实验一 探究弹簧伸长量与弹力的关系
- 格式:ppt
- 大小:4.05 MB
- 文档页数:30
实验专题:探究弹簧弹力和弹簧伸长量的关系答案解析答案解析1.【答案】(1)C(2)等于【解析】(1)因为弹簧是被放在水平桌面上测得的原长,然后把弹簧竖直悬挂起来后,由于重力的作用,弹簧的长度会增大,所以图线应出现x轴上有截距,C正确,A、B、D错误.(2)如果将指针固定在A点的下方P处,在正确测出弹簧原长的情况下,再作出x随F变化的图象,则在图象上x的变化量不变,得出弹簧的劲度系数与实际值相等.2.【解析】(1)F-L图线如图所示:(2)弹簧的原长L0即弹力为零时弹簧的长度,由图象可知,L0=5×10-2m=5 cm.劲度系数为图象直线部分的斜率,k=20 N/m.(3)记录数据的表格如下表(4)优点:可以避免弹簧自身重力对实验的影响.缺点:弹簧与桌面及绳子与滑轮间存在的摩擦会造成实验误差.3.【解析】(1)在做实验的时候一般步骤为先组装器材,然后进行实验,最后数据处理,故顺序为CBDAEF.(2)①根据描点法,图象如图所示②、③根据图象,该直线为过原点的一条直线,即弹力与伸长量成正比,即F=kx=0.43x.式中的常数表示弹簧的劲度系数,即表示使弹簧伸长或者压缩1 cm所需的外力大小为0.43 N.4.【答案】(1)如图所示30F弹=30Δx(2)B(3)A【解析】(1)如图所示,直线的斜率的倒数表示弹簧的劲度系数,即k=,代入数据得kA =N/m≈30 N/m,所以弹簧的弹力大小F弹跟弹簧伸长量Δx的函数关系是F弹=30Δx.5.【解析】(1)描点作图,如图所示:(2)图象的斜率表示劲度系数,故有:k==N/m=50 N/m(3)图线与L轴的交点坐标表示弹簧不挂钩码时的长度,其数值大于弹簧原长,因为弹簧自身重力的影响.6.【答案】(1)6.93(2)A(3)弹簧受到的拉力超过了其弹性限度【解析】(1)弹簧伸长后的总长度为14.66 cm,则伸长量Δl=14.66 cm-7.73 cm=6.93 cm.(2)逐一增挂钩码,便于有规律地描点作图,也可避免因随意增加钩码过多超过弹簧的弹性限度而损坏弹簧.(3)AB段明显偏离直线OA,伸长量Δl不再与弹力F成正比,是超出弹簧的弹性限度造成的.7.【解析】(1)根据题意知,刻度尺的最小刻度为1毫米.读数时,应估读到毫米的十分位,故l5、l6记录有误.(2)按(1)中的读数规则,得l3=6.85 cm,l7=14.05 cm.(3)根据题中求差方法,可知d4=l7-l3=7.20 cm(4)根据l4-l0=4Δl=d1,l5-l1=4Δl=d2,l6-l2=4Δl=d3,l7-l3=4Δl=d4,有Δl==1.75 cm.(5)根据胡克定律F=kx得mg=kΔl,k==N/m=28 N/m8.【答案】(1)450(2)10【解析】(1)当F=0时,弹簧的长度即为原长,由胡克定律可知图象的斜率表示劲度系数大小.(2)弹簧秤的示数为3 N,则伸长量为3/50=0.06 m,则长度为10 cm.9.【解析】(1)描点作出图象,如下图所示.(2)图象跟坐标轴交点的物理意义表示弹簧原长.由图象可知,弹簧的劲度系数应等于直线的斜率,即k==200 N/m.10.【答案】(1)竖直(2)稳定L3 1 mm(3)Lx(4)4.910【解析】(1)为保证弹簧的形变只由砝码和砝码盘的重力产生,所以弹簧轴线和刻度尺均应在竖直方向.(2)弹簧静止稳定时,记录原长L0;表中的数据L3与其他数据有效位数不同,所以数据L3不规范,标准数据应读至cm位的后两位,最后一位应为估读值,精确至0.1 mm,所以刻度尺的最小分度为1 mm.(3)由题图知所挂砝码质量为0时,x为0,所以x=L-Lx(L为弹簧长度).