页岩储层网络压裂技术研究与试验
- 格式:pdf
- 大小:666.01 KB
- 文档页数:7
页岩储层压裂减阻剂减阻机理研究页岩气是指储存在页岩中天然气,而页岩储层压裂技术是目前开采页岩气的主要方式之一。
由于页岩储层矿物质组成复杂,存储天然气密度高等特点,导致压裂难度较大,需要在压裂过程中添加一定的减阻剂以便提高压裂液的渗透性和流动性,最终实现提高天然气产量和经济效益。
减阻剂是压裂液中的一种特殊添加剂,充分利用其高分子多糖的高黏度优势,增加液体粘度,防止压裂液在压力作用下提前流入有裂缝分支的岩层孔隙中,从而减少其流失到非压裂目标层并维持压裂效应。
但减阻剂的具体机理仍未得到完全的解释,研究其机理将对优化压裂技术和提高天然气产出率起到重要作用。
减阻剂能够在压裂液中起到的主要作用有:液体黏度的增加、分散压裂液颗粒物和抑制垂直井壁滑脱现象。
其中,黏度增加是最重要的机理之一。
减阻剂中的高分子多糖和压裂液中的其他添加剂经由化学反应将其产生的微泡聚合,使液相粘度增大,从而减少粘性降低所带来的阻力,塑性剪切不平滑效应也随之发生减小。
减小的阻力和胶结性提高了压裂液的渗透性和流动性,有利于压裂液在井壁缝隙中弥散、扩散和渗透,增大液相分布范围,形成更多、更稳定的裂缝结构,最终提高天然气产量。
分散压裂液颗粒物也是减阻剂起到的重要作用。
压裂液中的水和颗粒物成分会在压力作用下向裂缝发展方向流动,会导致压裂片断或断裂。
减阻剂能够通过防止压裂液在深度方向上流动而减少悬挂的颗粒物,从而避免不同层位上物质的界面引起的剪切应力,减轻液流速度对裂缝的破坏作用,从而减少因颗粒物悬浮而形成的流体阻力,最终提高压裂液在岩石中渗透的动态性,增加页岩储层的效率。
抑制井壁滑脱现象是减阻剂起到的另一个机理。
压裂液在井壁接触处的落差和方向变化会产生切割作用和摩擦作用,导致井壁和裂缝的摩擦系数较高,从而影响压裂液渗透的效果,造成压裂效果不佳。
减阻剂通过增加液体粘度,降低入井速率,减少井壁上的切割作用和摩擦作用,从而防止井壁滑落,减小井壁与岩石之间的相对速度,最终减少在井壁和没有被加压的天然气层中的切割、摩擦和其他机械应力的效应。
页岩气储层水力压裂复杂裂缝导流能力实验研究王雷;王琦【摘要】为研究页岩气储层水力压裂后复杂裂缝导流能力,运用FCES-100裂缝导流仪,选取页岩地面露头岩心,加工成符合实验要求尺寸岩心板,将页岩复杂裂缝简化为转向裂缝和分支裂缝两种形式,用陶粒和覆膜砂两种类型支撑剂进行导流能力实验测试.实验结果表明:裂缝形态对导流能力影响较大,裂缝转向后导流能力明显低于单一裂缝,低闭合压力条件下转向裂缝与单一裂缝导流能力相差35%~ 40%,随闭合应力增大,差距逐渐增大;低闭合压力下陶粒导流能力高于覆膜砂,而当闭合压力增大后覆膜砂的导流能力反超陶粒,低铺砂浓度下反超趋势更加明显;分支裂缝存在时,等量支撑剂多条分支裂缝的等效导流能力小于单一裂缝,高闭合压力下分支裂缝中不同分支铺砂浓度的差异越大,导流能力与单一裂缝越接近.%In order to study the seepage capacity of complex fracture after fracturing of shale gas well,the outcrop shale being processed into the core plates whose size meets the requirements of the experiments,the complex fractures in the shale being simplified to two types:turning fractures and branching fractures,and ceramsite and coated sand being used as proppant,the seepage capacity of 2 kinds of complex fractures was tested by FCES-100 fracture flow deflector.The experimental results show that:the fracture morphology has a great influence on its seepage capacity,the seepage capacity