人教A版高中数学必修一集合同步练习新
- 格式:doc
- 大小:620.74 KB
- 文档页数:3
1.1 集合的概念一、单选题1.已知3a =,{|2}A x x =≥,则( )A .a A ∈B .a A ∉C .{}a A =D .{}a a ∉答案:A解析:根据元素与集合的关系,即可求解.详解:由题意,集合{|2}A x x =≥,且3a =,因为32>,所以a A ∈.故选:A.2.设集合{1}A x Z x =∈-,则A .A ∅∉B .C .2A ∈D .{}2⊆A 答案:B详解:试题分析:集合A 表示大于1-的正数,因此B 项正确 考点:元素与集合的元素3.下列所给关系正确的个数是①π∈R 3Q ;③0∈*N ;④|−4|∉*N .A .1B .2C .3D .4 答案:B详解:由R(实数集)、Q(有理数集)、*N (正整数集)的含义知,①②正确,③④不正确.4.对于任意实数x x ,表示不小于x 的最小整数,如1.220.20=-=,.定义在R 上的函数()2f x x x =+,若集合(){}|10A y y f x x ==-,≤≤,则集合A 中所有元素的和为( )A .3-B .4-C .5-D .6-答案:B解析:根据x 的范围即可求出2x 的范围,根据x <>的定义即可求出2x x <>+<>的值,即得出集合A 的所有元素,从而得出集合A 的所有元素的和.详解:因为10x -,∴①1x =-时,22x =-,则:1x <>=-,22x <>=-;23x x ∴<>+<>=-;②10x -<时,220x -<,则:0x <>=,21x <>=-,或0; 21x x ∴<>+<>=-,或0;{3A ∴=-,1-,0};∴集合A 中所有元素和为4-.故选:B点睛:本题主要考查对x <>的定义的理解,以及不等式的性质,意在考查学生对这些.5.集合5793,,,,234⎧⎫⎨⎬⎩⎭用描述法可表示为( ) A .*21|,2n n x x n N +⎧⎫=∈⎨⎬⎩⎭ B .*23|,n x x n N n +⎧⎫=∈⎨⎬⎩⎭ C .*21|,n x x n N n -⎧⎫=∈⎨⎬⎩⎭ D .*21|,n x x n N n +⎧⎫=∈⎨⎬⎩⎭答案:D 解析:找出集合中元素的规律通式即可.详解: 由5793,,,,234,即3579,,,,1234,从中发现规律*21,n x n N n +=∈, 故可用描述法表示为*21|,n x x n N n +⎧⎫=∈⎨⎬⎩⎭. 故选:D.点睛:本题考查集合的描述法,属于基础题.6.已知集合A 中元素x 满足x x N *∈,则必有( )A .-1∈AB .0∈ACD .1∈A答案:D解析:利用列举法求解即可.详解:因为x ≤≤又x N *∈,所以x 的可能取值1,2.故选:D.点睛:本题主要考查了列举法.属于容易题.7.集合{1,2,3,5}A = ,当x A ∈时,若1,1x A x A -∉+∉,则称x 为A 的一个“孤立元素”,则A 中孤立元素的个数为( )A .1B .2C .3D .4答案:A解析:根据“孤立元素”的定义,依次研究各元素即可得答案.详解:解:对于元素1,112A +=∈,故不满足孤立元素的定义;对于元素2,213A +=∈,故不满足孤立元素的定义;对于元素3,312A -=∈,故不满足孤立元素的定义;对于元素5,514A -=∉,516A +=∉,故满足孤立元素的定义;故A 中孤立元素的个数为1个.故选:A.点睛:本题考查集合新定义问题,正确理解新定义是解题的关键,是基础题.8.已知集合{1,,1}A a a =-,若2A -∈,则实数a 的值为( )A .2-B .1-C .1-或2-D .2-或3-答案:C解析:由已知得2a =-或12a -=-,解之并代入集合中验证可得选项.详解:因为集合{1,,1}A a a =-,且2A -∈,所以2a =-或12a -=-,当2a =-时,{1,2,3}A =--,适合题意;当12a -=-时,1a =-,{1,1,2}A =--,也适合题意,所以实数a 的值为1-或2-.故选:C.点睛:本题考查元素与集合的关系,属于基础题.9.设集合222,3,3,7A a a a a⎧⎫=-++⎨⎬⎩⎭,{}|2|,0B a =-,已知4A ∈且4B ∉,则实数a 的取值集合为( )A .{}-1,-2B .{}-1,2C .{}-2,4D .{}4答案:D解析:由234a a -=或274a a ++=解出a 的值,再验证集合中元素的互异性.详解:当234a a -=时,可得4a =或1a =-,若1a =-,则274a a ++=,不合题意;若4a =,则2711.5a a ++=,|2|2a -=符合题意; 当274a a++=,可得1a =-或2a =-,若1a =-,则234a a -=,不合题意;若2a =-,则|2|0a -=,不合题意.综上所述:4a =.故选:D.点睛:本题考查了集合中元素的互异性,考查了分类讨论思想,属于基础题.二、填空题1.已知集合{}2|60A x x px =-+=,若3A ∈,则方程15x p -=的解为__________.答案:2x =解析:由题意可知,3是方程260x px -+=的根,解得5p =.方程15x p -=等价变形为155x -=,解得,即可.详解:3A ∈∴3是方程260x px -+=的根,即23360p -+=,解得5p =. 又方程155x p -==11x ∴-=,解得2x =.故答案为:2x =点睛:本题考查元素与集合的关系以及实数指数幂的运算,属于较易题.2.若-3∈x-2,2x 2-5x ,12},则x =________.答案:-1,32,1解析:由已知得x -2=-3或2x 2-5x =-3,解之再代入集合中检验集合的元素是否互异,可得答案.详解:由题意知,x -2=-3或2x 2-5x =-3.①当x -2=-3时,x =-1.把x =-1代入,得集合的三个元素为-3,7,12满足集合中元素的互异性;②当2x 2-5x =-3时,x =32或x =1,当x =32时,集合的三个元素为-12,-3,12,满足集合中元素的互异性;当x =1时,集合的三个元素为-1,-3,12,满足集合中元素的互异性,由①②知x =-1,32,1.故答案为:-1,32,1.点睛:本题考查由集合与元素的关系求参数的值,注意集合中的元素需互异,属于基础题.3.设集合{}2|20x x x a ++=有且只有两个子集,则a =______________.答案:1a =解析:本题先将条件“集合{}2|20x x x a ++=有且只有两个子集”转化为“方程220x x a ++=有且仅有1个解”,再建立方程求a 的值.详解:解:因为集合{}2|20x x x a ++=有且只有两个子集,所以集合{}2|20x x x a ++=有且只有一个元素,所以方程220x x a ++=有且仅有1个解,所以2240a ∆=-=,解得1a =.故答案为:1a =.点睛:本题考查根据集合中元素的个数求参数的值,是基础题.4.若集合2{|(2)20,A x x a x a =-++-<x ∈Z }中有且只有一个元素,则正实数a 的取值范围是________答案:12(,]23解析:由f (x )=x 2﹣(a+2)x+2﹣a <0可得x 2﹣2x+1<a (x+1)﹣1,即直线在二次函数图像的上方的点只有一个整数1,则满足题意,结合图象即可求出.详解:f (x )=x 2﹣(a+2)x+2﹣a <0,即x 2﹣2x+1<a (x+1)﹣1,分别令y =x 2﹣2x+1,y =a (x+1)﹣1,易知过定点(﹣1,﹣1),分别画出函数的图象,如图所示:∵集合A =x∈Z|f(x )<0}中有且只有一个元素,即点(0,0)和点(2,1)在直线上或者其直线上方,点(1,0)在直线下方,结合图象可得∴10{120 311a a a -≤--≤<,解得12<a 23≤故答案为(12,23]点睛:本题考查了二次函数的性质以及参数的取值范围,考查了转化思想和数形结合的思想,属于中档题5.设,a b ∈R ,集合{}{}2,0,a b a =,则b a -=_____________答案:1-解析:根据集合的互异性原则,可求得a 与b 的值,即可求得b a -的值.详解:因为集合{}{}2,0,a b a = 所以0a =或0b =当0a =时,集合20a =,因而元素重复,与集合的互异性原则相悖,所以舍去0a =当0b =时,可得2a a =,解得0a =(舍)或1a =综上可知, 1a =,0b =所以011b a -=-=-故答案为: 1-点睛:本题考查了集合的互异性原则及集合相等的应用,属于基础题.三、解答题1.写出集合2|,3n x x n ⎧⎫=∈⎨⎬⎩⎭N 中最小的3个元素.答案:240,,33解析:让n 取自然数集中最小3个数代入即可得.详解:0,1,2n =时,三个元素为24033,,. 点睛:根据集合中元素的性质,取n 为自然数集中最小3个数代入可求得集合A 中最小的三个元素.2.已知数集{}()1212,,,0,2n n A a a a a a a n =≤<<<≥具有性质P :对任意的i、()1j i j n ≤≤≤,i j a a +,与j i a a -两数中至少有一个属于A .(1)分别判断数集{}0,1,3,4与{}0,2,3,6是否具有性质P ,并说明理由;(2)证明:10a =,且()122n n na a a a =+++; (3)当5n =时,若22a =,求集合A .答案:(1)集合{}0,1,3,4具有性质P ,集合{}0,2,3,6不具有性质P .(2)证明见解析. (3){0,2,4,6,8}A =.解析:(1)利用i j a a +与j i a a -两数中至少有一个属于A .即可判断出结论.(2)先由0n na a A =-∈,得出10a =,令“,1j n i =>,由“i j a a +与j i a a -两数中至少有一个属于A ”可得n i a a -属于A .令1i n =-,那么1n n a a --是集合A 中某项,1a 不符合不符合题意,2a 符合.同理可得:令1i n =-可以得到21n n a a a -=+,令2i n =-,3,....,2n -可以得到1n i n i a a a +-=+,倒序相加即可.(3)当5n =时,取5j =,当2i ≥时,55i a a a +>,由A 具有性质P,5i a a A -∈,又1i =时,51a a A -∈,可得51i a a Ai -∈=51525354550a a a a a a a a a a ->->->->-=,则515533524a a a a a a a a a -=-=-= ,又34245a a a a a +>+=,可得34a a A +∉,则43a a A -∈,则有43221a a a a a -==-.可得即12345,,,,a a a a a 是首项为0,公差为22a =等差数列是首项为0,公差为22a =等差数列.详解:解:(1)在集合{}0,1,3,4中,设{}0,1,3,4A =①011,101A A +=∈-=∈,具有性质P②033,303A A +=∈-=∈,具有性质P③044,404A A +=∈-=∈,具有性质P④134,312A A +=∈-=∉,具有性质P⑤145,413A A +=∉-=∈,具有性质P⑥347,431A A +=∉-=∈,具有性质P综上所述:集合{}0,1,3,4具有性质P ;在集合{}0,2,3,6中,设{}0,2,3,6B =,①022,202B B +=∈-=∈,具有性质P②033,303B B +=∈-=∈,具有性质P③066,606B B +=∈-=∈,具有性质P④235,321B B +=∉-=∉,不具有性质P⑤267,624B B +=∉-=∉,具有性质P⑥368,633B B +=∉-=∈,具有性质P综上所述:集合{}0,2,3,6不具有性质P .