(4)由胡克定律F=kΔx知,mg=k(L-Lx),即mg=kx,所以图线斜率即为弹簧的劲度系数k==N/m=4.9 N/m同理,砝码盘质量m==kg=0.01 kg=10 g11.【解析】(1)根据表格中的各组数据在坐标纸上标出相应的点,然后用平滑曲线连接这些点,作出的图象如图所示.(2)根据作出的图线可知,钩码质量在0~500 g范围内图线是直线,表明弹力大小与弹簧伸长量关系满足胡克定律.在这个范围内的曲线上找到相距较远的两点,利用这两点的坐标值计算弹簧的劲度系数k==N/m=25.00 N/m.12.【解析】(1)本题考查探究弹簧弹力与形变关系的实验,意在考查考生对实验步骤的识记、实验数据的处理方法、分析归纳能力.根据实验先后顺序可知,实验步骤排列为CBDAEF.(2)②由图象可得k==0.43 N/cm,所以F=0.43x(N).13.【答案】(1)10(2)200(3)b【解析】(1)当F=0时,弹簧长度为原长,由题图得,原长为10 cm.(2)由公式F=kx得k===N/m=200 N/m(3)当弹簧长度小于原长时,处于压缩状态,故是图线b14.【答案】(1)弹簧测力计刻度尺(2)kFL(3)控制变量法(4)12.5【解析】(1)用弹簧测力计测量力的大小,用刻度尺测量长度.(2)由题目所给数据分析可知:当力一定时,伸长量和长度成正比;当长度一定时,伸长量和力成正比,故有x=kFL(取一组数据验证,式中的k不为零).(3)研究伸长量与拉力、长度的关系时,可以先控制其中一个量不变,如长度不变,再研究伸长量和拉力的关系,这种方法称为控制变量法.这是物理实验中的一个重要研究方法.(4)代入表中数据把式中的k求出,得k=0.000 8 N-1,再代入已知数据,L=20 cm,x=0.2 cm,可求得最大拉力F=12.5 N.15.【答案】CBDAEFG【解析】根据实验的实验操作过程应先安装仪器,再挂钩码然后记录数据,分析数据,最后整理即可,排列先后顺序为CBDAEFG.。
第七讲探究弹力和弹簧伸长的关系一、实验目的1.探究弹力与弹簧伸长的定量关系。
2.学会利用列表法、图象法、函数法处理实验数据的科学方法。
二、实验原理1.弹簧受力会发生形变,形变的大小与受到的外力有关。
沿着弹簧的方向拉弹簧,当形变稳定时,弹簧产生的弹力与使它发生形变的拉力在数值上是相等的。
2.用悬挂法测量弹簧的弹力,运用的正是弹簧的弹力与挂在弹簧下面的钩码的重力相等。
3.弹簧的长度可用刻度尺直接测出,伸长量可以由拉长后的长度减去弹簧原来的长度进行计算。
这样就可以研究弹簧的弹力和弹簧伸长量之间的定量关系,即寻求F=kx的关系。
三、实验器材轻质弹簧、钩码(一盒)、铁架台、坐标纸、毫米刻度尺。
四、实验过程1.实验步骤(1)将弹簧的一端挂在铁架台上,让其自然下垂,用刻度尺测出弹簧自然伸长状态时的长度l0,即原长。
(2)如图所示,将已知质量的钩码挂在弹簧的下端,在平衡时测量弹簧的总长并测出钩码的重力,填写在记录表格里。
(3)在弹簧下端挂质量为m1的钩码,量出此时弹簧的长度l1,记录m1和l,填入设计的表格中。
(4)改变所挂钩码的质量,量出对应的弹簧长度,记录m2、m3、m4、m5和相应的弹簧长度l2、l3、l4、l5,并得出每次弹簧的伸长量x1、x2、x3、x4、x5。
2.数据处理(1)以弹力F(大小等于所挂钩码的重力)为纵坐标,以弹簧的伸长量x为横坐标,用描点法作图。
按图中各点的分布与走向,尝试做出一条平滑的曲线(包括直线),所画的点不一定都正好在这条线上,但要注意使各点大致均匀分布在曲线两侧,个别点若偏离较大,可以舍去,得出弹力F随弹簧伸长量x变化的图线。
(2)以弹簧的伸长量为自变量,写出曲线所代表的函数。
首先尝试一次函数,如果不行则考虑二次函数。
(3)得出弹力和弹簧伸长之间的定量关系,解释函数表达式中常数的物理意义。
