大跨度建筑屋盖结构1
- 格式:ppt
- 大小:12.63 MB
- 文档页数:153
车辆工程技术132工程技术1 结构体系的描述上述的结构形式如果钢筋混凝土柱顶与H人字形铜梁刚接,仍可定性为门式刚架体系,参照门式刚架的受力特点进行计算和设计。
然而由于其柱顶与钢梁的结合上由两种完全不同的材料组成,其传力是否可靠,至关重要,钢梁为弹性材料,钢筋混凝土柱为弹塑性材料,钢筋混凝土柱顶混凝土节点区作为刚性节点,受力十分复杂,因此柱项节点的构造也较为复杂,这就给设计和施工造成了一定的难度,也增加了造价。
实际上该类节点要做到完全刚性节点,也难以做到,设计时仍应适当提高钢梁跨中的弯矩系数。
上述的结构形式,如果钢筋混凝土柱项与H人字形刚梁铰接,则不能定性为门式刚架体系,从其受力特点来分析,对H钢人字形钢梁应定性为两铰折线拱,应按照拱的受力特点进行计算和设计,拱脚提供的反力应能阻止拱的位移变形,在小跨度的情况下(一般为跨度18米及18米以下),拱脚提供的反力取决于钢筋混凝土柱的抗推力(侧位移刚度),在大跨度的情况下(一般为跨度18米以上),则应设置拉杆或在梁、柱间采用刚接节点。
对钢筋混凝土柱而言,应定性为跨变结构排架柱,按跨变排架进行受力分析和设计。
2 结构计算应考虑的问题对于上述的双铰折线拱H钢屋梁和跨变钢筋混凝土排架柱的结构体系,若未设置拉杆,其计算较为繁琐,如果未予以认真对待或认识不清,仅采用通常平面杆系计算软件电算了事,不管其跨度多大都一样,则是一种不负责任的做法,也给结构留下安全隐患。
实际上,目前通用的平面杆系计算软件是基于两个基本假设的基础上进行受力分析的,其一是平截面假设,即结构受力后杆件的截面保持不变,其二是杆件与杆件之间的夹角不变,即结构受力后梁,柱之间或折梁之间的夹角不变。
这种假设对门式刚架而言,是符合其计算简图的,但这种假设对本文所针对的结构则不适用,也不符合实际受力的计算简图,首先人字型钢梁由于拱脚推力较大(跨度越大,推力就越大),如果拱脚不设置拉杆或柱的抗推力(侧向刚度)不足,将产生较大水平位移,势必造成钢梁屋脊处夹角的改变,即杆件与杆件之间夹角的改变,不符合计算软件的基本假设,其次由于拱脚水平位移的加大,给钢筋混凝土柱增加了附加弯矩,即存在二阶效应问题,而软件计算又未考虑二阶效应,再者由于悬索效应,屋面钢梁内力将急剧增加,柱项的剪力也急剧增加.反过来又造成更不利的情况,这些都是目前计算软件没有考虑和解决的问题,因此电算的结果将产生较大的误差,直接用电算结果进行设计显然是不合理和错误的,势必留下安全隐患,要解决这个问题,首先应解决好计算问题。
大跨度建筑结构选型
(1)平面体系大跨度空间结构
1)单层刚架:可达到76m,结构简单。
2)拱式结构:是一种有推力的结构,它的主要内力是轴向压力,适宜跨度为40~60m。
3)简支梁结构:跨度在18m以下的屋盖适用。
4)屋架:所有杆件只受拉力和压力,常适用于24~36m跨度。
(2)空间结构体系
1)网架结构:多次超静定空间结构。
整体性强,稳定性好,空间刚度大,抗震性能好
2)薄壳:种类多,形式丰富多彩。
形式:旋转曲面、平移曲面、直纹曲面。
3)折板:跨度可达27m,类似于筒壳薄壁空间体系。
4)悬索:材料用量大,结构复杂,施工困难,造价很高。
大跨度屋盖结构的几种形式
大跨度屋盖结构是一种用于搭建大型建筑物屋顶的结构形式,具有跨度大、空间利用率高等优点。
常见的大跨度屋盖结构包括以下几种形式:
1. 桁架结构:桁架结构是利用多根钢管或钢杆组成的网格状结构,常用于建筑物屋面、车站、体育馆等大型建筑物的屋盖结构。
2. 穹顶结构:穹顶结构是由多个弧形钢管或钢杆组成的圆形、半圆形或椭圆形的屋盖结构,适用于建筑物、体育场馆等大型场所。
3. 悬索结构:悬索结构是由多个悬挂在主梁上的钢缆组成的屋盖结构,具有跨度大、空间利用率高的优点,适用于桥梁、体育场馆、展览馆等大型建筑物。
4. 薄壳结构:薄壳结构是利用高强度钢板或混凝土构成的薄壳结构,常用于建筑物屋面、地铁站、机场航站楼等大型建筑物的屋盖结构。
以上是大跨度屋盖结构的几种形式,不同的场所和需求可以选择不同的结构形式,以满足建筑物的要求。
- 1 -。