故集合{}0,1,3,4具有性质P ,集合{}0,2,3,6不具有性质P .(2)证明:令,1j n i =>由于120n a a a ≤<<<,则n n n a a a +>,故2n a A ∉ 则0n n a a A =-∈,即10a =i j a a +与j i a a -两数中至少有一个属于A ,i j a a ∴+不属于A ,n i a a ∴-属于A .令1i n =-,那么1n n a a --是集合A 中某项,10a =不符合题意,2a 可以.如果是3a 或者4a ,那么可知31n n a a a --=那么231n n n a a a a a -->-=,只能是等于n a ,矛盾.所以令1i n =-可以得到21n n a a a -=+,同理,令2i n =-,3,....,2n -可以得到1n i n i a a a +-=+,∴倒序相加即可得到1232n n n a a a a a +++⋯+= 即()122n n na a a a a =+++⋯+(3)当5n =时,取5j =,当2i ≥时,55i a a a +>,由A 具有性质P ,5i a a A -∈,又1i =时,51a a A -∈,51,2,3,4,5i a a Ai ∴-∈=123451234500a a a a a a a a a a =<<<<=<<<<,51525354550a a a a a a a a a a ∴->->->->-=,则515524a a a a a a -=-=,533a a a -=,从而可得245532a a a a a +==,故2432a a a +=,即433230a a a a a <-=-<,又3424534a a a a a a a A +>+=∴+∈/ ,则43a a A -∈,则有43221a a a a a -==-又54221a a a a a -==-544332212a a a a a a a a a ∴-=-=-=-=,即12345,,,,a a a a a 是首项为0,公差为22a =等差数列,{0,2,4,6,8}A ∴=点睛:(1)本问采用举反例的方法证明A 不具有P 性质;(2)采用极端值是证明这类问题的要点,一个数集满足某个性质,则数集中的特殊的元素(比如最大值、最小值)也满足这个性质;本问的第二个要点是集合的元素具有互异性,由互异性及题中给的性质P ,可得出等式;(3)利用在(2)中得到的结论得出12345,,,,a a a a a 之间的关系,再结合A 中元素所具有的P 性质即可得到结论.3.分别用列举法和描述法表示方程x 2+x –2=0的所有实数解的集合.答案:1,–2},x|x=1或x=–2}解析:根据列举法和描述法的定义分别进行表示即可. 详解:由220x x +-= 得1x = 或2x =- ,所以用列举法表示解集为}{1,2- ,用描述法表示为}{{}22012.x x x x x x +-===-=-或点睛:本题主要考查集合表示的两种方法:列举法和描述法,比较基础,要注意两者之间的区别.。
人教A 版高中数学必修一1.1.1《集合的含义与表示》同步练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设集合A 只含有一个元素a ,则下列各式正确的是( ) A .0∈A B .a ∉AC .a∈AD .a =A2.设x ∈N ,且1x∈N ,则x 的值可能是( ) A .0 B .1 C .-1D .0或13.下面四个关系式:π∈{x|x 是正实数},0.3∈Q,0∈{0},0∈N,其中正确的个数是( ) A .4 B .3 C .2D .14.集合{x∈N|-1<x<112}的另一种表示方法是( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5}D .{1,2,3,4,5}5.已知集合A ={x∈N *|,则必有( ) A .-1∈A B .0∈AC .D .1∈A6.集合M ={(x ,y)|xy<0,x∈R,y∈R}是( ) A .第一象限内的点集 B .第三象限内的点集 C .第四象限内的点集D .第二、四象限内的点集7.若集合{},,a b c 中的三个元素可构成某个三角形的三条边长,则此三角形一定不是( ) A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形8.已知A ={x|3-3x>0},则有( ) A .3∈A B .1∈A C .0∈A D .-1∉A二、填空题9.集合A ={x|x∈N 且42x-∈Z},用列举法可表示为A =________. 10.一边长为6,一边长为3的等腰三角形所组成的集合中有________个元素.11.点(1,3)P 和集合},)(2{|Ax y y x =+=之间的关系是________. 12.用列举法表示集合A ={(x ,y)|x +y =3,x∈N,y∈N *}为________. 13.若{}2,2,3,4A =-,{}2|,B x x t t A ==∈,用列举法表示B = .14.下列集合中:A ={x =2,y =1},B ={2,1},C ={(x ,y)| 31x y x y +=⎧⎨-=⎩},D ={(x ,y)|x =2且y =1},与集合{(2,1)}相等的共有________个.三、解答题15.“今有三女,长女五日一归,中女四日一归,小女三日一归,问三女何时相会”.(选自《孙子算经》),请将三女前三次相会的天数用集合表示出来.16.设A 是由满足不等式x <6的自然数组成的集合,若a ∈A 且3a ∈A ,求a 的值. 17.已知集合A 含有两个元素a 和a 2,若1∈A,求实数a 的值.18.已知集合A ={0,2,5,10},集合B 中的元素x 满足x =ab ,a∈A,b∈A 且a≠b,写出集合B .19.已知集合S 满足条件:若a S ∈,则1(0,1)1aS a a a+∈≠≠±-.若3S ∈,试把集合S 中的所有元素都求出来. 20.集合A ={x|2y x y x=⎧⎨=⎩ }可化简为___以下是两位同学的答案,你认为哪一个正确?试说明理由. 学生甲:由2y xy x=⎧⎨=⎩得x =0或x =1,故A ={0,1}; 学生乙:问题转化为求直线y =x 与抛物线y =x 2的交点,得到A ={(0,0),(1,1)}.参考答案1.C 【解析】分析:根据集合A 的表示,判断出a 是A 的元素,根据元素与集合的关系,是属于与不属于,从而得到答案. 详解:集合{}A a =,a A ∴∈.故选C.点睛:在解决元素与集合的关系时,注意它们的关系只有“属于”与“不属于”两种. 2.B 【解析】首先x≠0,排除A ,D ;又x∈N,排除C ,故选B. 3.A 【解析】本题考查元素与集合之间的关系,由数集的分类可知四个关系式均正确.选A. 4.C 【解析】 ∵x∈N,且-1<x<112,∴集合中含有元素0,1,2,3,4,5,故选C. 点睛:集合的表示方法:列举法、描述法、图示法.其中描述法要注意代表元素,是点集还是数集.列举法应用于有限集,特别为单元素集合. 5.D 【解析】∵x∈N *1,2,即A ={1,2},∴1∈A.选D. 6.D 【解析】根据描述法表示集合的特点,可知集合表示的是横、纵坐标异号的点的集合,这些点在第二、四象限内.选D.点睛:集合的表示方法:列举法、描述法、图示法.其中描述法要注意代表元素,是点集还是数集7.D 【分析】根据集合中元素的互异性可知,D 正确;给,,a b c 取特值可知,,,A B C 不正确. 【详解】根据集合中元素的互异性可知,a b c ≠≠,所以此三角形一定不是等腰三角形,故D 正确; 当3,4,5a b c ===时,三角形为直角三角形,故A 不正确; 当 6.8.9a b c ===时,三角形为锐角三角形,故B 不正确; 当6,8,11a b c ===时,三角形为钝角三角形,故C 不正确; 故选:D. 【点睛】本题考查了集合中元素的互异性,属于基础题. 8.C 【解析】因为A ={x|3-3x>0}={x|x<1},所以0∈A.选C. 9.{0,1,3,4,6} 【解析】 注意到42x-∈Z,因此,2-x =±2,±4,±1,解得x =-2,0,1,3,4,6,又∵x∈N,∴x=0,1,3,4,6. 10.1 【解析】这样的三角形只有1个,是两腰长为6,底边长为3的等腰三角形. 11.P A ∈ 【详解】在2y x =+中,当1x =时,3y =, 因此点P 是集合A 的元素,故P A ∈. 故答案为:P A ∈.12.{(0,3),(1,2),(2,1)} 【解析】集合A 是由方程x +y =3的部分整数解组成的集合,由条件可知,当x =0时,y =3;当x =1时,y =2;当x =2时,y =1.故A ={(0,3),(1,2),(2,1)}. 13.{}4,9,16 【分析】解决该试题的关键是对于t 令值,分别得到x 的值,然后列举法表示. 【详解】因为集合{}2,2,3,4A =-,而集合B 中的元素是将集合A 中的元素一一代入,通过平方得到的集合,即{}2|,B x x t t A ==∈,2,4t x ∴=±=;3,9t x ==;4,16t x ==,{}4,9,16B ∴=,那么用列举法表示B ={}4,9,16.本试题主要是考查了集合的描述法与列举法的准确运用,属于基础题. 14.2 【解析】因为集合{(2,1)}的元素表示的是有序实数对,由已知集合的代表元素知,元素为有序实数对的是C ,D ,而A 表示含有两个元素x =2,y =1的集合,B 表示含有2个元素的集合. 15.{60,120,180}. 【解析】试题分析:先判断三女相会的日数必为5,4,3的公倍数,再求最小的三个整数,并用集合形式表示试题解析:三女相会的日数,即为5,4,3的公倍数,它们的最小公倍数为60,因此三女前三次相会的天数用集合表示为{60,120,180}. 16.a =0或1. 【解析】 试题分析:试题解析:∵a∈A 且3a∈A,∴a<6且3a<6,∴a<2. 又∵a 是自然数∴a =0或1. 17.a =-1.【解析】试题分析:本题中已知集合A 中有两个元素且1∈A,据集合中元素的特点需分a =1和a 2=1两种情况,最后注意集合中元素的互异性,进行验证. 试题解析:若1∈A,则a =1或a 2=1,即a =±1. 当a =1时,集合A 有重复元素,∴a≠1;当a =-1时,集合A 含有两个元素1,-1,符合互异性. ∴a=-1.点睛:利用元素的性质求参数的方法,已知一个元素属于集合,求集合中所含的参数值.具体解法:(1)确定性的运用:利用集合中元素的确定性解出参数的所有可能值.(2)互异性的运用:根据集合中元素的互异性对集合中元素进行检验. 18.B ={0,10,20,50}. 【解析】试题分析:先按是否取零进行讨论,再根据乘积结果,利用集合元素互异性进行取舍 试题解析:解析 当或时,x =0;当或时,x =10; 当或时,x =20; 当或时,x =50.所以B ={0,10,20,50}.点睛:常利用集合元素的互异性确定集合中的元素,根据题目一一列举可能取值(应用列举法和分类讨论思想),然后根据集合元素的互异性进行检验,相同元素重复出现只算作一个元素,判断出该集合的所有元素,即得该集合元素的个数. 19.113,2,,32-- 【分析】由条件“若a S ∈,则11aS a+∈-”可进行一步步推导,根据所得值循环出现可得答案. 【详解】∵3S ∈,∴13213S +=-∈-,从而1(2)11(2)3S +-=-∈--,则11131213S ⎛⎫+- ⎪⎝⎭=∈⎛⎫-- ⎪⎝⎭, ∴1123112S +=∈-,出现循环,根据集合中元素的互异性可得集合S 中的所有元素为113,2,,32--.【点睛】本题考查了集合中元素的互异性,属于基础题. 20.甲正确 【解析】试题分析:先解方程组得解集,再根据集合代表元素得应为数集,不是点集,因此选甲 试题解析:同学甲正确,同学乙错误.由于集合A 的代表元素为x ,因此满足条件的元素只能为x =0,1;而不是实数对故同学甲正确.。