五、误差分析(1)本实验的误差来源之一是因弹簧拉力大小的不稳定造成读取弹簧长度时产生误差;当弹簧及钩码停止上下振动处于静止状态时测量弹簧的长度,可以提高实验的精确度。
弹簧弹力与伸长量的关系的实验报告在这个实验中,我们要聊聊弹簧弹力与伸长量之间的关系。
咱们得准备一根弹簧。
嘿,别小看它,这小家伙可有大用处。
你有没有想过,当你用手拉弹簧时,它的反应会是什么?我告诉你,弹簧就像一个不太愿意被拉扯的朋友,越拉越紧,但也会给你一定的回馈。
这样一来,咱们就可以用一些简单的工具来测量弹簧的伸长量,看看它到底有多能忍。
准备好几块重物,比如小砖头或书本,放在弹簧上。
每加一块重量,弹簧就会往下掉一段,嘿,这就是伸长量啦!你可能会觉得无聊,但其实这个过程就像给弹簧做体检,每次加重量,它就像在说:“哎呀,这可真沉啊!”。
通过记录下每次的重量和弹簧的伸长量,我们就能慢慢揭开它的秘密。
用个笔记本,把这些数据都记下来,简直就像在收集情报,真是有趣!然后,咱们就得好好分析一下这些数据。
你会发现,弹簧的伸长量和施加的重量之间似乎有一种神奇的联系。
每次加重,弹簧的伸长量也会随之增加。
哇,这就像是一种默契,彼此之间心有灵犀,完全不需要多说。
这种关系其实就是著名的胡克定律,简单来说,就是“拉得越多,伸得越远”。
想象一下,如果弹簧有声音,它可能会无奈地叹气:“再来一块吧,我可以承受更多!”在实验的过程中,可能会遇到一些小麻烦,比如弹簧过度伸展,甚至可能会变形。
不过没关系,这就像生活中遇到的挑战,总会有解决的办法。
只要咱们认真记录和观察,就能找到规律。
每当你看到弹簧因重物而变长时,心里是不是也有种说不出的满足感?就像看到自己的努力得到了回报,真是令人振奋。
说到这里,咱们得聊聊实验的结果。
这些数据汇总起来后,我们就能绘制出一条漂亮的图表。
想象一下,坐在桌子前,手里拿着铅笔,心里想着“我要画出一条完美的曲线”,真的是一种小小的成就感。
图表上每一个点都是我们的心血,见证了弹簧的“奋战”。
当看到这些点连成线时,那种感觉就像是看到了美妙的风景,心中满是骄傲。
咱们得总结一下这个实验的意义。
通过这个小实验,不仅能了解弹簧的性质,还能培养我们观察和分析的能力。
弹簧弹力与伸长量的关系的实验
实验目的:了解弹簧弹力与伸长量的关系
实验原理:弹簧的弹力是由它的材料所决定的,当弹簧被拉伸时,它就会产生一种弹力,这种弹力会阻止弹簧拉伸。
随着弹簧伸长量的增大,弹力也会随之增大。
因此,我们可以通过测量弹簧在不同伸长量下的弹力,来研究弹力与伸长量之间的关系。
实验材料和仪器:1、一根硬度较大的弹簧;2、拉力机;3、读数表;4、千分表;5、实验架;6、钩子等。
实验过程:
(1)将一根弹簧放在实验架上,并将其支撑在两个钩子上,使弹簧处于完全放松状态;
(2)用千分表将弹簧的伸长量测量出来,作为“零伸长量”;
(3)将拉力机的上端与弹簧的一端连接,将拉力机的下端支撑在实验架上,然后将拉力机的读数表与测量表对准;
(4)逐步拉伸弹簧,并调整拉力机,使弹簧保持在一定的伸长量,每调整一次,都要用千分表测量弹簧的伸长量;
(5)调整好拉力机的位置后,记录下拉力机的读数,记录其读数作为此时弹簧的弹力;
(6)重复上述步骤,记录不同伸长量下的弹力值;
(7)根据所记录的弹力数据,绘制弹力与伸长量的关系曲线,观察其关系。
实验结果:根据实验数据,我们可以绘制出一条弹力与伸长量的关系曲线,曲线大致呈线性分布,表明弹力与伸长量之间存在一定的正相关关系。
实验结论:弹力与伸长量之间存在正相关关系,即伸长量的增大会导致弹力的增大。
第二节探究弹力与弹簧伸长量的关系1.实验原理弹簧受到拉力作用会伸长,平衡时弹簧产生的弹力和外力大小相等;弹簧的伸长量越大,弹力也就越大。
2.实验器材铁架台、弹簧、钩码、刻度尺、坐标纸.3.实验步骤(1)安装实验仪器(如实验原理图所示).(2)测量弹簧的伸长量(或总长)及所受的拉力(或所挂钩码的质量),列表作出记录,要尽可能多测几组数据。
