiO2杂化材料的制备1. 材料与方法纳米SiO2杂化材料的制备主要采用溶胶-凝胶法。
该方法通过控制反应条件,如温度、pH值、反应时间等,制备出具有特定结构和性能的纳米SiO2杂化材料。
2. 实验过程首先,将硅源(如正硅酸乙酯)与催化剂(如氨水)混合,在一定的温度和pH值下进行水解和缩聚反应,形成溶胶。
然后,通过添加交联剂和其他添加剂,进行进一步的交联和固化,最终得到纳米SiO2杂化材料。
3. 结果与讨论通过溶胶-凝胶法成功制备出纳米SiO2杂化材料,其粒径分布均匀,具有较高的比表面积和良好的分散性。
此外,该材料具有良好的热稳定性和化学稳定性,为其在涂料等领域的应用提供了良好的基础。
三、纳米SiO2杂化材料在紫外光固化涂料中的应用及性能研究1. 应用方法将制备好的纳米SiO2杂化材料加入到紫外光固化涂料中,通过搅拌使其均匀分散。
然后,将涂料涂布在需要保护的基材上,通过紫外光固化,形成一层保护膜。
2. 性能研究(1)力学性能:纳米SiO2杂化材料的加入显著提高了涂层的硬度和耐磨性。
由于纳米粒子的优异性能,涂层具有更好的抗划痕和抗磨损能力。
(2)光学性能:纳米SiO2杂化材料具有良好的透明性,使得涂层在保持高透明度的同时,具有更好的抗划痕和抗污染性能。
此外,该材料还能提高涂层的光泽度和耐候性。
(3)耐化学性能:纳米SiO2杂化材料具有良好的化学稳定性,使得涂层具有优异的耐化学腐蚀性能。
在接触各种化学物质时,涂层能保持良好的性能和外观。
一维ZnO纳米棒的制备及光学性能研究一维ZnO纳米棒的制备及光学性能研究摘要:本研究通过氧化锌(ZnO)纳米棒的制备方法,研究了其在光学性能方面的表现。
实验结果显示,制备得到的一维ZnO纳米棒具有优异的光学性能,具备潜在的应用价值。
引言:纳米材料已经成为当今科学研究的热点领域之一,其在光学、电子学和材料领域具有广泛的应用前景。
然而,对于一维纳米材料的制备方法和光学性能的详细研究仍然相对不足。
本研究旨在通过研究一维ZnO纳米棒的制备方法及其光学性能,探讨其在光电子器件以及传感器等领域的应用潜力。
实验方法:本实验选择溶胶-凝胶法及热解法结合的方法来制备一维ZnO纳米棒。
首先,将硝酸锌和乙酸根溶液按照一定比例混合,生成含锌离子的溶液。
接着将其在恒温搅拌的条件下反应,形成溶胶。
随后,将溶胶放置在恒温条件下等待凝胶的形成,完成溶胶-凝胶转变。
最后,将凝胶进行煅烧处理,在一定温度下使凝胶转变为纳米棒状的ZnO。
得到的样品经过扫描电子显微镜(SEM)扫描,能够观察到纳米棒的形貌,并使用紫外-可见光谱(UV-Vis)对其光学性能进行表征。
结果与讨论:通过SEM观察,得到的一维ZnO纳米棒具有均匀的形貌,并且长度约为100-500纳米,直径约为50-100纳米。
这种纳米棒的形状有助于其在光学领域的应用。
并且,通过UV-Vis光谱测量发现,纳米棒在可见光范围内呈现出良好的吸光性能,吸收峰位于400-500纳米,吸收强度较高。
这说明纳米棒对于可见光具有较好的散射和吸收性能,也为其在光电子器件制备方面提供了一定的潜力。
结论:本研究成功制备了一维ZnO纳米棒,并对其光学性能进行了初步研究。
结果表明,制备得到的纳米棒具有良好的形貌和光学性能。
这为进一步研究其在光电子器件以及传感器等领域的应用提供了基础。
同时,本研究的制备方法也可为其他一维纳米材料的合成提供参考。
附:图片说明图1. 一维ZnO纳米棒的SEM图像。
图2. 一维ZnO纳米棒的UV-Vis光谱示意图通过溶胶-凝胶法成功制备了一维ZnO纳米棒,并对其形貌和光学性能进行了研究。