1.1 集合的概念同步练习卷【人教A版2019】考试时间:60分钟;满分:100分姓名:___________班级:___________考号:___________考卷信息:本卷试题共22题,单选8题,多选4题,填空4题,解答6题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本节内容的具体情况!一.选择题(共8小题,满分24分,每小题3分)1.(3分)(2020秋•袁州区校级月考)下列四组对象中能构成集合的是()A.宜春市第一中学高一学习好的学生B.在数轴上与原点非常近的点C.很小的实数D.倒数等于本身的数2.(3分)(2020秋•路北区校级期中)下列元素与集合的关系表示正确的是()①﹣1∈N*;②√2∉Z;③32∈Q;④π∈QA.①②B.②③C.①③D.③④3.(3分)(2020•西城区校级期中)已知集合M={﹣2,3},N={﹣4,5,6},依次从集合M,N中各取出一个数分别作为点P的横坐标和纵坐标,则在平面直角坐标系中位于第一、二象限内的点P的个数是()A.4B.5C.6D.74.(3分)(2020春•大武口区校级期中)已知集合M={1,m+2,m2+4},且5∈M,则m的值为()A.1或﹣1B.1或3C.﹣1或3D.1,﹣1或35.(3分)集合A={1,﹣3,5,﹣7,9,﹣11,…},用描述法表示正确的是()①{x|x=2n±1,n∈N};②{x|x=(﹣1)n(2n﹣1),n∈N};③{x|x=(﹣1)n(2n+1),n∈N}.A.③B.①③C.②③D.①②③6.(3分)(2020秋•张店区校级月考)集合A={x∈N∗|63−x∈Z},用列举法可以表示为()A.{1,2,4,9}B.{1,2,4,5,6,9}C.{﹣6,﹣3,﹣2,﹣1,3,6}D.{﹣6,﹣3,﹣2,﹣1,2,3,6}7.(3分)(2020秋•华龙区校级期中)已知集合A={1,2,3,4},B={(x,y)|x∈A,y∈A,y﹣x∈A},则集合B中的元素的个数为()A.4B.5C.6D.78.(3分)(2020秋•汇川区校级月考)设集合A={2,3,a2﹣3a,a+2a+7},B={|a﹣2|,0}.已知4∈A且4∉B,则实数a的取值集合为()A.{﹣1,﹣2}B.{﹣1,2}C.{﹣2,4}D.{4}二.多选题(共4小题,满分16分,每小题4分)9.(4分)(2020秋•中山市校级月考)已知x∈{1,2,x2},则有()A.x=1B.x=2C.x=0D.x=√210.(4分)(2020秋•农安县月考)下面四个说法中错误的是()A.10以内的质数组成的集合是{2,3,5,7}B.由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}C.方程x2﹣2x+1=0的所有解组成的集合是{1,1}D.0与{0}表示同一个集合11.(4分)(2020秋•余姚市校级月考)已知集合A={x|ax2﹣2x+a=0}中至多含有一个元素,则实数a可以取()A.a≥1B.a=0C.a≤﹣1D.﹣1≤a≤112.(4分)若集合A具有以下性质:(1)0∈A,1∈A;(2)若x∈A,y∈A;则x﹣y∈A,且x≠0时,1x∈A.则称集合A是“好集”.下列命题中正确的是()A.集合B={﹣1,0,1}是“好集”B.有理数集Q是“好集”C.整数集Z不是“好集”D.设集合A是“好集”,若x∈A,y∈A,则x+y∈A 三.填空题(共4小题,满分16分,每小题4分)13.(4分)(2020秋•辛集市校级月考)下列关系中,正确的是.①−43∈R;②√3∉Q;③|﹣20|∉N*;④|−√2|∈Q;⑤﹣5∉Z;⑥0∈N.14.(4分)(2020秋•浙江期中)已知集合A={﹣2,2a,a2﹣a},若2∈A,则a=.15.(4分)(2020秋•汇川区校级月考)设集合A中有n个元素,定义|A|=n,若集合P={x∈Z|6x−3∈Z},则|P|=.16.(4分)(2020秋•河东区校级月考)已知a,b,c均为非零实数,集合A={x|x=|a|a+b|b|+ab|ab|},则集合A的元素的个数有个.四.解答题(共6小题,满分44分)17.(6分)下列研究对象能否构成一个集合?如果能,采用适当的方式表示它.(1)小于5的自然数;(2)某班所有个子高的同学;(3)不等式2x+1>7的整数解.18.(6分)已知集合M={﹣2,3x2+3x﹣4,x2+x﹣4},若2∈M,求x的值.19.(8分)用另一种方法表示下列集合.(1){绝对值不大于2的整数};(2){能被3整除,且小于10的正数};(3){x|x=|x|,x<5,且x∈Z};(4){(x,y)|x+y=6,x∈N*,y∈N*};(5){﹣3,﹣1,1,3,5}.20.(8分)(2020秋•黄浦区校级月考)已知集合A={x|kx2﹣8x+16=0,k∈R,x∈R}.(1)若A只有一个元素,试求实数k的值,并用列举法表示集合A;(2)若A至多有两个子集,试求实数k的取值范围.21.(8分)设集合A中含有三个元素3,x,x2﹣2x.(1)求实数x应满足的条件;(2)若﹣2∈A,求实数x.22.(8分)(2020秋•越秀区校级期中)已知不等式ax2+5x﹣2>0的解集是M.(1)若2∈M且3∉M,求a的取值范围;(2)若M={x|12<x<2},求不等式ax2﹣5x+a2﹣1>0的解集.1.1 集合的概念同步练习卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.(3分)(2020秋•袁州区校级月考)下列四组对象中能构成集合的是( ) A .宜春市第一中学高一学习好的学生B .在数轴上与原点非常近的点C .很小的实数D .倒数等于本身的数【分析】根据集合的含义分别分析四个选项,A ,B ,C 都不满足函数的确定性故排除,D 确定,满足. 【解答】解:A :宜春市第一中学高一学习好的学生,因为学习好的学生不确定,所以不满足集合的确定性,排除B :在数轴上与原点非常近的点,因为非常近的点不确定,所以不满足集合的确定性,排除C :很小的实数,因为很小的实数不确定,所以不满足集合的确定性,排除D :倒数等于它自身的实数为1与﹣1,∴满足集合的定义,故正确. 故选:D .【点睛】本题考查集合的含义.通过对集合元素三个性质:确定性,无序性,互异性进行考查,属于基础题.2.(3分)(2020秋•路北区校级期中)下列元素与集合的关系表示正确的是( ) ①﹣1∈N *;②√2∉Z ;③32∈Q ;④π∈QA .①②B .②③C .①③D .③④【分析】认识常用数集的表示符号及元素和集合的关系. 【解答】解:对于①:﹣1不是自然数,故﹣1∉N *,故①错误;对于②:√2是无理数不是整数,Z 表示整数集合∴√2∉Z ,故②正确; 对于③:32是有理数,Q 表示有理数集,∴32∈Q ,故③正确;对于④:π是无理数,Q 表示无理数集,∴π∉Q ,故④错误. 故选:B .【点睛】本题考查对数集的认识,属于基础题3.(3分)(2020•西城区校级期中)已知集合M ={﹣2,3},N ={﹣4,5,6},依次从集合M ,N 中各取出一个数分别作为点P的横坐标和纵坐标,则在平面直角坐标系中位于第一、二象限内的点P的个数是()A.4B.5C.6D.7【分析】利用列举法和第一、二象限的点的性质直接求解.【解答】解:集合M={﹣2,3},N={﹣4,5,6},依次从集合M,N中各取出一个数分别作为点P的横坐标和纵坐标,在平面直角坐标系中位于第一、二象限内的点P有:(﹣2,5),(﹣2,6),(3,5),(3,6),共4个.故选:A.【点睛】在平面直角坐标系中位于第一、二象限内的点P的个数的求法,考查列举法和第一、二象限的点的性质等基础知识,考查运算求解能力,是基础题.4.(3分)(2020春•大武口区校级期中)已知集合M={1,m+2,m2+4},且5∈M,则m的值为()A.1或﹣1B.1或3C.﹣1或3D.1,﹣1或3【分析】由5∈{1,m+2,m2+4},得m+2=5或m2+4=5,再由集合中元素的互异性,能求出m的取值集合.【解答】解:∵5∈{1,m+2,m2+4},∴m+2=5或m2+4=5,即m=3或m=±1.当m=3时,M={1,5,13};当m=1时,M={1,3,5};当m=﹣1时,M={1,1,5}不满足互异性,∴m的取值集合为{1,3}.故选:B.【点睛】本题考查实数的取值集合的求法,解题时要认真审题,注意集合性质的合理运用,是基础题.5.(3分)集合A={1,﹣3,5,﹣7,9,﹣11,…},用描述法表示正确的是()①{x|x=2n±1,n∈N};②{x|x=(﹣1)n(2n﹣1),n∈N};③{x|x=(﹣1)n(2n+1),n∈N}.A.③B.①③C.②③D.①②③【分析】取n=0,1,2分别验证三个集合即可.【解答】解:取n=0,{x|x=2n±1,n∈N}={0,1},故①错误;取n=0,{x|x=(﹣1)n(2n﹣1),n∈N}={﹣1},故②错误;取n=0,{x|x=(﹣1)n(2n+1),n∈N}={1},取n=1,{x|x=(﹣1)n(2n+1),n∈N}={﹣3},取n=2,{x|x=(﹣1)n(2n+1),n∈N}={5},……,故③正确;故选:A.【点睛】本题主要考查了集合的表示方法,是基础题.6.(3分)(2020秋•张店区校级月考)集合A={x∈N∗|63−x∈Z},用列举法可以表示为()A.{1,2,4,9}B.{1,2,4,5,6,9}C.{﹣6,﹣3,﹣2,﹣1,3,6}D.{﹣6,﹣3,﹣2,﹣1,2,3,6}【分析】利用已知条件,化简求解即可.【解答】解:集合A={x∈N∗|63−x∈Z},可知63−1=3,63−2=6,63−4=−6,63−5=−3,63−6=−2,63−9=−1,则x=1,2,4,5,6,9.集合A={x∈N∗|63−x∈Z}={1,2,4,5,6,9}.故选:B.【点睛】本题考查集合的表示方法,是基础题.7.(3分)(2020秋•华龙区校级期中)已知集合A={1,2,3,4},B={(x,y)|x∈A,y∈A,y﹣x∈A},则集合B中的元素的个数为()A.4B.5C.6D.7【分析】通过集合B,利用x∈A,y∈A,y﹣x∈A,求出集合B中元素的个数.【解答】解:因为集合A={1,2,3,4},B={(x,y)|x∈A,y∈A,y﹣x∈A},所以当x=1时,y=2或y=3或y=4,当x=2时,y=3或y=4,当x=3时,y=4,所以集合B中的元素个数为6.故选:C.【点睛】本题考查集合的元素与集合的关系,属基础题.8.(3分)(2020秋•汇川区校级月考)设集合A={2,3,a2﹣3a,a+2a+7},B={|a﹣2|,0}.已知4∈A且4∉B ,则实数a 的取值集合为( ) A .{﹣1,﹣2}B .{﹣1,2}C .{﹣2,4}D .{4}【分析】根据题意分a 2﹣3a =4且|a ﹣2|≠4,a +2a +7=4且|a ﹣2|≠4两种情况讨论,求出a 的值,并利用集合的互异性进行验证,即可求得符合题意的a 的值.【解答】解:由题意可得①当a 2﹣3a =4且|a ﹣2|≠4时,解得a =﹣1或4, a =﹣1时,集合A ={2,3,4,4}不满足集合的互异性,故a ≠﹣1, a =4时,集合A ={2,3,4,1112},集合B ={2,0},符合题意.②当a +2a+7=4且|a ﹣2|≠4,解得a =﹣1,由①可得不符合题意. 综上,实数a 的取值集合为{4}. 