of turning fracture is lower 35%~40% than that of single fracture under low closing pressure,and the difference between both increases gradually with the increase of closing pressure;under low closure pressure,the seepage capacity of the ceramic proppant fracture is higherthan that of the coated proppant fracture,but with the increase of the closure pressure,the seepage capacity of the coated proppant fracture increases gradually and exceeds that of the ceramic proppant fracture,and the exceeding trend becomes more obvious under low sand concentration;the equivalent seepage capacity of branching fracture is lower than that of single fracture under the same amount of proppant,the difference between both dwindles with the increase of the difference in the sand concentration of different branch cracks under high closure pressure.【期刊名称】《西安石油大学学报(自然科学版)》【年(卷),期】2017(032)003【总页数】5页(P73-77)【关键词】页岩气井;水力压裂;裂缝导流能力;支撑剂;复杂裂缝【作者】王雷;王琦【作者单位】中国石油大学(北京)石油工程教育部重点实验室,北京102249;中国石油勘探开发研究院,北京100083【正文语种】中文【中图分类】TE357.1王雷,王琦.页岩气储层水力压裂复杂裂缝导流能力实验研究[J].西安石油大学学报(自然科学版),2017,32(3):73-77.WANG Lei,WANG Qi.Experimental research on seepage capacity of complex fracture in shale gas reservoir after hydraulic fracturing[J].Journalof Xi′an Shiyou University (Natural Science Edition),2017,32(3):73-77.页岩气储层渗透率低、物性差,不采取增产改造措施一般没有工业产能[1-2],而水力压裂是提高页岩气井生产能力的有效措施[3]。
middle crack while the two sides of the crack repel each other. Under the condition of sequential fracturing with three clusters of fractures, the longest fracture can be obtained compared with synchronous fracturing and two-step fracturing.