成形工艺我要学热成形热冲压设备
- 格式:docx
- 大小:8.53 KB
- 文档页数:3
超高强度钢板冲压件热成形工艺Company number:【0089WT-8898YT-W8CCB-BUUT-202108】.生产侵侵。
超高强度钢板冲压件热成形工艺热成形技术是近年来出现的一项专门用于生产汽车高强度钢板冲压件的先进制造技术。
本文介绍了该技术的原理,讨论了材料,工艺参数.模具等热成形工艺的主要影响因素,完成了汽车典型件热成形工艺试验试制。
获得了合格的成形件。
检测结果表明。
成形件的微观组织为理想的条状马氏体,其抗拉强度.硬度等性能指标满足生产要求。
1前言在降低油耗、减少排放的诸多措施中.减轻车重的效果最为明显.车重减轻10%.可节省燃油 3%一7%,因此塑料.铝合金.高强度钢板等替代材料在车辆制造中开始使用。
其中,高强度钢板可以通过减小板厚或者截面尺寸等方式减轻零件质量.在实现车辆轻量化和提高安全性方面比其他材料有明显优势,可以同时满足实现轻量化和提高安全性的要求,因此其在汽车领域内的应用越来越广泛。
热成形技术是近年来出现的一项专门用于成形高强度钢板冲压件的新技术,该项技术以板料在红热状态下冲压成形并同时在模具内被冷却淬火为特征.可以成形强度高达1500MPa的冲压件,广泛用于车门防撞梁.前后保险杠等保安件以及A柱,B柱.C柱.中通道等车体结构件的生产。
由于具有减轻质量和提高安全性的双重优势,目前.这一技术在德国.美国等工业发达国家发展迅速.并开发出商品化的高强钢热冲压件生产线.高强钢热冲压件在车辆生产中应用也很 .一吉林大学材料学院谷诤巍姜超●机械科学研究总院先进制造技术研究中心单忠德徐虹广泛。
国内汽车业对该项技术也十分认同,并有少数几个单位从国外耗巨资引入了相关技术与生产线, 为一汽-大众等汽车制造公司的部分车型配套热冲压件,关于该项技术的研究工作也已经开始。
本文阐述了热冲压成形工艺原理,对典型冲压件的热冲压成形工艺进行试验研究。
2热冲压成形工艺原理热成形工艺原理如图 1。
首先把常温下强度为500-600MPa的高强度硼合金钢板加热蛩J880-950℃.使之均匀奥氏体化. 然后送入内部带有冷却系统的模具内冲压成形.之后保压快速冷却淬火.使奥氏体转变成马氏体.成形件因而得到强化硬化.强度大幅度提高。
热冲压成型工艺流程预热处理冲压成形
热冲压成型工艺流程主要包括以下步骤:
1. 预热处理:首先,将需要加工的钢板进行预热处理。
预热温度通常控制在800℃\~950℃之间,以保证钢板的均匀加热和塑性变形。
同时,为了防止钢板在加热过程中氧化,需要采用保护气体或真空加热方式。
2. 冲压成形:将预热的钢板放入冲压模具中,通过冲压机施加压力进行成型。
冲压过程中需控制好压力、速度和时间等参数,以保证钢板的塑性变形和模具的完好无损。
同时,为了确保成品的精度和质量,需要对冲压过程中的压力、速度和时间等参数进行实时监控和调整。
在热冲压成形过程中,钢板在加热和冷却的过程中会发生相变硬化,从而提高其强度和韧性。
这种技术也被称为“冲压硬化”技术。
经过热冲压成形后的钢板,其强度可以大幅提高,例如从初始的500\~600MPa提高到1500MPa,同时零件的硬度也可以达到50HRC。
但需要注意的是,热冲压成形后的钢板伸长率会有所下降。
此外,完成冲压加工后,还需要对板材进行回火处理,以消除加工过程中的残余应力,并提高板材的韧性和可塑性。
最后,还需要对成型件进行后处理,包括去毛刺、打磨、修整等操作,以及可能的涂装或喷涂处理,以确保成品的表面质量和尺寸精度符合要求。
总的来说,热冲压成型工艺流程是一个复杂而精细的过程,需要严格控制各个环节的参数和操作,以保证最终产品的质量和性能。