故选:D .【点睛】本题主要考查元素与集合的关系,考查集合的互异性,属于基础题. 二.多选题(共4小题,满分16分,每小题4分)9.(4分)(2020秋•中山市校级月考)已知x ∈{1,2,x 2},则有( ) A .x =1B .x =2C .x =0D .x =√2【分析】利用元素与集合的关系及集合中元素的互异性即可求解. 【解答】解:因为x ∈{1,2,x 2},所以x =2或x =x 2,解得x =2或x =1或x =0, 当x =2时,x ∈{1,2,4},符合题意;当x =1时,x ∈{1,2,1},不满足集合的互异性; 当x =0时,x ∈{1,2,0},符合题意., 故x =2或x =0. 故选:BC .【点睛】本题主要考查元素与集合间的关系,利用集合中元素的互异性验证结论是否符合题意是解题的关键,属于基础题.10.(4分)(2020秋•农安县月考)下面四个说法中错误的是( ) A .10以内的质数组成的集合是{2,3,5,7}B .由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}C .方程x 2﹣2x +1=0的所有解组成的集合是{1,1}D.0与{0}表示同一个集合【分析】结合集合的表示及元素与集合的基本关系分别检验各选项即可判断.【解答】解:10以内的质数组成的集合是{2,3,5,7},故A正确;由集合中元素的无序性知{1,2,3}和{3,2,1}表示同一集合,故B正确;方程x2﹣2x+1=0的所有解组成的集合是{1},故C错误;由集合的表示方法知0不是集合,故D错误,故选:CD.【点睛】本题主要考查了集合的表示及元素与集合的基本关系的判断,属于基础题.11.(4分)(2020秋•余姚市校级月考)已知集合A={x|ax2﹣2x+a=0}中至多含有一个元素,则实数a可以取()A.a≥1B.a=0C.a≤﹣1D.﹣1≤a≤1【分析】根据集合A={x|ax2﹣2x+a=0}中至多含有一个元素,讨论集合A中的方程ax2﹣2x+a=0的根的情况,求解若ax2﹣2x+a=0为一元一次方程和一元二次方程至多含有一个根的情况,符合题意时可得实数a可以取为:a=0,a≥1或a≤﹣1.【解答】解:已知集合A={x|ax2﹣2x+a=0}中至多含有一个元素,则讨论集合A中的方程ax2﹣2x+a=0的根的情况,①若ax2﹣2x+a=0为一元一次方程,则a=0,解得x=0,符合题意;②若ax2﹣2x+a=0为一元二次方程,则a≠0,方程至多含有一个根,△=4﹣4a2≤0,解得a≥1或a≤﹣1,符合题意;故实数a可以取为:a=0,a≥1或a≤﹣1.故选:ABC.【点睛】本题主要考查元素与集合的关系,一元二次方程根的情况,分类讨论思想,属于基础题.12.(4分)若集合A具有以下性质:(1)0∈A,1∈A;(2)若x∈A,y∈A;则x﹣y∈A,且x≠0时,1x∈A.则称集合A是“好集”.下列命题中正确的是()A.集合B={﹣1,0,1}是“好集”B.有理数集Q是“好集”C .整数集Z 不是“好集”D .设集合A 是“好集”,若x ∈A ,y ∈A ,则x +y ∈A【分析】逐一判断给定的3个集合,是否满足“好集”的定义,最后综合讨论结果,可得答案. 【解答】解:对于A ,假设集合B 是“好集”,因为﹣1∈B ,1∈B ,所以﹣1﹣1=﹣2∈B ,这与﹣2∉B 矛盾,所以集合B 不是“好集”.故A 错误;对于B ,因为0∈Q ,1∈Q ,且对任意的x ∈Q ,y ∈Q 有x ﹣y ∈Q ,且x ≠0时,1x ∈Q ,所以有理数集Q 是“好集”,故B 正确;对于C ,因为2∈Z ,但12∉Z ,所以整数集Z 不是“好集”.故C 正确;因为集合A 是“好集”,所以0∈A ,又y ∈A ,所以0﹣y ∈A ,即﹣y ∈A ,又x ∈A ,所以x ﹣(﹣y )∈A ,即x +y ∈A ,故D 正确. 故选:BCD .【点睛】本题主要考查了元素与集合关系的判断,以及新定义的理解,同时考查了运算求解的能力,属于基础题.三.填空题(共4小题,满分16分,每小题4分)13.(4分)(2020秋•辛集市校级月考)下列关系中,正确的是 ①②⑥ . ①−43∈R ; ②√3∉Q ; ③|﹣20|∉N *; ④|−√2|∈Q ; ⑤﹣5∉Z ; ⑥0∈N .【分析】根据元素与集合的关系进行判断即可. 【解答】解:①−43∈R ,正确; ②√3∉Q ,正确;③因为|﹣20|=20∈N *,则|﹣20|∉N *,错误; ④因为|−√2|=√2∉Q ;则|−√2|∈Q ,错误; ⑤﹣5∉Z ,错误; ⑥0∈N .正确;所以正确的是①②⑥.【点睛】本题主要考查元素与集合的关系,属于基础题.14.(4分)(2020秋•浙江期中)已知集合A ={﹣2,2a ,a 2﹣a },若2∈A ,则a = 1或2 .【分析】根据2是集合中的元素,求出a 值,再验证集合中元素的互异性即可.【解答】解:∵2∈A ,∴2a =2或a 2﹣a =2;当2a =2时,a =1,a 2﹣a =0,A ={﹣2,2,0},符合题意;当a 2﹣a =2时,a =﹣1或a =2,a =2时,A ={﹣2,4,2},符合题意.a =﹣1时,A ={﹣2,﹣2,2},不符合题意.综上a =1或a =2,故答案为:1或2.【点睛】本题考查集合中元素的性质及元素与集合的关系,属于基础题目.15.(4分)(2020秋•汇川区校级月考)设集合A 中有n 个元素,定义|A |=n ,若集合P ={x ∈Z |6x−3∈Z },则|P |= 8 .【分析】通过对集合中元素构成的特点及元素条件求集合P ,即可得到答案.【解答】解:∵集合P ={x ∈Z |6x−3∈Z },∵x ∈Z ,6x−3∈Z ,∴x ﹣3=±1,±2,±3,±6.解得x =4,2,5,1,0,6,9,﹣3,∴P ={﹣3,0,1,2,4,5,6,9}.|P |=8,故答案为:8.【点睛】本题考查集合的元素,通过对集合中元素构成的特点及元素条件求集合,属于基础题.16.(4分)(2020秋•河东区校级月考)已知a ,b ,c 均为非零实数,集合A ={x|x =|a|a +b |b|+ab |ab|},则集合A 的元素的个数有 2 个.【分析】通过对a ,b 的正负的分类讨论,利用绝对值的定义去掉绝对值的符号 然后进行运算,求出集合中的元素.【解答】解:当a >0,b >0时,x =|a|a +b |b|+ab |ab|=1+1+1=3,当a >0,b <0时,x =|a|a +b |b|+ab |ab|=1﹣1﹣1=﹣1,当a <0,b >0时,x =|a|a +b |b|+ab |ab|=−1+1﹣1=﹣1,当a<0,b<0时,x=|a|a+b|b|+ab|ab|=−1﹣1+1=﹣1,故x的所有值组成的集合为{﹣1,3}故答案为:2.【点睛】本题考查了分类讨论的数学思想方法,绝对值的几何意义.考查计算能力,属于基础题.四.解答题(共6小题,满分44分)17.(6分)下列研究对象能否构成一个集合?如果能,采用适当的方式表示它.(1)小于5的自然数;(2)某班所有个子高的同学;(3)不等式2x+1>7的整数解.【分析】根据集合元素的确定性,互异性进行判断即可.【解答】解:(1)小于5的自然数为0,1,2,3,4,元素确定,所以能构成集合.为{0,1,2,3,4}.(2)个子高的标准不确定,所以集合元素无法确定,所以不能构成集合.(3)由2x+1>7得x>3,因为x为整数,集合元素确定,但集合元素个数为无限个,所以用描述法表示为{x|x>3,且x∈Z}.【点睛】本题主要考查集合的含义和表示,利用元素的确定性,互异性是判断元素能否构成集合的条件,比较基础.18.(6分)已知集合M={﹣2,3x2+3x﹣4,x2+x﹣4},若2∈M,求x的值.【分析】由已知2是集合M的元素,分类讨论列出方程,求出x的值,将x的值代入集合,检验集合的元素需满足互异性.【解答】解:当3x2+3x﹣4=2时,3x2+3x﹣6=0,x2+x﹣2=0,x=﹣2或x=1.经检验,x=﹣2,x=1均不合题意.当x2+x﹣4=2时,x2+x﹣6=0,x=﹣3或2.经检验,x=﹣3或x=2均合题意.∴x=﹣3或x=2.【点睛】本题考查解决集合中的参数值时,需将求出的参数值代入集合检验集合的互异性、考查分类讨论的数学思想方法.19.(8分)用另一种方法表示下列集合.(1){绝对值不大于2的整数};(2){能被3整除,且小于10的正数};(3){x|x=|x|,x<5,且x∈Z};(4){(x,y)|x+y=6,x∈N*,y∈N*};(5){﹣3,﹣1,1,3,5}.【分析】根据集合的概念,列举法及描述法的定义,选择适当的方法表示每个集合即可.【解答】解:(1){绝对值不大于2的整数}={﹣2,﹣1,0,1,2}.(2){能被3整除,且小于10的正数}={3,6,9}.(3){x|x=|x|,x<5,且x∈Z}={0,1,2,3,4}.(4){(x,y)|x+y=6,x∈N*,y∈N*}={(1,5),(2,4),(3,3),(4,2),(5,1)}.(5){﹣3,﹣1,1,3,5}={x|x=2k﹣1,﹣1≤k≤3,k∈Z}.【点睛】考查集合的概念,集合的表示方法:列举法,描述法.20.(8分)(2020秋•黄浦区校级月考)已知集合A={x|kx2﹣8x+16=0,k∈R,x∈R}.(1)若A只有一个元素,试求实数k的值,并用列举法表示集合A;(2)若A至多有两个子集,试求实数k的取值范围.【分析】(1)当k=0时,易知符合题意,当k≠0时,利用△=0即可求出k的值;(2)由A至多有两个子集,可知集合A中元素个数最多1个,再分k=0和k≠0两种情况讨论,即可求出实数k的取值范围.【解答】解:(1)①当k=0时,方程化为:﹣8x+16=0,解得x=2,此时集合A={2},满足题意;②当k≠0时,∵方程kx2﹣8x+16=0有一个根,∴△=(﹣8)2﹣4k×16=0,解得:k=1,此时方程为x2﹣8x+16=0,解得x=4,∴集合A={4},符合题意,综上所述,k=0时集合A={2};k=1时集合A={4};(2)∵A至多有两个子集,∴集合A中元素个数最多1个,①当k≠0时,一元二次方程kx2﹣8x+16=0最多有1个实数根,∴△=(﹣8)2﹣4k×16≤0,解得k≥1,②当k=0时,由(1)可知,集合A={2}符合题意,综上所述,实数k 的取值范围为:{0}∪[1,+∞).【点睛】本题主要考查了集合的表示方法,考查了集合的元素个数,是基础题.21.(8分)设集合A 中含有三个元素3,x ,x 2﹣2x .(1)求实数x 应满足的条件;(2)若﹣2∈A ,求实数x .【分析】(1)由集合元素的互异性直接求解.(2)若﹣2∈A ,则x =﹣2或x 2﹣2x =﹣2.由此能出x .【解答】解:(1)由集合元素的互异性可得:x ≠3,x 2﹣2x ≠x 且x 2﹣2x ≠3,解得x ≠﹣1,x ≠0且x ≠3.(2)若﹣2∈A ,则x =﹣2或x 2﹣2x =﹣2.由于x 2﹣2x =(x ﹣1)2﹣1≥﹣1,所以x =﹣2.【点睛】本题考查集合中元素的性质、实数值的求法,是基础题,解题时要认真审题,注意元素与集合的关系的合理运用.22.(8分)(2020秋•越秀区校级期中)已知不等式ax 2+5x ﹣2>0的解集是M .(1)若2∈M 且3∉M ,求a 的取值范围;(2)若M ={x|12<x <2},求不等式ax 2﹣5x +a 2﹣1>0的解集.【分析】(1)由2∈M 且3∉M ,列出不等式组,能求出实数a 的取值范围.(2)推导出12,2是方程ax 2+5x ﹣2=0的两个根,由韦达定理求出a =﹣2,从而不等式ax 2﹣5x +a 2﹣1>0即为2x 2+5x ﹣3<0,由此能求出不等式的解集.【解答】解:(1)∵不等式ax 2+5x ﹣2>0的解集是M .2∈M 且3∉M ,∴{4a +8>09a +13≤0,解得﹣2<a ≤−139, ∴a 的取值范围是(﹣2,−139].(2)∵M ={x|12<x <2},∴12,2是方程ax 2+5x ﹣2=0的两个根,∴由韦达定理得{12+2=−5a 12⋅2=−2a ,解得a =﹣2, ∴不等式ax 2﹣5x +a 2﹣1>0为2x 2+5x ﹣3<0,∴不等式ax 2﹣5x +a 2﹣1>0的解集为{x|−3<x <12}.【点睛】本题考查实数的取值范围的求法,考查不等式的解集的求法,考查运算求解能力,是基础题.。