(4) When a hydraulic crack encounters a single natural crack with 90 degrees dip, secondary cracks will occur at both ends of the natural crack, otherwise only one secondary crack will occur at the end of the natural crack with small dip; when two natural cracks with 90 degrees dip are encountered, the second natural crack will severely inhibit the length of secondary cracks produced at the end of the first natural crack.This paper further reveals the law of fracture propagation and shape change in shale horizontal wells. The method of hydraulic fracturing simulation based on extended finite element method can be used to analyze the law of fracture propagation under various factors.Keywords: Shale,Horizontal Well, Hydraulic Fracturing, Fracture Propagation, Extended Finite Element MethodThesis: Fundamental Study(The paper is supported by the China National Science Foundation Research on Brittle Failure Mechanism of Shale Reservoir based on macro-micro mechanics, Grant No:51674197)目录第一章绪论 (1)1.1 选题背景和研究意义 (1)1.2 国内外研究现状 (2)1.2.1 水平井多簇裂缝扩展竞争机制研究 (2)1.2.2 水力裂缝与天然裂缝相互作用关系研究 (4)1.2.3 裂缝扩展模拟方法研究 (6)1.3 研究内容及创新点 (8)1.3.1 研究内容 (8)1.3.2 技术路线 (8)1.3.3 创新点 (9)第二章基于XFEM的水力压裂理论基础 (10)2.1 多孔介质基本理论 (10)2.1.1 基本物性参数概念 (10)2.1.2 有效应力原理 (11)2.2 扩展有限元方法 (11)2.2.1 扩展有限元位移标准格式 (11)2.2.2 模拟裂缝扩展的水平集方法 (14)2.3 ABAQUS软件在水力压裂模拟中的具体实现 (16)2.4 基于XFEM的裂缝起裂和扩展准则 (16)第三章水力压裂数值模型建立及验证 (19)3.1 模型基本假设 (19)3.2 水力压裂数值模拟基本方程 (20)3.2.1 基于有效应力原理的渗流/应力耦合基本方程 (20)3.2.2 裂缝内流体流动方程 (21)3.2.3 边界条件 (22)3.3 基于XFEM的渗流/应力耦合方程离散 (22)3.4 ABAQUS软件模拟水力压裂的基本步骤 (24)3.5 基于扩展有限元的水力压裂模型验证 (28)3.5.1 真三轴水力压裂物模对比验证 (28)3.5.2 水力裂缝内压强及入口缝宽变化规律验证 (29)第四章页岩水平井压裂单缝扩展规律研究 (31)4.1 单裂缝扩展水力压裂模型及求解 (31)4.2 射孔方位角对裂缝扩展规律的影响 (32)4.2.1 裂缝扩展形态规律分析 (32)4.2.2 起裂压力变化规律 (34)4.2.3 单缝半长和入口处宽度变化规律 (34)4.2.4 裂缝稳定扩展压力和初始转向角度变化规律 (35)4.3 水平应力差对裂缝扩展规律的影响 (36)4.3.1 裂缝扩展形态规律分析 (36)4.3.2 起裂压力变化规律 (37)4.3.3 单缝半长和入口处宽度变化规律 (38)4.3.4 裂缝稳定扩展压力和初始转向角度变化规律 (38)4.4 注入排量对裂缝扩展规律的影响 (39)4.4.1 裂缝扩展形态规律分析 (39)4.4.2 起裂压力变化规律 (40)4.4.3 单缝半长和入口处宽度变化规律 (41)4.4.4 裂缝稳定扩展压力和初始转向角度变化规律 (41)4.5 压裂液黏度对裂缝扩展规律的影响 (42)4.5.1 起裂压力变化规律 (43)4.5.2 单缝半长和入口处宽度变化规律 (43)4.5.3 裂缝稳定扩展压力和初始转向角度变化规律 (44)第五章页岩水平井压裂多簇裂缝扩展规律研究 (45)5.1 多簇水力裂缝扩展模型及求解 (45)5.2 压裂两簇裂缝时扩展规律分析 (47)5.2.1 两簇裂缝扩展形态分析 (47)5.2.2 缝间距对裂缝扩展规律的影响 (49)5.2.3 水平应力差对裂缝扩展规律的影响 (51)5.2.4 裂缝长度对裂缝扩展规律的影响 (54)5.2.5 注入排量对裂缝扩展规律的影响 (55)5.3 压裂三簇裂缝时扩展规律分析 (56)5.3.1 三簇裂缝扩展形态分析 (56)5.3.2 压裂次序对裂缝扩展规律的影响 (58)5.4 压裂四簇裂缝时扩展规律分析 (59)5.5 水力裂缝与天然裂缝相交扩展规律研究 (61)5.5.1 水力裂缝与天然裂缝交互数值模型 (61)5.5.2 物理模型建立及求解 (62)5.5.3 裂缝扩展规律分析 (63)第六章结论与建议 (66)6.1 结论 (66)6.2 建议 (66)致谢 (68)参考文献 (69)攻读学位期间参加科研情况及获得的学术成果 (76)第一章绪论1.1 选题背景和研究意义伴随着经济全球化发展趋势愈演愈烈,世界各国经济总量不断迈入新台阶,尤其以中国为首的发展中国家于2010年末一跃成为世界第二大经济体。
济阳坳陷页岩油水平井压裂技术研究摘要:济阳坳陷页岩油储量丰富,是胜利油气资源接替的重要阵地。
其储层具有埋藏深,物性差,泥质含量高,塑性较强,原油粘度大的特点,前期压裂后存在产量递减快,单井产能低的问题。
本文针对页岩油的压裂改造难点,借鉴国外先进经验,在开展“地质-工程”双甜点可压性评价的基础上,以水平井密切割分段分簇均衡压裂技术为核心,通过裂缝和施工参数优化,配套研发高效防膨剂、全悬浮压裂液等新型压裂材料,形成以“体积缝”和“高导缝”有机结合为基础的胜利页岩油水平井密切割及多尺度组合缝网压裂工艺技术。
义页平1井的现场试验表明,压裂改造后裂缝复杂程度高,改造体积大,增油效果好,为下步胜利页岩油的勘探开发打下了坚实的基础。
关键词:页岩油压裂甜点水平井密切割组合缝网压裂材料一、前言济阳坳陷页岩油资源丰富,目前已在40口探井获工业油气流,勘探开发潜力巨大,是胜利可持续发展的重要战略资源。
其纵向上主要分布在沙三下、沙四上段,平面上主要分布在沾化凹陷和东营凹陷,具有储层埋藏深、物性差、泥质含量高、塑性较强和原油粘度大等特点。
图1济阳坳陷泥页岩探井分布图“十二五”以来,为了突破胜利油田页岩油压裂改造增产技术瓶颈,持续开展技术攻关研究。
2012-2016年间,胜利油田开展了页岩油气勘探及评价,通过技术引进及自主研究,实施了4井次的现场应用,分别采用套管固井泵送桥塞-射孔联作分段压裂技术、裸眼完井多级分段压裂技术及二级组合缝网压裂技术,取得了一定的增产效果。
为进一步提高页岩油勘探效果,落实储量,2019年开展页岩油水平井压裂技术研究,但目前胜利页岩油水平井分段分簇依据不足,且受储层非均质性和射孔等因素的影响,每簇裂缝改造程度差异大,无法实现均衡改造;此外,同地质条件下改造体积与主裂缝长度合理优化存在一定盲目性,如何进一步增加裂缝的复杂程度,需要继续加强研究。
通过对比分析国外页岩和胜利页岩的特点,胜利页岩在沉积类型、矿物成份、力学特征等方面与国外存在着巨大的差异,因此不能完全照搬国外技术。
◄油气开发►doi:10.11911/syztjs.2024012引用格式:张衍君,王鲁瑀,刘娅菲,等. 页岩油储层压裂–提采一体化研究进展与面临的挑战[J]. 石油钻探技术,2024, 52(1):84-95.ZHANG Yanjun, WANG Luyu, LIU Yafei, et al. Advances and challenges of integration of fracturing and enhanced oil recovery in shale oil reservoirs [J]. Petroleum Drilling Techniques ,2024, 52(1):84-95.页岩油储层压裂–提采一体化研究进展与面临的挑战张衍君1, 王鲁瑀2, 刘娅菲1, 张佳亮3, 周德胜1, 葛洪魁3(1. 西安石油大学石油工程学院, 陕西西安 710065;2. 香港理工大学土木及环境工程系, 香港 999077;3. 中国石油大学(北京)非常规油气科学技术研究院, 北京 102249)摘 要: 页岩油储层压裂开发中,以远超地层吸收能力的注入速率向储层注入包含各类添加剂的工作液,基本完成了压裂介质一次注入、油井开发全生命周期受益的使命。