cfrtp热冲压成形工艺应用一、汽车工业在汽车工业中,CFRTP热冲压成形工艺被广泛应用于制造各种零部件,如车门、发动机罩、车顶板等。
由于该工艺能够提供高强度、轻量化的零部件,从而提高汽车燃油效率和性能,因此受到汽车制造商的青睐。
二、航空航天在航空航天领域,CFRTP热冲压成形工艺被用于制造飞机零部件,如机翼、机身等。
由于CFRTP材料具有高强度、耐腐蚀性和轻量化特点,因此能够提高飞机性能和燃油效率。
此外,CFRTP热冲压成形工艺还能够制造出符合特定要求的零部件,如高温、高压等。
三、石油和天然气在石油和天然气工业中,CFRTP热冲压成形工艺被用于制造各种零部件,如油井套管、天然气管道等。
由于CFRTP材料具有高强度、耐腐蚀性和轻量化特点,能够提高管道的安全性和使用寿命。
此外,CFRTP热冲压成形工艺还能够制造出符合特定要求的零部件,如高温、高压等。
四、电力和能源在电力和能源领域,CFRTP热冲压成形工艺被用于制造各种零部件,如风力发电机叶片、核电站管道等。
由于CFRTP材料具有高强度、耐腐蚀性和轻量化特点,能够提高设备的安全性和性能。
此外,CFRTP热冲压成形工艺还能够制造出符合特定要求的零部件,如高温、高压等。
五、建筑和基础设施在建筑和基础设施领域,CFRTP热冲压成形工艺被用于制造各种结构件,如桥梁、高速公路等。
由于CFRTP材料具有高强度、耐腐蚀性和轻量化特点,能够提高结构的安全性和使用寿命。
此外,CFRTP热冲压成形工艺还能够制造出符合特定要求的结构件,如高温、高压等。
六、体育和娱乐在体育和娱乐领域,CFRTP热冲压成形工艺被用于制造各种器材和装备,如自行车车架、滑雪板等。
由于CFRTP材料具有高强度、耐腐蚀性和轻量化特点,能够提高器材和装备的性能和安全性。
此外,CFRTP热冲压成形工艺还能够制造出符合特定要求的器材和装备,如高温、高压等。
七、医疗器械在医疗器械领域,CFRTP热冲压成形工艺被用于制造各种零部件和器材,如人工关节、牙科器械等。
汽车工业中热冲压成形工艺的应用【摘要】热冲压成形工艺在汽车工业中扮演着重要的角色,本文将从汽车车身制造、发动机制造、零部件制造等方面介绍其应用。
热冲压成形不仅提高了零部件的强度和耐久性,还能减轻汽车重量,提高汽车性能。
但是在实际应用中,由于工艺复杂和设备投资较高,还存在一定的挑战。
随着技术的不断进步和发展,热冲压成形工艺在汽车工业中仍具有巨大的应用前景。
通过本文的介绍与分析,读者可以了解到热冲压成形工艺在汽车工业中的重要性和广泛应用,以及对汽车工业发展的积极影响,为相关领域的研究和应用提供参考。
【关键词】汽车工业、热冲压成形工艺、车身制造、发动机制造、零部件制造、影响、优势、不足、应用前景1. 引言1.1 热冲压成形工艺概述热冲压成形是一种将金属材料加热至高温,然后在高温下进行冲压成形的工艺。
这种工艺可以提高金属材料的塑性,减少成形过程中的应力和变形,从而得到更加复杂和精密的零件。
热冲压成形一般包括加热、成形和冷却三个阶段,其中加热阶段可以采用火炬加热、电加热或感应加热等不同方式。
成形阶段主要通过模具对加热后的金属材料进行形状调整,而冷却阶段则是将成形后的零件迅速冷却至室温,固定其形状。
热冲压成形工艺具有成形速度快、成形精度高、表面质量好等优点,特别适用于生产复杂形状、高精度要求的汽车零部件。
热冲压成形还可以有效提高金属材料的强度和硬度,延长零件的使用寿命。
在汽车工业中,热冲压成形已经成为一项重要的制造工艺,广泛应用于车身、发动机和各种零部件的制造中,为汽车工业的发展提供了强大的支撑。
2. 正文2.1 热冲压成形在汽车车身制造中的应用热冲压成形技术在汽车车身制造中具有重要的应用价值。