人教新课标A版高中数学必修1第一章集合与函数概念1.1集合1.1.3集合的基本运算同步训练B卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2017高二下·辽宁期末) 已知集合则为()A .B .C .D .2. (2分)已知集合A={x|x>0},B={x|(x﹣1)(x﹣2)>0},则A∪B=()A . {x|0<x<1}B . {x|x<1或x>2}C . {x|1<x<2}D . R3. (2分)(2019·泉州模拟) 设全集,,则()A .B .C .D . 或4. (2分)(2017·上饶模拟) 已知R为实数集,集合A={x|x>0},B={x|x2﹣x﹣2>0},则A∩(∁RB)=()A . (0,2]B . (﹣1,2)C . [﹣1,2]D . [0,4]5. (2分)函数f(x)=的图像如图所示,则下列结论成立的是A . a0,b0,c0B . a0,b0,c0C . a0,b0,c0D . a0,b0,c06. (2分) (2017高一上·淄博期末) 已知集合U={0,1,2,3,4,5,6},A={0,1,3,5},B={1,2,4},那么A∩(∁UB)=()A . {6}B . {0,3,5}C . {0,3,6}D . {0,1,3,5,6}7. (2分) (2016高一上·闵行期中) 已知f(n)=2n+1(n∈N*),集合A={1,2,3,4,5},B={3,4,5,6,7},记f(A)={n|f(n)∈A},f(B)={m|f(m)∈B},f(A)∩f(B)=()A . {1,2}B . {1,2,3}C . {3,5}D . {3,5,7}8. (2分) (2017高一上·漳州期末) 已知集合A={x|﹣2<x<2},B={x|x2﹣2x≤0},则A∩B等于()A . (0,2)B . (0,2]C . [0,2)D . [0,2]9. (2分)(2018·佛山模拟) 已知全集,若 ,,则()A .B .C .D .10. (2分)已知全集U={0,1,2,3,4,5,6},集合A={2,4,5},B={1,3,4,6},则为()A . {0,1,3,6}B . {0,2,4,6}D . {1,3,6}11. (2分)若函数且的定义域和值域都是[0,1],则a=()A .B .C .D . 212. (2分)已知集合,,则()A .B .C .D .13. (2分)已知A={(x,y)|x+y=3},B={(x,y)|x-y=1},则A∩B=()A . {2,1}B . {x=2,y=1}C . {(2,1)}D . (2,1)14. (2分) (2019高一上·镇原期中) 设U={1,2,3,4,5},A={1,2,3},B={2,3,4},则下列结论中正确的是()A . A⊆BC . A∪B={1,2,3,4,5}D . A∩()={1}15. (2分)集合A={﹣1,0},B={0,1},C={1,2},则(A∩B)∪C等于()A . ∅B . {1}C . {0,1,2}D . {﹣1,0,1,2}二、填空题 (共5题;共5分)16. (1分)设全集U={1,2,3},A={1,2},则∁UA=________17. (1分)(2017·上海模拟) 已知集合A={x|y=lg(2﹣x)},集合B=[y|y= },则A∩B=________.18. (1分)设平面点集A={(x,y)|(x﹣1)2+(y﹣1)2≤1},B={(x,y)|(x+1)2+(y+1)2≤1},C={(x,y)|y﹣≥0},则(A∪B)∩C所表示的平面图形的面积是________19. (1分)设U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},则(CUA)∪(CUB)=________20. (1分) (2016高二下·日喀则期末) 已知不等式|x﹣2|<3的解集为 A,函数y=ln(1﹣x)的定义域为B,则图中阴影部分表示的集合为________.三、解答题 (共5题;共25分)21. (5分) (2018高一上·台州期末) 设集合 , .(Ⅰ)当时,求;(Ⅱ)若,求实数的取值范围.22. (5分) (2016高一上·万全期中) 已知集合A={x|3≤x≤7},B={x|2<x<10},C={x|x<a},全集为实数集R.(1)求A∪B,(∁RA)∩B;(2)如果A∩C≠∅,求a的取值范围.23. (5分)解答题(1)设全集U={x|x≤4},集合A={x|x2﹣x﹣6<0},集合B={x|﹣3<x≤3},求(∁UA)∩B.(2)当tanα=3,求,cos2α﹣3sinαcosα的值.24. (5分) (2016高一上·荆州期中) 已知集合A={x|1≤2x﹣3<16},B={x|log2(x﹣2)<3}求∁R(A∪B),∁R(A∩B),(∁RA)∩B.25. (5分)已知集合,B={x|x2﹣(a+2)x+2a=0},a∈R,A={x|a﹣2<x<a+2}(Ⅰ)若a=0,求A∪B(Ⅱ)若∁RA∩B≠∅,求a的取值范围.参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共5分) 16-1、17-1、18-1、19-1、20-1、三、解答题 (共5题;共25分) 21-1、22-1、22-2、23-1、23-2、24-1、25-1、。
全称量词与存在量词一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列命题中是全称量词命题并且是真命题的是( )A.∃x>1,x2-2x-3=0B.若2x为偶数,则x∈NC.所有菱形的四条边都相等D.π是无理数【答案】C【解析】对于A,是存在量词命题,故A不正确;对于B,是真命题,但不是全称量词命题,故B不正确;对于C,是全称量词命题,也是真命题,故C正确;对于D,是真命题,但不是全称量词命题,故D不正确,故选C.2.命题“每一个四边形的四个顶点共圆”的否定是( )A.存在一个四边形,它的四个顶点不共圆B.存在一个四边形,它的四个顶点共圆C.所有四边形的四个顶点共圆D.所有四边形的四个顶点都不共圆【答案】A【解析】根据全称量词命题的否定是存在量词命题,得命题“每一个四边形的四个顶点共圆”的否定是“存在一个四边形的四个顶点不共圆”,故选A.3.下列命题为真命题的是( )A.存在x∈Q,使方程2x-2=0有解B.存在一个实数x,使x2+2x+4=0C.有些整数只有两个正因数D.所有的质数都是奇数【答案】C【解析】A.2x-2=0⇔x=2∉Q,故A错误;B.∵x2+2x+4=(x+1)2+3≥3,∴存在一个实数x,使x2+2x+4=0错误.C.∵2=1×2,∴有些整数只有两个正因数正确,D.2是质数,但2不是奇数,故D错误,故选C.4.设非空集合P,Q满足P∩Q=P,则( )A.∀x∈Q,有x∈P B.∀x∉Q,有x∉PC.∃x∉Q,使得x∈P D.∃x∈P,使得x∉Q【答案】B【解析】∵P ∩Q =P ,∴P ⊆Q ,如图,∴A 错误;B 正确;C 错误;D 错误.故选B.5.已知命题p :∃x >0,x +a -1=0,若p 为假命题,则a 的取值X 围是( )A .{a |a <-1}B .{a |a ≥1}C .{a |a >1}D .{a |a ≤-1} 【答案】B【解析】∵p 为假命题,∴綈p 为真命题,即:∀x >0,x +a -1≠0,即x ≠1-a ,∴1-a ≤0,则a ≥1.∴a 的取值X 围是a ≥1,故选B.6.(2020·某某二中北校高三模拟)已知命题“x R ∃∈,使212(1)02x a x +-+≤”是假命题,则实数a 的取值X 围是( )A .(,1)-∞-B .(1,3)-C .(3,)-+∞D .(3,1)- 【答案】B【解析】因为命题“x R ∃∈,使212(1)02x a x +-+≤”是假命题,所以212(1)02x a x +-+>恒成立,所以2()114202a ∆=--⨯⨯<,解得13a -<<,故实数a 的取值X 围是(1,3)-. 故选B .7.(多选)下列命题的否定中,是全称量词命题且为真命题的有( )A .∃x ∈R ,x 2-x +41<0 B .所有的正方形都是矩形C .∃x ∈R ,x 2+2x +2≤0D .至少有一个实数x ,使x 3+1=0【答案】AC【解析】命题的否定是全称量词命题,即原命题为存在量词命题,故排除B.再根据命题的否定为真命题,即原命题为假命题.又D 为真命题,故选A 、C.8.(多选)下列命题错误的是( )A .∀x ∈{-1,1},2x +1>0B .∃x ∈Q ,x 2=3 C .∀x ∈R ,x 2-1>0D .∃x ∈N ,|x |≤0 【答案】ABC 【解析】对于A ,x =-1时,不合题意,A 错误;对于B ,x =±3,B 错误;对于C ,比如x =0时,-1<0,C 错误;D 选项正确.二、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)9.下列存在量词命题是真命题的序号是________.①有些不相似的三角形面积相等;②存在实数x ,使x 2+2<0;③存在实数a ,使函数y =ax +b 的值随x 的增大而增大;④有一个实数的倒数是它本身.【答案】①③④【解析】①为真命题,只要找出等底等高的两个三角形,面积就相等,但不一定相似;②中对任意x ∈R ,x 2+2>0,所以不存在实数x ,使x 2+2<0,为假命题;③中当实数a 大于0时,结论成立,为真命题;④中如1的倒数是它本身,为真命题.故真命题的序号是①③④.10.若命题p :∀x ∈R ,21-x <0,则綈p :________________. 【答案】∃x ∈R ,21-x >0或x -2=0 11.若命题p :∀a ,b ∈R ,方程ax 2+b =0恰有一解,则綈p :________________. 【答案】∃a ,b ∈R ,方程ax 2+b =0无解或至少有两解12.某中学开展小组合作学习模式,某班某组小王同学给组内小李同学出题如下:若命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,求m X 围.小李略加思索,反手给了小王一道题:若命题“∀x ∈R ,x 2+2x +m >0”是真命题,求m X 围.你认为,两位同学题中m X 围是否一致?________(填“是”“否”中的一种)【答案】是【解析】∵命题“∃x ∈R ,x 2+2x +m ≤0”的否定是“∀x ∈R ,x 2+2x +m >0”.而命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,则其否定“∀x ∈R ,x 2+2x +m >0”为真命题. ∴两位同学题中m X 围是一致的.三、解答题(本大题共4小题,共40分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)13.判断下列命题的真假,并写出这些命题的否定:(1)三角形的内角和为180°;(2)每个二次函数的图象都开口向下;(3)存在一个四边形不是平行四边形.【解析】(1)是全称量词命题且为真命题.