其中,2个问题尤为关键:1)如何形成均匀展布的裂缝网络,增大裂缝和储层的接触面积、提高液体流动效率?2)在形成高效传压传质缝网的基础上,存地压裂液如何提高储层中原油的可动性?压裂和提采一体化是解决上述问题的重要思路。
为此,阐述了页岩油储层压裂–提采一体化的内涵,归纳了实现压裂–提采一体化的模拟和试验技术;明确了页岩油储层压裂–提采一体化的科学问题:均衡应力压裂形成均匀展布的缝网,提高均布缝网中流体流动与传输的效率,强化基质孔隙中油气的动用。
同时,指出了压裂–提采一体化面临的挑战:明确裂缝非均匀扩展导致的压裂井间干扰机理并建立控制方法,形成裂缝中高压流体高效作用于基质孔隙的途径,揭示压裂液–储层–原油相互作用提高原油可动性机理。
页岩气储层可压裂性评价技术随着全球对清洁能源的需求不断增加,页岩气作为一种非常规天然气资源,逐渐受到了广泛。
页岩气储层具有巨大的储量和生产潜力,但其开采和生产过程涉及到复杂的工程技术和地质因素。
为了提高页岩气储层的开采效率,本文将探讨页岩气储层可压裂性评价技术的重要性及研究进展。
页岩气储层是一种非常规天然气储层,主要分布在盆地内沉积岩层中。
这些储层通常具有较低的孔隙度和渗透率,因此需要进行压裂作业以提高产能。
可压裂性评价技术是指通过对储层特性进行分析,评估其是否适合进行压裂作业以提高产能的技术。
页岩气储层具有一些特殊性质,如多孔性、裂缝性等。
多孔性是指储层中存在许多纳米级孔隙,这些孔隙是页岩气的主要存储空间。
裂缝性是指储层中存在天然裂缝或岩石断裂,这些裂缝可以为页岩气提供运移通道和存储空间。
这些特点对可压裂性评价技术具有重要影响,因为它们将直接影响压裂作业的效果和产能。
可压裂性评价技术主要包括岩芯实验和数值模拟两种方法。
岩芯实验是通过钻取储层中的岩石样品,在实验室进行压裂实验,观察储层的压裂特性和反应。
这种方法可以较为准确地模拟实际压裂作业过程中的情况,从而对储层的可压裂性进行评价。
但是,岩芯实验成本较高,需要大量的时间和人力。
数值模拟是通过计算机模型对储层进行模拟压裂,以评估其可压裂性和产能。
这种方法可以通过调整模型参数来模拟不同条件下的压裂作业,具有较高的灵活性和成本效益。
但是,数值模拟需要依赖一定的假设和简化,其准确性和可靠性受到一定限制。
在实际应用中,页岩气储层可压裂性评价技术已经得到了广泛的应用。
例如,在北美地区的页岩气田,通过可压裂性评价技术对储层进行评估,可以有效地指导压裂作业和提高产能。
在国内,该技术也逐渐得到了重视和应用,例如在川渝地区的页岩气田,通过可压裂性评价技术的运用,成功地提高了产能和开采效率。
页岩气储层可压裂性评价技术对于提高页岩气田的开采效率和产能具有重要意义。
本文介绍了该技术的相关概念、方法和实践经验,并指出了该技术在应用过程中需要注意的问题和未来的发展方向。
页岩储层水力压裂裂缝扩展模拟进展一、本文概述随着全球能源需求的持续增长,页岩气作为一种重要的清洁能源,其开发与应用日益受到人们的关注。
页岩储层水力压裂裂缝扩展是页岩气开发过程中的关键技术,其模拟研究对于优化压裂工艺、提高页岩气采收率具有重要的指导意义。
本文旨在全面综述页岩储层水力压裂裂缝扩展模拟的最新研究进展,以期为相关领域的研究人员和技术人员提供有益的参考。
本文首先介绍了页岩储层水力压裂裂缝扩展模拟的研究背景和意义,阐述了水力压裂技术在页岩气开发中的重要作用。
接着,文章回顾了国内外在该领域的研究现状,包括裂缝扩展模型的建立、数值模拟方法的发展以及实际应用案例的分析等方面。
在此基础上,文章重点分析了当前研究中存在的问题和挑战,如裂缝扩展过程中的多场耦合作用、裂缝形态的复杂性以及模型参数的确定等。
为了推动页岩储层水力压裂裂缝扩展模拟研究的发展,本文提出了一些建议和展望。
应加强基础理论研究,深入探究裂缝扩展的物理机制和影响因素,为模型的建立提供更为坚实的理论基础。
应发展更为先进、高效的数值模拟方法,以更好地模拟裂缝扩展的复杂过程。
还应加强实验研究和现场应用,以验证和完善模拟模型,推动水力压裂技术的不断进步。
通过本文的综述和分析,相信能够为页岩储层水力压裂裂缝扩展模拟研究提供新的思路和方向,为页岩气的高效开发提供有力的技术支持。
