顺、反式-甘氨酸合铜的制备及成份分析
- 格式:ppt
- 大小:2.51 MB
- 文档页数:34
铜离子配合物的合成及应用吴天昊袁航张俊焦卓浩唐琦王琪席鑫张存忠次仁旺加中南大学化学化工学院应用化学1301班指导老师张寿春摘要:铜元素是普遍存在于动植物中的生命必需的微量元素之一,在生命过程中起着重要作用。
许多金属酶和金属蛋白的活性部位均含有双核铜(Ⅱ)结构单元。
此外,铜的配位点较多,有很好的配位性能,能够跟绝大多数配体形成铜配合物,使得铜在配位催化上的研究更加方便。
铜配合物在催化、光电材料等方面的应用逐渐成为研究重点。
本文介绍了一些配合物的常用合成方法并对铜离子配合物的应用前景作出了介绍与展望。
关键词:配位化学;金属配合物;铜离子;合成方法;光学应用;医学应用1.引言近年来.由于金属配合物在日常生活和工业上都有广泛的应用,尤其过渡金属对探索和研究药物分子抗菌、抗肿瘤的作用机制具有重要意义。
在催化、光学材料以及电学材料等方面具有新型功能的金属配合物的研究也受到人们的广泛关注。
铜元素在动植物中是普遍存在的,它是生命必需的微量元素之一,在生命过程中起着重要作用。
许多金属酶和金属蛋白的活性部位均含有双核铜(Ⅱ)结构单元.铜化合物具有多变的配位结构和活化小分子的催化特性,常被用作双取代过氧化物分解的催化剂。
此外,铜的配位环境易于调变,结构的易变性导致合成了多种单核或多核的铜配合物。
铜配合物以其独特的性能、结构优势,在催化、光电材料等方面的应用逐渐成为研究重点。
我国的铜资源丰富,分布广泛,铜的开采技术也相当成熟,因此,获取铜的成本并不高,这为铜在配位化学各领域中的应用提供了先决条件。
2.铜离子配合物简介铜是人类发现最早的金属之一,是人类广泛使用的一种金属,属于重金属,电子排布式:1s22s22p63s23p63d104s1 最常见的价态是+1和+2。
铜的配位环境易于调变,结构的易变性导致合成了多种单核或多核的铜配合物。
2.1 Cu(I)配合物中心离子为一价铜离子的单核配合物称为Cu(I)配合物。
Cu(I)的核外电子排布为d10,d轨道填充电子全满使铜原子的电荷排布趋于对称。
顺式二甘氨酸合同的制备方法
哇塞,你知道顺式二甘氨酸铜的制备方法有多神奇吗?就好像变魔术一样!
想象一下,你把一些看似普通的化学物质放在一起,然后通过一系列巧妙的操作,嘿,居然就变出了顺式二甘氨酸铜!
比如说,先准备好甘氨酸,这就像是搭积木的基础块。
然后呢,再加入一些其他的试剂,就如同给这个基础块添上各种各样的装饰。
“嘿,小李,把那个瓶子拿过来!”“好嘞!”在实验过程中,大家相互配合。
一点一点地,顺式二甘氨酸铜就在我们眼前逐渐形成了。
这感觉太棒了,就好像看着一幅美丽的画作慢慢呈现出来!