命题的否定:三角形的内角和不全为180°,即存在一个三角形其内角和不等于180°.(2)是全称量词命题且为假命题.命题的否定:存在一个二次函数的图象开口不向下.(3)是存在量词命题且为真命题.命题的否定:所有的四边形都是平行四边形.14.写出下列命题的否定,并判断真假:(1)正方形都是菱形;(2)∃x∈R,使4x-3>x;(3)∀x∈R,有x+1=2x;(4)集合A是集合A∩B或集合A∪B的子集.【解析】(1)命题的否定:正方形不都是菱形,是假命题.(2)命题的否定:∀x∈R.有4x-3≤x.因为当x=2时,4×2-3=5>2,所以“∀x∈R,有4x-3≤x”是假命题.(3)命题的否定:∃x∈R.使x+1≠2x.因为当x=2时,x+1=2+1=3≠2×2,所以“∃x∈R,使x +1≠2x”是真命题.(4)命题的否定:集合A既不是集合A∩B的子集也不是集合A∪B的子集,是假命题.15.写出下列命题的否定并判断真假:(1)所有自然数的平方都是正数;(2)任何实数x都是方程5x-12=0的根;(3)∀x∈R,x2+3<0;(4)有些质数不是奇数.【解析】(1)命题的否定:至少存在一个自然数的平方不是正数.真命题.(2)命题的否定:∃x∈R,5x-12≠0.真命题.(3)命题的否定:∃x∈R,x2+3≥0.真命题.(4)命题的否定:所有的质数都是奇数.假命题.16.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且B≠∅.(1)若命题p:“∀x∈B,x∈A”是真命题,求m的取值X围;(2)命题q:“∃x∈A,x∈B”是真命题,求m的取值X围.【解析】(1)由于命题p:“∀x∈B,x∈A”是真命题,所以B⊆A,B≠∅,所以⎪⎩⎪⎨⎧≤--≥+-≤+51221121m m m m ,解得2≤m ≤3.(2)q 为真,则A ∩B ≠∅,因为B ≠∅,所以m ≥2.所以⎪⎩⎪⎨⎧≥-≥-≤+221251m m m ,解得2≤m ≤4.。
辽宁省沈阳铁路实验中学高中数学 第一节 集合(1)同步试题新人教A 版必修1一、选择题1. 设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是( )。
A .1B .3C .4D .82.设集合21{|2},{1}2A x x B x x =-<<=≤,则A B =U ( ) A .{12}x x -≤< B .1{|1}2x x -<≤ C .{|2}x x < D .{|12}x x ≤<3.集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16A B =U ,则a 的值为 ( )A.0B.1C.2D.44.已知全集U R =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-=L 的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有 ( )A. 3个B. 2个C. 1个D. 无穷多个5.若集合{}21|21|3,0,3x A x x B x x ⎧+⎫=-<=<⎨⎬-⎩⎭则A ∩B 是 A.11232x x x ⎧⎫-<<-<<⎨⎬⎩⎭或 B.{}23x x << C.122x x ⎧⎫-<<⎨⎬⎩⎭ D.112x x ⎧⎫-<<-⎨⎬⎩⎭ 6.已知{|(1,0)(0,1),},{|(1,1)(1,1),}P a a m m R Q b b n n R ==+∈==+-∈是两个向量集合,则p q ⋂ ( )A .{〔1,1〕} B. {〔-1,1〕} C. {〔1,0〕} D. {〔0,1〕}7.设集合S ={x |5<x },T ={x |0)3)(7(<-+x x }.则T S ⋂ =( )A.{x |-7<x <-5 }B.{x | 3<x <5 }C.{x | -5 <x <3}D.{x | -7<x <5 }8.定义集合运算:{},,.A B z z xy x A y B *==∈∈设{}1,2A =,{}0,2B =,则集合A B *的所有元素之和为( )A .0B .2C .3D .69. 设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则( ) A .N M = B .MN C .N M D .M N φ=I 10.设集合A=2{|21},{|ln(1)}x x B x y x -<==-,则A B I 为( ) A .{|2}x x < B .{|12}x x << C .{|1}x x < D .{|1}x x ≤二、填空题11.已知集合{}|1A x x =≤,{}|B x x a =≥,且A B R ⋃=,则实数a 的取值范围是_____ . 12、若集合2{|(3)50,},A x x k x k x R A R +=+-++=∈≠ΦI ,则实数k 的取值范围为________.13.设A 是整数集的一个非空子集,对于k A ∈,如果1k A -∉且1k A +∉,那么k 是A 的一个“孤立元”,给定{1,2,3,4,5,6,7,8,}S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有 个.14.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有 人。
第2课时集合的表示课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.1.列举法把集合的元素____________出来,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法用集合所含元素的共同特征表示集合的方法称为__________.不等式x-7<3的解集为__________.所有偶数的集合可表示为________________.一、选择题1.集合{x∈N+|x-3<2}用列举法可表示为()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}2.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合3.将集合表示成列举法,正确的是()A.{2,3} B.{(2,3)}C.{x=2,y=3} D.(2,3)4.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0}5.已知集合A={x∈N|-3≤x≤3},则有()A.-1∈A B.0∈AC.3∈A D.2∈A6.方程组的解集不可表示为()A.B.C.{1,2} D.{(1,2)}二、填空题7.用列举法表示集合A={x|x∈Z,86-x∈N}=______________.8.下列各组集合中,满足P=Q的有________.(填序号)①P={(1,2)},Q={(2,1)};②P={1,2,3},Q={3,1,2};③P={(x,y)|y=x-1,x∈R},Q={y|y=x-1,x∈R}.9.下列各组中的两个集合M和N,表示同一集合的是________.(填序号)①M={π},N={3.141 59};②M={2,3},N={(2,3)};③M={x|-1<x≤1,x∈N},N={1};④M={1,3,π},N={π,1,|-3|}.三、解答题10.用适当的方法表示下列集合①方程x(x2+2x+1)=0的解集;②在自然数集内,小于1 000的奇数构成的集合;③不等式x-2>6的解的集合;④大于0.5且不大于6的自然数的全体构成的集合.11.已知集合A={x|y=x2+3},B={y|y=x2+3},C={(x,y)|y=x2+3},它们三个集合相等吗?试说明理由.能力提升12.下列集合中,不同于另外三个集合的是()A.{x|x=1} B.{y|(y-1)2=0}C.{x=1} D.{1}13.已知集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},若x0∈M,则x0与N的关系是()A.x0∈NB.x0∉NC.x0∈N或x0∉ND.不能确定1.在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.第2课时集合的表示知识梳理1.一一列举 2.描述法 {x |x <10} {x ∈Z |x =2k ,k ∈Z }作业设计1.B [{x ∈N +|x -3<2}={x ∈N +|x <5}={1,2,3,4}.]2.D [集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.]3.B [解方程组⎩⎪⎨⎪⎧ x +y =5,2x -y =1.得⎩⎪⎨⎪⎧x =2,y =3. 所以答案为{(2,3)}.]4.B [方程x 2-2x +1=0可化简为(x -1)2=0,∴x 1=x 2=1,故方程x 2-2x +1=0的解集为{1}.]5.B6.C [方程组的集合中最多含有一个元素,且元素是一对有序实数对,故C 不符合.]7.{5,4,2,-2}解析 ∵x ∈Z ,86-x∈N , ∴6-x =1,2,4,8.此时x =5,4,2,-2,即A ={5,4,2,-2}.8.②解析 ①中P 、Q 表示的是不同的两点坐标;②中P =Q ;③中P 表示的是点集,Q 表示的是数集.9.④解析 只有④中M 和N 的元素相等,故答案为④.10.解 ①∵方程x (x 2+2x +1)=0的解为0和-1,∴解集为{0,-1};②{x |x =2n +1,且x <1 000,n ∈N };③{x |x >8};④{1,2,3,4,5,6}.11.解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下: 集合A 中代表的元素是x ,满足条件y =x 2+3中的x ∈R ,所以A =R ;集合B 中代表的元素是y ,满足条件y =x 2+3中y 的取值范围是y ≥3,所以B ={y |y ≥3}.集合C 中代表的元素是(x ,y ),这是个点集,这些点在抛物线y =x 2+3上,所以C ={P |P 是抛物线y =x 2+3上的点}.12.C [由集合的含义知{x |x =1}={y |(y -1)2=0}={1},而集合{x =1}表示由方程x =1组成的集合,故选C.]13.A [M ={x |x =2k +14,k ∈Z },N ={x |x =k +24,k ∈Z },∵2k +1(k ∈Z )是一个奇数,k +2(k ∈Z )是一个整数,∴x 0∈M 时,一定有x 0∈N ,故选A.]。