二、页岩储层特性分析页岩储层作为一种典型的低孔低渗储层,其独特的物理和化学特性对水力压裂裂缝的扩展具有显著影响。
页岩储层通常具有较高的脆性,这是由于页岩中的矿物成分(如石英、长石等)和微观结构(如层理、微裂缝等)所决定的。
脆性高的页岩在受到水力压裂作用时,更容易形成复杂的裂缝网络,从而提高储层的改造效果。
页岩储层中的天然裂缝和层理结构对水力压裂裂缝的扩展具有重要影响。
这些天然裂缝和层理结构可以作为裂缝扩展的潜在通道,使得水力压裂裂缝能够沿着这些路径进行扩展,从而提高裂缝的复杂性和连通性。
页岩气储层水力压裂裂纹扩展规律研究1. 前言页岩气作为一种非常重要的天然气资源,已经被广泛应用。
然而,在生产过程中,有一些特殊的挑战,其中最重要的是寻找适当的生产技术。
页岩气储层水力压裂是目前能够有效提高页岩气产量的一种技术。
本文旨在研究页岩气储层水力压裂后裂缝的扩展规律,以便更好地理解页岩气藏的开采机理,并为优化页岩气开采提供指导。
2. 页岩气储层水力压裂原理水力压裂是一种通过将高压水注入油气储层,以形成压力,利用岩石自身的脆性破裂形成裂缝,以释放页岩气的技术。
页岩气储层是一种岩石层,由于其压实度较高,裂缝不易形成,其自然气渗透率较低,导致天然气产量较低。
为了提高页岩气生产效率,需要通过水力压裂来扩大储层裂缝面积,增加气体开采量。
页岩气储层水力压裂的主要机理是压力差,即通过向井口注入高压水,使水在地下压缩,从而形成高压前缘。
压力前缘的到达速度越快,压缩效果越明显,在储层内形成最大的应力差。
当应力差超过岩石地下的抗拉强度时,岩石就会发生断裂,形成裂缝。
水力压裂主要受到多种因素的影响,其中包括注入流量、注入压力、裂缝网络、岩石物性和水路径等因素。
为了更好地控制水力压裂作用,需要对这些因素进行详细的研究和掌握。
3. 裂缝扩展规律研究裂缝的扩展规律是页岩气储层水力压裂的核心问题。
通过对裂缝扩展过程的研究,可以更好地了解页岩气储层的开采特性,为页岩气储层的优化开发提供技术支持。
3.1 裂缝扩展过程在页岩气储层水力压裂过程中,高压水通过注入口迅速进入岩石层内,形成一个高压区域。
在高压区域的受力作用下,岩石发生了断裂,从而形成了一系列裂缝。
这些裂缝的密度和深度是由岩石的物性、注入流量和注入压力等因素来决定的。
裂缝的扩展会受到多个因素的影响,其中最重要的因素是注入水的流量和压力。
注入水的流量越大,扩展的裂缝数量越多,裂缝的长度和深度也越大。
当注入水的压力越高,裂缝的深度和长度也会随之增加。
此外,地质条件和岩石物性也会影响裂缝的扩展过程。
[收稿日期]2012-04-06[基金项目]国家“十二五”重大专项示范工程项目(2011ZX05048-006-002)[作者简介]贾长贵(1973—),男,河南安阳县人,高级工程师,博士,主要从事非常规油气水力压裂机理、优化设计、滑溜水及现场试验等方面的研究与应用工作;E -mail :cyyjcg@163.com页岩储层网络压裂技术研究与试验贾长贵,李双明,王海涛,蒋廷学(中国石化石油工程技术研究院,北京100101)[摘要]页岩储层压裂技术是页岩油气高效勘探开发的关键技术和核心技术。
与常规低渗油气储层压裂单一长缝改善压裂效果不同,低孔极低渗的页岩压裂主要目标是形成具有有效导流能力的网络裂缝,确保压裂改造体积足够大,且经济有效。
提出了页岩网络压裂有效改造体积(ESRV )的概念。
在借鉴北美页岩气压裂的经验和前期国内页岩气压裂实践的基础上,针对我国页岩储层的具体特点,在压前进行评价方法、射孔参数优化、诱导复合测试压裂、网络压裂对策和排采技术等方面进行了探索性的研究,初步形成了页岩网络压裂技术,现场试验效果明显,解决了裂缝性脆性页岩压裂易砂堵、成功率低的难题。
[关键词]页岩;储层;网络压裂[中图分类号]TE38[文献标识码]A [文章编号]1009-1742(2012)06-0106-071前言页岩油气开发技术是近十年来全球最重大的能源技术革命。
以水平井多级压裂和“井工厂模式”为核心的页岩勘探开发技术促使了北美页岩油气的成功开发,其快速生产使美国天然气产量获得大幅度增长,2011年页岩气产量高达1800ˑ108m 3。
我国页岩气资源量据预测为31ˑ1012m 3,与美国页岩气资源量基本相当。
我国“十二五”期间计划建产65ˑ108m 3,页岩气开发前景广阔,但由于还未完全掌握页岩气压裂配套工具等关键技术和产品,要实现页岩气高效勘探开发和跨越式发展仍然有相当大的难度。