通过热冲压成形,可以实现复杂形状的零部件生产,并提高零部件的强度和耐磨性。
在汽车车身制造中,热冲压成形可以用于生产车门、车轮罩、车顶等车身部件。
热冲压成形可以实现对车身零部件的精确成形。
传统的冲压工艺往往无法满足对复杂形状的要求,而热冲压成形技术可以通过加热金属材料,使其更加易于成形,从而实现对复杂形状的零部件的生产。
高强钢热冲压成型工艺流程预热处理冲压成形淬火高强钢热冲压成型工艺流程主要包括以下三个阶段:
1.预热处理:首先,将高强钢板材加热至900摄氏度以上,然后在加热炉中保温
5-8分钟,使板料均匀奥氏体化。
这个阶段的目的是获得均匀奥氏体化的高强钢板料,以便进行后续的冲压成形。
2.冲压成形:将预热处理后的板料从加热炉中运送到模具内,进行高速成形的液
压机快速成形。
在成形过程中,板料的温度需要保持在马氏体转变温度以上的奥氏体区,以保证板料有良好的成形性和最终的机械性能。
3.淬火:在冲压成形结束后,进行保压和淬火处理。
这个阶段的目的是使成形件
得到强化,通过淬火使奥氏体转变为马氏体,提高零件的强度和硬度。
此外,根据具体的材料和工艺要求,可能还需要进行去氧化皮、激光切边冲孔、涂油防锈处理等后续操作。
高强钢热冲压成型工艺是一种先进的制造技术,广泛应用于汽车、航空航天等领域,可以提高零件的强度和安全性,同时实现零件的轻量化。
高强钢热冲压成形工艺及装备摘要:高强钢热成形技术逐渐在制造业领域得到推广应用,国内外学者也认识到,制造业零部件的安全性能与其力学性能的分布存在着相对应的关系,也就是同一个零件在不同的区域需要不同的力学性能来提高零件的整体安全性能。
关键词:高强钢热冲压成形工艺;装备;前言:轻量化技术是实现制造业节能减排的关键技术之一,而高强钢热冲压成形技术在保证制造业安全性的同时较大幅度实现轻量化。
热冲压成形条件下材料塑性和成形性好,成形载荷大幅下降,能一次成形复杂冲压件并消除回弹影响,提高零件精度。
一、高强钢热冲压成形工艺1.不同的冷却速率。
通过控制零件局部区域的冷却速率和相变路径也是获取高强钢热成形零件的一种重要方式,当冷却速率高时,奥氏体组织将转变为高强度低塑性的马氏体组织,当冷却速率降低时,奥氏体组织将转变为低强度高塑性的贝氏体和珠光体铁素体组织。
研究发现,当零件冷却率高于27 ℃℃/s 时,将会转变成完全的马氏体组织,而当低于这一数值时,则会转变成低强度的贝氏体和铁素体珠光体组织。
实现零件不同区域不同冷却速率的方法主要有不同温度的分块模具不同热物性能的分块模具以及模具坯料表面接触状况控制等方式。
通过改变模具与坯料的局部接触状况同样可以获得高强钢TTP热成形零件,坯料与模具之间间隙越大,坯料冷却速率越低,坯料与模具之间压强越大,则冷却速率越高,研究了坯料与模具之间的间隙对于零件晶粒结构和硬度的影响,当间隙值从0mm到2mm之间变化时,零件的显微硬度由471HV降低到195HV,当坯料与模具之间的间隙值为2mm时,零件冷却速率为8℃/s,贝氏体和铁素体/珠光体含量增加。
通过在模具上开槽的方法获得了特定强度分布的高强钢热成形零件。
2.回火后处理。
对于已经完全淬火硬化的高强钢热成形零件,在局部区域进行回火也可获得高强钢TTP热成形零件。
研究了回火对于碰撞性能的影响并通过落锤实验证实了回火能增加零件的碰撞性能,通过回火处理可以更加自由定义回火区域,并且独立于整个热成形工艺。
【成形工艺】我要学热成形-热冲压设备
前面我们介绍过热成形的生产流程,将专用钢板加热到奥氏体化温度后,在高温下使钢板成形,并在成形后对零件进行淬火处理,从而得到组织全为马氏体的热成形零件。
可以看出,热冲压是成形和热处理同时进行的工艺。
热冲压和热处理都是在模具中进行的,故热成形的模具是热成形过程中最重要的设备,今天我们就一起来看看这个关键技术。