(3)根据所测数据在坐标纸上描点,以力为纵坐标,以弹簧的伸长量为横坐标。
(4)按照在图中所绘点的分布与走向,尝试作出一条平滑的曲线(包括直线),所画的点不一定正好在这条曲线上,但要注意使曲线两侧的点数大致相同。
(5)以弹簧的伸长量为自变量,写出曲线所代表的函数,首先尝试一次函数,如果不行再考虑二次函数。
开心小结:1.实验数据处理方法(1)列表法将测得的F、x填入设计好的表格中,可以发现弹力F与弹簧伸长量x的比值在误差允许范围内是相等的.(2)图象法以弹簧伸长量x为横坐标,弹力F为纵坐标,描出F、x各组数据相应的点,作出的拟合曲线,是一条过坐标原点的直线。
(3)函数法弹力F与弹簧伸长量x满足F=kx的关系.2.注意事项(1)不要超过弹性限度:实验中弹簧下端挂的钩码不要太多,以免弹簧被过分拉伸,超过弹簧的弹性限度。
(2)尽量多测几组数据:要使用轻质弹簧,且要尽量多测几组数据。
(3)观察所描点的走向:本实验是探究性实验,实验前并不知道其规律,所以描点以后所作的曲线是试探性的,只是在分析了点的分布和走向以后才决定用直线来连接这些点。
(4)统一单位:记录数据时要注意弹力及弹簧伸长量的对应关系及单位。
3.误差分析(1)钩码标值不准确、弹簧长度测量不准确带来误差.(2)画图时描点及连线不准确也会带来误差。
例1某同学和你一起探究弹力和弹簧伸长的关系,并测弹簧的劲度系数k。
做法是先将待测弹簧的一端固定在铁架台上,然后将最小刻度是毫米的刻度尺竖直放在弹簧一侧,并使弹簧另一端的指针恰好落在刻度尺上.当弹簧自然下垂时,指针指示的刻度数值记作L0,弹簧下端挂一个50 g的砝码时,指针指示的刻度数值记作L1;弹簧下端挂两个50 g的砝码时,指针指示的刻度数值记作L2;……;挂七个50 g的砝码时,指针指示的刻度数值记作L7。
弹簧的弹力与伸长量的关系一对一个性化讲义第一讲教师冯___茂___珊基本实验要求1.实验原理弹簧受到拉力作用会伸长,平衡时弹簧产生的弹力和外力大小相等;弹簧的伸长量越大,弹力也就越大.2.实验器材铁架台、弹簧、钩码、刻度尺、坐标纸.3.实验步骤(1)安装实验仪器(如实验原理图所示).(2)测量弹簧的伸长量(或总长)及所受的拉力(或所挂钩码的质量),列表作出记录,要尽可能多测几组数据.(3)根据所测数据在坐标纸上描点,以力为纵坐标,以弹簧的伸长量为横坐标.(4)按照在图中所绘点的分布与走向,尝试作出一条平滑的曲线(包括直线),所画的点不一定正好在这条曲线上,但要注意使曲线两侧的点数大致相同.(5)以弹簧的伸长量为自变量,写出曲线所代表的函数,首先尝试一次函数,如果不行再考虑二次函数.规律方法总结1.实验数据处理方法(1)列表法将测得的F、x填入设计好的表格中,可以发现弹力F与弹簧伸长量x的比值在误差允许范围内是相等的.(2)图象法以弹簧伸长量x为横坐标,弹力F为纵坐标,描出F、x各组数据相应的点,作出的拟合曲线是一条过坐标原点的直线.(3)函数法弹力F与弹簧伸长量x满足F=kx的关系.2.注意事项(1)不要超过弹性限度:实验中弹簧下端挂的钩码不要太多,以免弹簧被过分拉伸,超过弹簧的弹性限度.(2)尽量多测几组数据:要使用轻质弹簧,且要尽量多测几组数据.(3)观察所描点的走向:本实验是探究性实验,实验前并不知道其规律,所以描点以后所作的曲线是试探性的,只是在分析了点的分布和走向以后才决定用直线来连接这些点.(4)统一单位:记录数据时要注意弹力及弹簧伸长量的对应关系及单位.3.误差分析(1)钩码标值不准确、弹簧长度测量不准确带来误差.(2)画图时描点及连线不准确也会带来误差.考点一实验原理与实验操作1.[对实验原理的考查]一个实验小组在“探究弹力和弹簧伸长量的关系”的实验中,使用两条不同的轻质弹簧a和b,得到弹力F与弹簧长度l的图象如图1所示.