前期由于对我国页岩储层的特性和差异性认识不足,国内页岩气压裂多是仿照北美页岩气压裂模式,现场实施效果并不理想,主要表现为:一是砂堵井多,施工成功率低;二是部分井储层品质和钻井气显示很好,压裂工艺成功,但压裂后效果很差,或大量见水、产气量极低甚至无气产出。
究其原因,主要是没有重视中美页岩储层的差异性,没有充分考虑我国页岩储层的强非均质性特点,压裂设计的针对性不强,同时在页岩储层压前评价和压后排采方面的工作也比较粗放。
文章在借鉴北美页岩气压裂的经验和前期国内页岩气压裂实践的基础上,提出了页岩网络压裂(effective simulated reservoir volume ,ESRV )的概念,针对我国页岩储层的具体特点,在压前评价方法、射孔参数优化、诱导复合测试压裂、加砂程序优化和排采技术等方面进行了探索性的研究与现场试验,效果明显。
2页岩网络裂缝的概念页岩气是国务院最近批准的第172个独立矿种。
它赋存于富有机质泥页岩及其夹层中,是以吸附和游离状态为主要存在方式的非常规天然气,成分以甲烷为主,是一种清洁、高效的能源资源和化工原料。
颗粒粒径小于0.0039mm 的沉积岩均可称为页岩,大量脆性矿物会影响页岩储层质量,尤其是石英。
页岩粒度不同会影响页岩充填物的渗透率,有时会使渗透率很低。
粉砂质或砂质夹层可改善其渗透性,开启或半开启的天然裂缝也会增加储层的渗透性。
因此,也可以说页岩气是指来自“页岩段”内所有岩性(包括页岩、砂质岩)产出的天然气[1]。
页岩具有极低渗透率、极小孔喉和低孔隙度的特点。
绝大多数页岩气井均需压裂改造,产量低,但生产周期长,关键在于是否能形成足够大的有效改造体积。
页岩储层压裂后可能形成不同的裂缝形态,主要包括单条裂缝、复杂裂缝和网络裂缝。
Barnett 某页岩气井压后微地震监测表明,图1(b )中网络裂缝增产储层体积达到1.45ˑ109ft 3(1ft 3=0.02832m 3),是图1(a )中单一裂缝改造体积的3.37倍[2]。
图1单缝和网络裂缝改造体积对比图Fig.1Comparsion of stimulation volume between single fracture and network fracture人们通过大量实践,特别通过分析施工压力的特征和返排以及产量变化规律,认为页岩地层经过改造后普遍存在网络裂缝[3,4],这与常规油藏改造后形成的单一或多条裂缝不同。
Craig ,Fisher ,Warpinski [4,5]等人认为压裂后形成的网络裂缝可以通过微震信号进行关联。
虽然目前还没有直接观察到页岩气储层中由于压裂形成的网络裂缝,但根据对岩心观察和煤层、火山岩压裂后开挖的观察结果来看[4],人们推断页岩压裂后也形成了类似的网络裂缝。
Mayerhofer 等人通过对比压后产量与微震信号分析得到了网络裂缝的特点,提出了体积压裂的概念[6,7]。
Cipolla 通过分析给出了有利的网络裂缝形态[2],即增产改造体积(stimulation reservoir vol-ume ,SRV )越大产量越高,通过技术手段提高SRV就成为页岩压裂增产的关键。
Cipolla 还通过定义裂缝复杂性指数(fracture complex index ,FCI )来描述网络裂缝有效性,即网缝宽度与长度之比[3]。
综上所述,网络压裂是指能够产生复杂裂缝“网络”(张性缝+剪切缝)的压裂技术统称。
但前期试验表明,有的井页岩储层品质很好,微地震监测的压裂改造体积也很大,但产气效果却不理想。
原因之一就是压裂改造体积并不完全对页岩气的产出有贡献,一方面是砂比过低,部分张性裂缝在压后闭合,没有得到有效支撑;另一方面,页岩剪切裂缝粗糙不整合面形成的裂缝导流能力可能过小。
针对这种现象,提出了页岩储层网络压裂ESRV 的概念,即无论是张性缝还是剪切缝,都要有足够的导流能力和改造体积。
3压前评价方法研究3.1页岩气压裂的主要影响因素北美地区页岩气评价包含17个参数,主要包括有效页岩厚度、有机质丰度、热演化程度、矿物组成、含气量、孔隙度、渗透性、构造格局、沉积、构造演化史、页岩横向连续性、三维地震资料、地层压力特征、压裂用水、输气管网、井场情况与地貌环境、污水处理与环保。
早期人们侧重于页岩本身品质的评价,后来水资源、环保和输气管网的经济性已经成为了重要的评价指标。