1.1 集合的概念一、单选题1.集合{,,}a b c 的真子集共有 个( )A .7B .8C .9D .10答案:A解析:直接根据含有n 个元素的集合,其子集个数为2n ,真子集为21n -个;详解:因为集合{,,}a b c 含有3个元素,故其真子集为3217-=个故选:A2.给出下列关系:①12R ∈R ;③3∈N -;④Q ∈.其中正确的个数为( )A .1B .2C .3D .4答案:B解析:①12R ∈R ,错误;③3∈N -,正确;④Q ∈,错误,所以正确的个数是两个,故选B.3.已知集合2{|320}A x ax x =-+=中有且只有一个元素,那么实数a 的取值集合是A .98⎧⎫⎨⎬⎩⎭B .90,8⎧⎫⎨⎬⎩⎭C .{0}D .20,3⎧⎫⎨⎬⎩⎭答案:B解析:由题意分方程为一次方程和二次方程两种情况分别求解.详解:由集合2{|320}A x ax x =-+=中有且只有一个元素,得a=0或0980a a ≠⎧⎨=-=⎩, ∴实数a 的取值集合是0, 98}故选B .点睛:本题考查实数的取值集合的求法,考查单元素集的性质等基础知识.4.已知集合A {1,=2,3,*n(n })N ⋯∈,集合()*12k B {j ,j ,j )k 2,k N =⋯≥∈是集合A 的子集,若11j ≤ 2j << ⋯ m j n <≤且i 1i j j m(i 1,+-≥=2,⋯⋯,k 1)-,满足集合B 的个数记为()n k m ⊕,则()732(⊕= )A .9B .10C .11D .12答案:B 解析:根据()n k m ⊕和()732⊕,可得n 7=,k 3=,m 2=,集合A {1,=2,3,4,5,6,7};集合{}123B j ,j ,j =,121j j 7≤<≤满足集合B 的个数列罗列出来,可得答案.详解:由题意可得n 7=,k 3=,m 2=,那么集合A {1,=2,3,4,5,6,7};集合{}123B j ,j ,j =,1231j j 7j ≤<<≤,i 1i j j 2+-≥满足集合B 的个数列罗列出来,可得:{1,3,5},{1,3,6},{1,3,7},{1,4,6},{1,4,7};{1,5,7},{2,4,6},{2,4,7},{2,5,7},{3,5,7},故选B .点睛:本题考查子集与真子集,并且即时定义新的集合,主要考查学生的阅读理解能力.5.已知集合{}1,2,3A =,集合(){},,B x y x A x y A =∈-∈,则符合条件的集合B 的子集个数为( )A .3B .4C .8D .10答案:C解析:列举出集合B 中的运算,利用子集个数公式可得出结果.详解:{}1,2,3A =,(){}()()(){},,2,1,3,2,3,1B x y x A x y A =∈-∈=, 因此,符合条件的集合B 的子集个数为328=.故选:C.点睛:本题考查集合子集个数的计算,解答的关键就是求出集合的元素个数,考查计算能力,属于基础题.6.已知集合{}0,1,2A =,{}B x N A =∈,则B =( ) A .{}0B .{}0,2C .10,,22⎧⎫⎨⎬⎩⎭D .{}0,2,4答案:B解析:由{}B x N A =∈0,1,2=解出x 检验即可. 详解:集合{}0,1,2A =,{}B x N A =∈0=得10x =1=得212x =;2=得32x =;又x ∈N ,故集合{}0,2B =故选:B .点睛:本题考查由元素与集合的关系求解具体集合,属于基础题7.由大于-3且小于11的偶数所组成的集合是( )A .x|-3<x<11,x∈Z}B .x|-3<x<11}C .x|-3<x<11,x=2k}D .x|-3<x<11,x=2k ,k∈Z}答案:D解析:逐一分析各个选项,用不等式表示题中描述的内容,在利用描述法即可得出答案. 详解:解:大于-3且小于11的偶数,可表示为-3<x<11,x=2k ,k∈Z,所以由大于-3且小于11的偶数所组成的集合是x|-3<x<11,x=2k ,k∈Z},故D 符合题意; 对于A ,集合表示的是大于-3且小于11的整数,不符题意;对于B ,集合表示的是大于-3且小于11的数,不符题意;对于C ,集合表示的是大于-3且小于11的数,,但不一定是整数,不符题意.故选:D.8.下列表述中正确的是A .{}0=∅B .{(1,2)}{1,2}=C .{}∅=∅D .0N ∈答案:D解析:根据∅的定义可排除A ;根据点集和数集的定义可排除B ;根据元素与集合关系排除C ,确认D 正确. 详解:∅不包含任何元素,故{}0≠∅,A 错误;(){}1,2为点集,{}1,2为数集,故(){}{}1,21,2=,B 错误;∅是集合{}∅中的一个元素,即{}∅∈∅,C 错误;N 表示自然数集,故0N ∈,D 正确.故选D点睛:本题考查集合的定义、元素与集合的关系、相等集合的概念等知识,属于基础题.9.已知集合{}1,2A =,{}2,4B =,则集合{},,M z z x y x A y B ==⋅∈∈中元素的个数为( )A .1个B .2个C .3个D .4个答案:C解析:根据集合{},,M z z x y x A y B ==⋅∈∈列举求解.详解:因为集合{}1,2A =,{}2,4B =,所以集合{}2,4,8M =,故选:C二、填空题1.实数系的结构图如图所示,其中1,2,3三个方格中的内容依次是________,________,________.答案:有理数 整数 零解析:根据已知条件,本题需要填写结构图中的空余内容,需要明确图中的从属关系,因为实数分为有理数和无理数,有理数又分为整数和分数,整数又分为正整数、零、负整数,则本题答案可知.详解:根据所学知识可知,实数包括有理数和无理数,而有理数包括整数和分数,整数又可分为正整数、零和负整数.故答案为:有理数;整数;零.点睛:本题考查的是结构图的相关知识,解答本题的关键是明确实数的基本知识,属于基础题.2.若{}232,25,12x x x -∈-+,则x =________.答案:32-解析:根据元素与集合的关系分情况求得x 的值,然后利用集合的元素的互异性检验. 详解:由题意知,23x -=-或2253x x +=-.①当23x -=-时,1x =-.把1x =-代入,得集合的三个元素为3,3,12--,不满足集合中元素的互异性;②当2253x x +=-时,32x =-或1x =-(舍去),当32x =-时,集合的三个元素为7,3,122--,满足集合中元素的互异性.由①②知32x =-.故答案为:32-.3.用描述法表示图中阴影部分的点(含边界)的坐标的集合为______.答案:(x ,y )|xy≥0,且﹣1≤x≤2,12-≤y≤1}解析:利用图中的阴影部分的点的坐标满足的条件即为集合的元素的公共属性. 详解::图中的阴影部分的点设为(x ,y )则x ,y )|﹣1≤x≤0,12-≤y≤0或0≤x≤2,0≤y≤1}=(x ,y )|xy≥0且﹣1≤x≤2,12-≤y≤1}故答案为:(x ,y )|xy≥0,且﹣1≤x≤2,12-≤y≤1}.4.2{|420}A x ax x =-+=至多有一个元素,则a 的取值范围是___________.答案:{|2a a 或0}a =解析:由集合A 为方程的解集,根据集合A 中至多有一个元素,转化为方程至多有一个解求解.详解:当0a =时,方程2420ax x -+=,即为12x =,1{}2A =,符合题意;当0a ≠时,因为2420ax x -+=至多有一个解,所以△1680a =-,解得2a ,综上,a 的取值范围为:2a 或0a =.故答案为:{|2a a 或0}a =.点睛:本题主要考查集合元素的个数以及方程的解,还考查了分类讨论思想,属于基础题.5.设集合{}24,,3A m m m =+中实数m 的取值集合为M ,则R C M =_____.答案:{}4,2,0,1,4--解析:根据集合中的元素的互异性,列出不等式组求解.详解:由题:集合{}24,,3A m m m =+,则224343m m m m m m ≠⎧⎪+≠⎨⎪+≠⎩,化简得:()()()441020m m m m m ⎧≠⎪+-≠⎨⎪+≠⎩, 解得:()()()()()(),44,22,00,11,44,m ∈-∞----+∞, 即()()()()()(),44,22,00,11,44,M =-∞----+∞,所以{}4,2,0,1,4R C M =--.故答案为:{}4,2,0,1,4--点睛:此题考查根据集合中元素的互异性求参数的取值范围,需要注意不重不漏.三、解答题1.集合论是德国数学家康托尔于19世纪末创立的,当时,康托尔在解决涉及无限量研究的数学问题时,越过“数集”限制,提出了一般性的“集合”概念,关于集合论,希尔伯特赞誉其为“数学思想的惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一”,罗素描述其为“可能是这个时代所能夸耀的最伟大的工作”,请你查阅相关资料,用简短的报告阐述你对这些评价的认识.答案:见解析解析:集合论是现代数学的基础,已渗透到数学的所有领域.详解:集合论,是数学的一个基本的分支学科,研究对象是一般集合.集合论在数学中占有一个独特的地位,它的基本概念已渗透到数学的所有领域.按现代数学观点,数学各分支的研究对象或者本身是带有某种特定结构的集合如群、环、拓扑空间,或者是可以通过集合来定义的(如自然数、实数、函数).从这个意义上说,集合论可以说是整个现代数学的基础.点睛:本题考查了对于集合论的一些认识,意在考查学生的理解应用能力.2.(1)已知{}{}3,54A x x B y y =>-=-<<,求A B ;(2)已知集合{}23,21,4A a a a =---,若3A -∈,试求实数a 的值。
1.1 集合的概念一、单选题1.已知集合{|2,}A x x k k N ==∈,{|4,}B x x k k N ==∈,则A 与B 的关系为( )A .AB ⊆ B .B A ∈C .B A ⊆D .A B =答案:C解析:根据子集的概念分析可得结果.详解:若x B ∈,则42(2)x k k A ==∈,所以B A ⊆,因为2A ∈,且2∉B ,所以A 不是B 的子集.故选:C点睛:关键点点睛:掌握子集的概念是解题关键.2.不等式|1|3x +的解集是A .{|4x x - 或2}xB .{|42}x x -<<C .{|4x x <- 或2}xD .{|42}x x -答案:D解析:先求解出不等式|1|3x +,然后用集合表示即可.详解:解:|1|3x +,即313x -+,即42x -,故不等式|1|3x +的解集是{|42}x x -,故选D .点睛:本题是集合问题,解题的关键是正确求解绝对值不等式和规范答题.3.已知集合{}22M x x =-<<,i 为虚数单位,1a i =+,则下列选项正确的是()A .a M ∈B .{}a M ∈C .{}a M ⊄D .a M ∉答案:A解析:利用复数模的计算公式可得a =,即可判断出结论.详解:a =,又集合{}22M x x =-<<,∴a M ∈.故选:A .点睛:本题考查了复数模的计算公式、元素与集合之间的关系,考查了推理能力与计算能力,属于基础题.4.方程x 2=x 的所有实数根组成的集合为A .()0,1B .(){}0,1C .{}0,1D .{}2x x =答案:C解析:解方程x 2=x ,得x =0或x =1,由此能求出方程x 2=x 的所有实数根组成的集合 详解:解:解方程x 2=x ,得x =0或x =1,方程x 2=x 的所有实数根组成的集合为{}0,1.故选:C .点睛:本题考查集合的表示方法,属于基础题.5.下列各组对象中不能构成集合的是A .大名三中高一(2)班的全体男生B .大名三中全校学生家长的全体C .李明的所有家人D .王明的所有好朋友 答案:D详解:由集合中元素的特性,可知D 中的元素具有不确定性,故不能构成集合选D6.已知集合A =1,2,3,4},B =(x ,y )|x∈A,y∈A,y ﹣x∈A},则集合B 中的元素的个数为( )A .4B .5C .6D .7答案:C解析:通过集合B ,利用x A ∈,y A ,y x A -∈,求出集合B 中元素的个数.详解:解:因为集合{1A =,2,3,4},{(,)|B x y x A =∈,y A ,}y x A -∈,所以当1x =时,2y =或3y =或4y =,当2x =时,3y =或4y =,当3x =时,4y =,即()()()()()(){}1,2,1,3,1,4,2,3,2,4,3,4B =所以集合B 中的元素个数为6.故选:C .7.已知集合{}3,M x x n n ==∈Z ,{}31,N x x n n ==+∈Z ,{}31,P x x n n ==-∈Z ,且a M ∈,N b ∈,c P ∈,若d a b c =-+,则.A .d M ∈B .d N ∈C .d P ∈D .d M ∈且d N ∈答案:B 解析:设3,31,31a k b y c m ==+=-,得到()32d k y m =-+-,结合集合的表示,即可求解,得到答案.