视频展示1.热成形冲压视频:
2.长城热成形生产线展示:
3.屹丰热成形生产线展示:热冲压关键点硼钢被加热至高于Ac3的某一温度使其充分奥氏体化(在加热炉中进行),加热后的钢板应快速搬运到冲压机,并保证其温度不低于Ar3(低于此温度将产生铁素体)。
钢板的热冲也应该在Ac3以上进行,从而保证钢板的韧性,之后快速冷却。
冷却时保证冷却至马氏体转变开始温度(约200℃)以下。
热冲压的温度关键控制点如图1所示。
图1 热成形工艺温度控制要点由以上描述可知,热成形的整个过程中,热冲压是其中的关键。
这里涉及到压机和模具的方方面面。
下面我们简单介绍下这两个关键设备的情况。
压机对于热冲压用的压机,有以下要求:
①快速合模、成形。
这就要求热冲压采用高速的液压机,兼顾一般液压机和机械压力机的功能。
图2 采用蓄力器来提高冲压速度②保压淬火。
这就要求模具内设计冷却系统。
图3 冷却水道③备有过程监控系统。
热成形零件质量的好坏主要取决于淬火后的组织转
变情况,对冲压过程的模具和零件的温度监控是非常有必要的。
图4 温度监测④吨位相对较小。
常用吨位800吨-1200吨,当然若想实现一条线兼容多个尺寸的零件,可采用吨位大的压机,有些供应商也在考虑2000吨级的压机。
图5 热成形压机
模具材料1.良好导热性。
热冲压成形时,模具的工作表面与高温零件直接接触并发送热传递,同时还要完成淬火。
2.良好热机械性能。
模具工作稳定冷热交替,温度变化速度快。
3.良好耐腐蚀性能。
模具需对零件进行淬火,在模具中布置有冷却水道,水道不得被冷却介质腐蚀从而引起阻塞。
4.良好的耐磨性、高的硬度强度。
热冲压过程中,模具将承受强烈的摩擦,特别是高强度氧化皮带来的磨损。
一般,热冲压模具选择热作模具钢。
模具设计由于小编为热成形零件的设计人员,对模具的设计只是初步了解,关于模具的水道直径、离型面的距离等等规则在此不做铺述。
图6 热成形模具热冲压模具的设计流程及注意事项如下:1.模具型面设计热冲压模具的型面设计需考虑的内容包括:凹凸模型面的合理设计;翻边孔的转变设计;热胀冷缩的合理补偿;对于激光切割时定位困难的零件,宜增加工艺凸台。
图7 型面设计2.过程热力耦合分析首先,需等到合模以后、保压之前的比较准确的温度场分布;接着,采用体单元进行分析,并用虚拟速度进行分析其传热过程,并使用AutoForm分析冲压速度。
对于有压边的热成形过程,需要准确反映压边压强对传热的影响。
图8 热量仿真3.模具的合
理分块图9 模具分块4.冷却系统设计图10 冷却系统示意5.CAE 分析和冷却系统优化图11 CAE分析6.强度和耐久分析分析可用软件:MSC-Fatigue、MARC。
图12 热冲压模具
模具分类热冲压加工要通过其成形模具来实现,模具的设计是否合理,将直接关系到热冲压成形效率的高低。
热冲压模具的设计制造方法主要分为4种:钻孔式、分层式、淋蓬式及熔铸式。
图13 模具分类及优缺点在四种热冲压模具设计制造方式中,以钻孔式和分层式的应用最多。
也有部分文献将热冲压模具分为预埋式(铸造)、钻孔式(机加工)和型腔式(数控加工,研究阶段)。
其主要的分类依据为加工方法不同。
图14 模具的冷却水道总结目前,热冲压使用的压机主要来自舒勒和APT,热成形新技术研究较为深入的有海斯坦普、麦格纳,国内也有凌云、屹丰、天汽模等。
热成形零件的生产涉及零件的搬运、加热炉和压机(模具)以及机器人自动化等多个单元。
其中属热成形模具的设计最为复杂,需对温度和时间进行详细的管控,对零件的回弹等问题进行全面的计算和控制。
目前,研究这块的人员较少,面对热成形零件大范围应用于汽车的制造这一大趋势,深入学习和研究是非常有必要的。
·end·。