不试试看,怎么能知道其中的乐趣和奇妙呢?我的观点就是,顺式二甘氨酸铜的制备虽然有一定难度,但真的超级有趣,值得大家去探索和尝试呀!。
甘氨酸铜螯合物1. 介绍甘氨酸铜螯合物是一种由甘氨酸和铜离子形成的化合物。
甘氨酸是一种非必需氨基酸,具有良好的可溶性和生物相容性,被广泛应用于医药、食品和化妆品等领域。
而铜离子具有多种生物学功能,包括参与细胞呼吸、免疫系统功能和胶原合成等。
通过形成甘氨酸铜螯合物,可以进一步增强铜离子的生物利用度和稳定性,从而发挥更多的生理效应。
2. 合成方法甘氨酸铜螯合物的合成方法主要包括溶液法和固相法。
其中,溶液法是最常用的方法之一。
2.1 溶液法合成溶液法合成甘氨酸铜螯合物的步骤如下: 1. 准备甘氨酸和铜盐的溶液。
通常选择氯化铜或硫酸铜作为铜盐。
2. 将两种溶液混合,并控制pH值在适当的范围内。
pH值的选择对于合成产物的结构和纯度至关重要。
3. 在合适的温度下搅拌反应溶液一段时间,使甘氨酸与铜离子形成螯合结构。
4. 过滤得到沉淀,用纯水洗涤沉淀物以去除杂质。
5. 干燥沉淀物,得到甘氨酸铜螯合物。
2.2 固相法合成固相法合成甘氨酸铜螯合物的步骤如下: 1. 准备甘氨酸的固相载体。
常用的固相载体包括硅胶、聚合物和树脂等。
2. 将铜离子与固相载体接触,使其吸附在载体上。
3. 用甘氨酸溶液洗涤载体,使甘氨酸与铜离子形成螯合结构。
4. 再次洗涤载体,去除杂质。
5. 将载体经过干燥或其他处理方法,得到甘氨酸铜螯合物。
3. 物化性质甘氨酸铜螯合物具有一系列特殊的物化性质,包括溶解性、稳定性和光学性质等。
3.1 溶解性甘氨酸铜螯合物在水中具有良好的溶解性,可以形成透明的溶液。
此外,它还可以在一些有机溶剂中溶解,如乙醇和二甲基亚砜等。
3.2 稳定性甘氨酸铜螯合物具有一定的稳定性,可以在一定范围的pH值和温度下保持其结构完整性和活性。
然而,过高或过低的pH值以及极端的温度可能会影响其稳定性。
3.3 光学性质甘氨酸铜螯合物在紫外-可见光谱范围内具有吸收和发射光谱特征。
通过控制产物的合成条件,可以调节其最大吸收波长和荧光强度。
简单的一个实验,效果比黄金雨差。
原理:其实就是制备反式甘氨酸合铜。
所需试剂(碱式碳酸铜可以用硫酸铜和碳酸氢钠反应制备)
取少量加入烧杯中(只要甘氨酸过量就行)加入尽可能少的水,迅速反应,产生二氧化碳气体。
酒精灯上加热,可以看到,沉淀逐渐转化为鳞片状(顺式变成反式)
保持沸腾几分钟
加热结束,加水,除去溶解度较大的顺式异构体。
在降温过程中,由于动力学因素,顺式异构体反而会优先析出
重复两次,得到成品
在一间昏暗的屋子里,用单光源进行照射。
一种甘氨酸铜络合物的制备方法
一种常见的甘氨酸铜络合物的制备方法如下:
1.实验材料和仪器:
a)氨基酸甘氨酸
b)无水氯化铜
c)双针筒过滤器
d)乙醇
e)氯仿
f)蒸馏水
g)热水浴
h)洗涤瓶
2.实验步骤:
步骤1:准备无水氯化铜溶液
在一个干净的500mL锥形瓶中,称取适量的无水氯化铜。
然后,加入适量的蒸馏水来溶解氯化铜,制备无水氯化铜溶液。
步骤2:制备甘氨酸溶液
在另一个锥形瓶中,称取适量的甘氨酸。
然后,加入适量的蒸馏水来溶解甘氨酸,制备甘氨酸溶液。
步骤3:制备甘氨酸铜络合物
将制备好的甘氨酸溶液缓慢加入无水氯化铜溶液中,并边加边快速搅拌,直到溶液变成深蓝色。
步骤4:晶体的形成
将甘氨酸铜溶液转移至洗涤瓶中,并加入对应体积的甲醇。
然后,将洗涤瓶放入冷水中,使其缓慢冷却。
在这个过程中,甘氨酸铜络合物晶体会逐渐结晶出来。
步骤5:过滤和干燥
使用双针筒过滤器将溶液过滤,以除去杂质。
然后,将过滤后得到的固体沉淀用氯仿洗涤,并用蒸发器蒸发氯仿。
最后,将甘氨酸铜络合物的沉淀在热水浴中干燥。
3.结果和讨论:
根据实验步骤中的操作,预计可以得到甘氨酸铜的蓝色结晶。
该络合物在固态下具有良好的稳定性,并可在化学实验室中广泛应用。