详解:由题意,设3a k =,k ∈Z ,31b y =+,y ∈Z ,31c m =-,m ∈Z ,则()()3313132d k y m k y m =-++-=-+-,令t k y m =-+,则t ∈Z ,且()32331311d t t t =-=-+=-+,t ∈Z ,则d N ∈,故选B .点睛:本题主要考查了集合的表示方法及其应用,其中解答中根据集合的元素形式,合理运算,结合集合表示方法求解是解答的关键,着重考查了推理与运算能力,属于中档试题.8.下列关系中①0N ∈;②27Z ∈;③3Z -∉;④Q π∉正确的个数为( )A .0B .1C .2D .3答案:C解析:根据元素与集合的关系逐项进行判断即可.详解:①因为0是自然数,所以0N ∈,故正确; ②因为27不是整数,所以27Z ∉,故错误;③因为3-是整数,所以3Z -∈,故错误;④因为π是无理数,所以Q π∉,故正确;故选:C.9.下列各组中的集合P 与Q 表示同一个集合的是( )A .P 是由元素1,3,π构成的集合,Q 是由元素π,1,3-构成的集合B .P 是由π构成的集合,Q 是由3.14159构成的集合C .P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D .P 是满足不等式-1≤x≤1的自然数构成的集合,Q 是方程x 2=1的解集答案:A详解:对于A,集合P,Q 中的元素完全相同,所以P 与Q 表示同一个集合,对于B,C,D,集合P,Q 中的元素不相同,所以P 与Q 不能表示同一个集合.选A二、填空题1.定义集合A 和B 的运算为{}*,A B x x A x B =∈∉,试写出含有集合运算符号“*”“”“”,并对任意集合A 和B 都成立的一个式子:_____________________.答案:()()**A A B A B B ⋂=⋃(答案不唯一).解析:根据运算{}*,A B x x A x B =∈∉的定义可得出结论.详解:如下图所示,由题中的定义可得()(){}(){}(),,A A B x x A x A B x x A B x B A B B *⋂=∈∉⋂=∈⋃∉=⋃*.故答案为:()()**A A B A B B ⋂=⋃(答案不唯一).点睛:本题考查集合运算的新定义,利用韦恩图法表示较为直观,考查数形结合思想的应用,属于中等题.2.已知集合A =a +2,(a +1)2,a 2+3a +3},且1∈A,则2017a 的值为_________.答案:1解析:对集合A 中的元素分情况讨论,结合集合中元素的互异性可求得结果.详解:当a +2=1时,a =-1,此时有(a +1)2=0,a 2+3a +3=1,不满足集合中元素的互异性; 当(a +1)2=1时,a =0或a =-2,当a =-2,则a 2+3a +3=1,舍去,经验证a =0时满足;当a 2+3a +3=1时,a =-1或a =-2,由上知均不满足,故a =0,则2017a =1. 故答案为:13.已知集合2{|A x x =+20}x a +=,若1∈A,则A =________.答案:-3,1}解析:集合2{|A x x =+20}x a +=,1∈A,则2x +20x a +=由一根是1,所以21+20a +=,a =-3,所以2x +23x -=0,x=1或x=-3,所以A =-3,1}4.用列举法表示集合x||x|<6,且x∈Z}是___________.答案:–5,–4,–3,–2,–1,0,1,2,3,4,5} 解析:根据6,x x Z <∈且 解此绝对值不等式,得到66,,x x Z -<<∈且 然后写出满足条件的整体x 的值即可.详解:6,x x Z <∈且66,,x x Z ∴-<<∈且∴ x = -5,-4,-3,-2,-1,0,1,2,3,4,5.故答案为–5,–4,–3,–2,–1,0,1,2,3,4,5}.点睛:此题是个基础题,考查集合的表示法,以及简单绝对值不等式的解法,考查学生分析解决问题的能力.5.设集合{,,1}A x xy xy =-,其中x ∈Z ,y ∈Z 且0y ≠. 若0A ∈,则用列举法表示集合A =________答案:{1,0,1}-解析:根据0y ≠且0A ∈,结合集合的互异性原则可知0xy -1=,进而求得x 和y 的值,即可表示集合A .详解:集合{,,1}A x xy xy =-,其中x ∈Z ,y ∈Z 且0y ≠.若0A ∈,则当0x =时, 0x xy ==由集合的互异性可知不符合要求所以0xy -1=,即1xy =则11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩当11x y =⎧⎨=⎩时,1x xy ==, 由集合的互异性可知不符合要求 因而11x y =-⎧⎨=-⎩,此时1,1,10x xy xy =-=-= 所以{1,0,1}A =-故答案为: {1,0,1}-点睛:本题考查了元素与集合的关系,集合的互异性原则的应用,属于基础题.三、解答题1.用适当的方法表示下列集合:(1)已知集合P =x|x =2n ,0≤n≤2且n∈N};(2)抛物线y =x 2-2x 与x 轴的公共点的集合;(3)直线y =x 上去掉原点的点的集合.答案:答案见解析解析:(1)用列举法即可求得集合的元素;(2)直接用描述法表示公共点的集合;(3)用描述法即可表示.详解:(1)因为02,n n N ≤≤∈,则0,2,4x =,故用列举法表示为:P =0,2,4}.(2)直接用描述法表示为:()22{,|}0y x x x y y ⎧=-⎨=⎩. (3)描述法:(x ,y)|y =x ,x≠0}.点睛:本题考查集合的表示方法,选择适当的方法即可,属简单题.2.试用集合表示图中阴影部分(含边界)的点.答案:(),13,03}{|x y x y -≤≤≤≤解析:直接用集合的描述法将点集表示出来.详解:由题意可得13,03x y -≤≤≤≤,所以图中阴影部分(含边界)的点组成的集合为(),13,03}{|x y x y -≤≤≤≤.点睛:本题考查了用描述法表示点集,属于基础题.3.用另一种形式表示集合.(1)63A x x ⎧⎫=∈∈⎨⎬-⎩⎭Z Z ;(2){2,4,6,8}.答案:(1){3,0,1,2,4,5,6,9}-;(2){|2,14,}x x k k k =≤≤∈Z .解析:(1)描述法转为列举法时,首先确定集合是有哪些元素组成的,然后将所有元素写在花括号内;(2)列举法转为描述法时,首先明确集合中元素的公共属性,即把握住集合中元素满足什么条件.详解:(1)要使6,3x x-是整数,则|3|x -必是6的约数,当3,0,1,2,4,5,6,9x =-时,|3|x -是6的约数,∴{3,0,1,2,4,5,6,9}A =-.(2){|2,14,}x x k k k =≤≤∈Z .点睛:本题考查集合的表示方法,属于基础题.。
《集合》测试题
姓名:_____学号:_____班级:_____
一、选择题(50分)
1、下面给出的四类对象中,构成集合的是
(A )某班个子较高的同学 (B )长寿的人
(C (D )倒数等于它本身的数 2.下面四个命题正确的是
(A )10以内的质数集合是{1,3,5,7} (B )方程x 2-4x +4=0的解集是{2,2} (C )0与{0}表示同一个集合 D )由1,2,3组成的集合可表示为{1,2,3}或{3,2,1} 3、设全集{1,2,3,4,5,6,7,8}U =,集合{1,3,5}S =,{3,6}T =,则()U C S T ⋃等于
A .∅
B .{2,4,7,8}
C .{1,3,5,6}
D .{2,4,6,8} 4、设集合A ={
}312<+x x ,B ={
}
23<<x x -,则A ∩B 等于 (A) {
}
21<<x x
(B) {
}
13<<x x - (C){x|x >-3} (D) {x|x <1}
5、已知全集U Z =,2
{1,0,1,2},{|}A B x x x =-==,则()U A
C B 为
A .{1,2}-
B .{1,0}-
C .{0,1}
D .{1,2} 6、已知{2,3,}A m =-,集合{3,5}B =,若B A ⊆,则实数m = (A )5 (B )4 (C )3 (D )2
7、设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是
(A)1 (B)3 (C)4 (D)8
8、定义A-B={}
,,x x A x B ∈∉且若A={}1,2,4,6,8,10,B={}1,4,8,则A-B= A.{}4,8 B.{}1,2,6,10 C.{}2,6,10 D.{}1 9、已知集合{}{12}A x x a B x x =<=<<,,且()A B =R R ð,则实数a 的取值范围是
A .1a ≤
B .1a <
C .2a ≥
D .2a >
10、已知集合M ={x|
3
x
0x 1≥(-)
},N ={y|y =3x 2+1,x ∈R },则M ⋂N = A .∅ B. {x |x ≥1} C.{x |x >1} D. {x | x ≥1或x <0}
二、填空题(20分)
11、已知集合A ={-1,3,2m -1},集合B ={3,2m }.若B ⊆A ,则实数m = . 12、设,a b R ∈,集合{1,,}{0,
,}b
a b a b a
+=,则20082008a b +=_____ 13.符合条件{1}{1,2,3}A ⊂⊆的集合A 有:_______________________________________.
14.设全集为U ,用集合A 、B 、C 的交、并、补集符号表图中的阴影部分。
(1)______________ (2)_________________
三、解答题(30分)
15\、设全集U={1,2,3,4},且A={x|x 2-7x +m =0,x ∈U},若U A={1,2},求m 的值。
16、某班级共有46名学生参加了语文,数学两科的考试,其中两科成绩都及格的有23人,语文及格而数学不及格的有12人,数学及格而语文不及格的有6人,设集合A 为语文成绩及格的学生,集合B 表示数学成绩及格的学生。
(1)画出表示本题中集合关系的Venn 图;
(2)分别求出语文成绩及格的人数,数学成绩及格的人数和两科成绩都不及格的人数。
17、已知{
}{
}
2
22
40,2(1)10A x x x B x x a x a =+==+++-=,其中a R ∈,
如果A ∩B=B ,求实数a 的取值范围。
参考答案
1、D
2、D
3、B
4、B
5、A
6、A
7、C
8、C
9、C 10、C
11、1 12、2 13、{1,2},{1,3},{1,2,3} 14、()U A C B ⋂,[()]()U C A B A B ⋂⋂⋃ 15、12
16、解:设集合A 为语文成绩及格的学生,集合B 表示数学成绩及格的学生,则如图,可知,有35人语文及格,29人数学及格,5人两科成绩均不及格.
17.解:化简得
{}0,4A =-,∵集合B 的元素都是集合A 的元素,∴B A ⊆。
⑴当B =∅时,2
24(1)4(1)0a a ∆=+--<,解得1a <-;
⑵当{}{}04B =-或时,即B A Ø时,224(1)4(1)0a a ∆=+--=,解得1a =-,
此时{}0B =
,满足B A ⊆;
⑶当{}0,4B =-时,2224(1)4(1)0
2(1)4
10a a a a ⎧∆=+-->⎪-+=-⎨⎪-=⎩
,解得1a =。
综上所述,实数a 的取值范围是1a =或者1a ≤-。
A 23
B 12 6 5。