下列表述正确的是( )图1A.a的原长比b的长B.a的劲度系数比b的大C.a的劲度系数比b的小D.测得的弹力与弹簧的长度成正比2.[对实验操作的考查]如图2甲所示,用铁架台、弹簧和多个已知质量且质量相等的钩码探究在弹性限度内弹簧弹力与弹簧伸长量的关系.图2(1)为完成实验,还需要的实验器材有:____________.(2)实验中需要测量的物理量有:________________.(3)图乙是弹簧弹力F与弹簧伸长量x的F-x图线,由此可求出弹簧的劲度系数为________N/m.图线不过原点的原因是由于___________________________________.(4)为完成该实验,设计的实验步骤如下:A.以弹簧伸长量为横坐标,以弹力为纵坐标,描出各组(x,F)对应的点,并用平滑的曲线连接起来;B.记下弹簧不挂钩码时其下端在刻度尺上的刻度l0;C.将铁架台固定于桌子上,并将弹簧的一端系于横梁上,在弹簧附近竖直固定一把刻度尺;D.依次在弹簧下端挂上1个、2个、3个、4个…钩码,并分别记下钩码静止时弹簧下端所对应的刻度,并记录在表格内,然后取下钩码;E.以弹簧伸长量为自变量,写出弹力与弹簧伸长量的关系式.首先尝试写成一次函数,如果不行,则考虑二次函数;F.解释函数表达式中常数的物理意义;G.整理仪器.请将以上步骤按操作的先后顺序排列出来:________.3.[对实验原理与实验操作的考查](1)在“探究弹力和弹簧伸长量的关系”的实验中,以下说法正确的是( )A.弹簧被拉伸时,不能超出它的弹性限度B.用悬挂钩码的方法给弹簧施加拉力,应保证弹簧位于竖直位置且处于平衡状态C.用直尺测得弹簧的长度即为弹簧的伸长量D.用几个不同的弹簧,分别测出几组拉力与伸长量,得出拉力与伸长量之比相等(2)某同学做“探究弹力和弹簧伸长量的关系”的实验,他先把弹簧平放在桌面上使其自然伸长,用直尺测出弹簧的原长L0,再把弹簧竖直悬挂起来,挂上钩码后测出弹簧伸长后的长度L,把L-L0作为弹簧的伸长量x,这样操作,由于弹簧自身重力的影响,最后画出的图线可能是下列选项中的( )考点二数据处理及误差分析4.[实验误差分析]为了探究弹力和弹簧伸长的关系,某同学选了甲、乙两根规格不同的弹簧进行测试,根据测得的数据绘出如图3所示图象.图3(1)从图象上看,该同学没能完全按照实验要求做,从而使图象上端成为曲线,图象上端成为曲线是因为____________________________________.(2)这两根弹簧的劲度系数分别为________ N/m和________ N/m;若要制作一个精确程度较高的弹簧测力计,应选弹簧________(选填“甲”或“乙”).(3)从上述数据和图线中分析,请对这个研究课题提出一个有价值的建议.建议:_____________________________________________________________________.5.[实验误差分析](2015·福建理综·19(1))某同学做“探究弹力和弹簧伸长量的关系”的实验.①图4甲是不挂钩码时弹簧下端指针所指的标尺刻度,其示数为7.73 cm;图乙是在弹簧下端悬挂钩码后指针所指的标尺刻度,此时弹簧的伸长量Δl为________cm;图4②本实验通过在弹簧下端悬挂钩码的方法来改变弹簧的弹力,关于此操作,下列选项中规范的做法是________;(填选项前的字母)A.逐一增挂钩码,记下每增加一只钩码后指针所指的标尺刻度和对应的钩码总重B.随意增减钩码,记下增减钩码后指针所指的标尺刻度和对应的钩码总重③图丙是该同学描绘的弹簧的伸长量Δl与弹力F的关系图线,图线的AB段明显偏离直线OA,造成这种现象的主要原因是____________________________.6.