3.2页岩气压裂的主要评价指标仅从确保页岩气压后获得高产的角度出发,提出了压前评价,从页岩品质和压裂品质两个方面进行综合考虑,具体评价指标和评价标准见表1。
并不是所有的页岩都适合压裂,良好的页岩品质和压裂品质是获得较好页岩气产量的基础。
只有同时具备,才可能获得高产。
如果一好一坏,压后不一定能有较好产量。
如果二者都差,说明此页岩不适合压裂。
表1页岩压前评价参数表Table1Parameters of pre-frac evaluation of shale 类别评价参数评价指标渗透率K/nD﹥100孔隙度φ/%﹥2含水饱和度S w/%﹤40(海相)﹤60(陆相)页岩品质总有机碳TOC﹥2(reservoir quality,RQ)/%成熟度R o1.4 2.1(海相)0.8 1.4(陆相)含气量/(m3·t-1)﹥3泊松比﹤0.25杨氏模量E MPa﹥20000石英含量SiO2/%40 70(海相)脆性矿物含量/%40 70(陆相)粘土含量/%﹤30地应力差异系数K i﹤0.25压裂品质(fracture quality,FQ)裂缝(天然/次生/层理/页理)发育固井质量优良水层无地应力状态/裂缝方向/地层倾角/井身轨迹/断层类型有利(综合考虑)表1主要借鉴了北美页岩气的评价参数指标,并结合国内实践和研究成果进行了修正和补充。
其中,增加了国内陆相页岩气含水饱和度小于60%和成熟度0.8 1.4的指标。
在陆相页岩脆性矿物中增加了钙质含量,而海相脆性指数计算仅考虑石英含量。
一般情况下,脆性页岩压裂液选用低粘度的滑溜水压裂液,施工参数选择高排量、高液量、低砂比;脆性中等的页岩选用混合压裂液,即滑溜水复合线性胶压裂液;而塑性页岩选用高粘度的线性胶压裂液,施工参数选择低排量和高砂比。
表1中地应力差异系数指两向水平主应力差值与最小水平主应力的比值。
当此值小于0.1时,有利于形成网络裂缝;当此值大于0.25时,要形成网络裂缝就比较困难;介于二者中间时,要确保足够的净压力才能形成网络裂缝。
要形成网络裂缝还必须综合考虑地应力状态、裂缝方向、地层倾角、井身轨迹和断层类型。
如果地应力状态是正常应力状态,即垂向应力是最大应力,压裂时就会形成垂直裂缝,一般情况下,沿最小水平主应力方向钻页岩气水平井,有利于形成多条横切井筒的网状裂缝。
但如果是异常应力状态,如地层受逆断层挤压的影响,局部应力发生了改变,垂向应力不再是最大应力,这时压裂就可能会形成水平裂缝。
另外,裂缝包括天然裂缝、次生裂缝、页理或层理等页岩中的脆弱面,也是页岩压裂形成网络裂缝,获得足够的有效改造体积,确保压裂效果的必要条件之一。
断层类型、井身轨迹和地层倾角的匹配关系也是能否实现有效压裂改造的影响因素。
需要指出的是,此评价方法仅是阶段性的认识,随着国内页岩气勘探开发技术的进步,其中一些评价参数和指标还需要不断完善,尤其是碳酸盐岩矿物对海相、陆相不同页岩脆性指数的量化影响还需要进一步研究。
4页岩网络压裂技术4.1射孔参数优化页岩储层的一个基本特点是储层特性的连续累积效应与某点储层特性参数存在很大的差异,即页岩具有连续累积效应,关键储层参数在纵向和横向上变化范围很大,具有较强的非均质性。
Barnett某井压后生产剖面测试表明(见图2),在总共14个射孔簇中,50%的射孔簇对产量没有贡献,这部分射孔簇基本处于储层高应力部位;低应力部位的20%射孔簇对产量却高达70%[2]。
因此,射孔位置应按表1中页岩品质和压裂品质的评价参数和指标综合考虑,选择“甜点区”进行射孔。
如果页岩品质和压裂品质不能同时具备,则优先考虑页岩品质。
图2Barnett某水平井压后生产测试剖面Fig.2Production test profile of one horizontal well in Barnett一般页岩压裂射孔遵循如下基本原则:1)射孔参数有利于形成网络裂缝;2)各射孔段破裂压力基本一致,或通过孔眼摩阻调节,达到同步缝长效果;3)射孔位置与长度有利于裂缝在产层内起裂与延伸,减少裂缝压窜;4)射孔密度满足压裂所需的套管强度要求。
根据综合测井、成像测井、录井等资料,应重点考虑以下几点:1)气测异常值,全烃变化明显,录井解释含气层段;2)裂缝相对发育层段;3)富含有机质、粘土含量少、富含石英、较高孔隙度、TOC 含量较高、较高气含量;4)高伽玛、高声波时差、低中子、低密度层段;5)地应力剖面解释低闭合应力段,两向水平应力差值较小层段。