[对数据处理的考查](2015·四川理综·8(1))某同学在“探究弹力和弹簧伸长的关系”时,安装好实验装置,让刻度尺零刻度与弹簧上端平齐,在弹簧下端挂1个钩码,静止时弹簧长度为l1,如图5甲所示.图乙是此时固定在弹簧挂钩上的指针在刻度尺(最小分度是1毫米)上位置的放大图,示数l1=________ cm.在弹簧下端分别挂2个、3个、4个、5个相同钩码,静止时弹簧长度分别是l2、l3、l4、l5.已知每个钩码质量是50 g,挂2个钩码时,弹簧弹力F2=________N(当地重力加速度g=9.8 m/s2).要得到弹簧伸长量x,还需要测量的是____________,作出F-x曲线,得到弹力与弹簧伸长量的关系.图5考点三实验拓展与创新7.[实验拓展]如图6甲所示,一根弹簧一端固定在传感器上,传感器与电脑相连.当对弹簧施加变化的作用力(拉力或压力)时,在电脑上得到了弹簧的形变量与弹簧产生的弹力大小的关系图象,如图乙所示.则下列判断不正确的是( )图6A.弹簧产生的弹力和弹簧的长度成正比B.弹力的增加量与对应的弹簧长度的增加量成正比C.该弹簧的劲度系数是200 N/mD.该弹簧受到反向压力时,劲度系数不变8.[实验创新](2014·浙江·21)在“探究弹力和弹簧伸长量的关系”时,某同学把两根弹簧如图7连接起来进行探究.图7 图8(1)某次测量如图8所示,指针示数为______cm.(2)在弹性限度内,将50 g的钩码逐个挂在弹簧下端,得到指针A、B的示数L A和L B如表所示.用表中数据计算弹簧Ⅰ的劲度系数为______N/m(重力加速度g=10 m/s2).由表中数据______(填“能”或“不能”)计算出弹簧Ⅱ的劲度系数.钩码数123 4L A/cm15.7119.7123.6627.76L B/cm29.9635.7641.5147.369.[实验创新](2014·新课标Ⅱ·23)某实验小组探究弹簧的劲度系数k与其长度(圈数)的关系.实验装置如图9所示:一均匀长弹簧竖直悬挂,7个指针P0、P1、P2、P3、P4、P5、P6分别固定在弹簧上距悬点0、10、20、30、40、50、60圈处;通过旁边竖直放置的刻度尺,可以读出指针的位置,P0指向0刻度,设弹簧下端未挂重物时,各指针的位置记为x0,挂有质量为0.100 kg的砝码时,各指针的位置记为x.测量结果及部分计算结果如下表所示(n为弹簧的圈数,取重力加速度为9.80 m/s2),已知实验所用弹簧总圈数为60,整个弹簧的自由长度为11.88 cm.图9P 1P 2P 3P 4P 5P 6x 0(cm) 2.04 4.06 6.06 8.05 10.03 12.01 x (cm) 2.64 5.26 7.81 10.30 12.93 15.41 n 10 20 30 40 50 60 k (N/m)163 ① 56.0 43.6 33.8 28.8 1k(m/N)0.006 1②0.017 90.022 90.029 60.034 7(1)将表中数据补充完整:①________,②________.(2)以n 为横坐标,1k 为纵坐标,在图10给出的坐标轴上画出1k-n 图象.图10(3)图10中画出的直线可近似认为通过原点.若从实验中所用的弹簧截取圈数为n 的一段弹簧,该弹簧的劲度系数k 与其圈数n 的关系的表达式为k =________N/m.该弹簧的劲度系数k 与其自由长度l 0(单位为m)的关系的表达式为k =________N/m..实验原理和数据处理的创新1.实验原理的创新(如图11甲、乙、丙所示)图112.数据处理的创新(1)弹力的获得:弹簧竖直悬挂,重物的重力作为弹簧的拉力,存在弹簧自重的影响→弹簧水平使用,重物的重力作为弹簧的拉力,消除了弹簧自重的影响.(2)图象的获得:由坐标纸作图得F-x图象→由传感器和计算机输入数据直接得F-x图象.。