值得注意的是,实验过程中应注意安全操作,并严格遵守操作规程。
铜离子配合物的合成及应用吴天昊袁航张俊焦卓浩唐琦王琪席鑫张存忠次仁旺加中南大学化学化工学院应用化学1301班指导老师张寿春摘要:铜元素是普遍存在于动植物中的生命必需的微量元素之一,在生命过程中起着重要作用。
许多金属酶和金属蛋白的活性部位均含有双核铜(Ⅱ)结构单元。
此外,铜的配位点较多,有很好的配位性能,能够跟绝大多数配体形成铜配合物,使得铜在配位催化上的研究更加方便。
铜配合物在催化、光电材料等方面的应用逐渐成为研究重点。
本文介绍了一些配合物的常用合成方法并对铜离子配合物的应用前景作出了介绍与展望。
关键词:配位化学;金属配合物;铜离子;合成方法;光学应用;医学应用1.引言近年来.由于金属配合物在日常生活和工业上都有广泛的应用,尤其过渡金属对探索和研究药物分子抗菌、抗肿瘤的作用机制具有重要意义。
在催化、光学材料以及电学材料等方面具有新型功能的金属配合物的研究也受到人们的广泛关注。
铜元素在动植物中是普遍存在的,它是生命必需的微量元素之一,在生命过程中起着重要作用。
许多金属酶和金属蛋白的活性部位均含有双核铜(Ⅱ)结构单元.铜化合物具有多变的配位结构和活化小分子的催化特性,常被用作双取代过氧化物分解的催化剂。
此外,铜的配位环境易于调变,结构的易变性导致合成了多种单核或多核的铜配合物。
铜配合物以其独特的性能、结构优势,在催化、光电材料等方面的应用逐渐成为研究重点。
我国的铜资源丰富,分布广泛,铜的开采技术也相当成熟,因此,获取铜的成本并不高,这为铜在配位化学各领域中的应用提供了先决条件。
2.铜离子配合物简介铜是人类发现最早的金属之一,是人类广泛使用的一种金属,属于重金属,电子排布式:1s22s22p63s23p63d104s1 最常见的价态是+1和+2。
铜的配位环境易于调变,结构的易变性导致合成了多种单核或多核的铜配合物。
2.1 Cu(I)配合物中心离子为一价铜离子的单核配合物称为Cu(I)配合物。
Cu(I)的核外电子排布为d10,d轨道填充电子全满使铜原子的电荷排布趋于对称。
— (II) 黄微化学与材料科学学院实验原理实验原理2 仪器试剂仪器试剂 3 实验内容实验内容 4 实验目的实验目的 1 实验思考实验思考了解无机配合物的制备原理和制备方法;巩固溶解, 减压抽滤, 沉淀的洗涤, 水浴加热等基本操作; 章鱼保罗章鱼保罗阿凡达阿凡达相似之处相似之处——蓝色血液!蓝色血液!运载O 2 得到血蓝蛋白-软体动物,节肢动物运载O 2 得到血红蛋白-人类,但在Fe 2+ 转变成Fe 3+ 时,依赖血蓝蛋白的氧化作用图1.常见的蓝血动物在生命活动中占有举足轻重的地位,缺铜会造成:贫血,记忆力减退,反应迟钝,运动失常的摄取来源:无机铜源:CuSO 4 (有毒!有机铜源:葡萄糖酸铜,叶绿素铜,甘氨酸合铜,鱼,肉蔬菜等(生物相容性好!)Cu(OH) 2 + 2 H 2 NCH 2 COOH ==== Cu(gly) 2 xH 2 O 65~70℃Cu(gly) 2 xH 2 O 甘氨酸合铜N Cu N O O gly gly 顺式结构天蓝色针状N Cu O O N gly gly 反式结构蓝紫色鳞片状反应所需活化能低;极性大,溶于高极性溶剂中. 反应所需活化能高;极性小,溶于低极性溶剂中热力学& 动力学化学热力学:研究化学反应进行的可能性以及进行的程度(决定因素!)化学动力学:研究化学反应进行的快慢动力学& 热力学控制的反应动力学控制的反应反应体系离平衡尚远,宏观上原料不断消耗,产物不断积累,主产物为动力学上生成速率较快的产物-活化能低-顺式热力学控制的反应体系已达平衡,各种产物的转化宏观上已停止,产物的热稳定性相对较高,主产物为热力学稳定性较高的产物-反式动力学控制-顺式为主热力学控制-反式为主顺式反式lnk=lnA-E a /RT 能量产物反应物反应过程 E 活化能顺式反式实验仪器布氏漏斗、抽滤瓶、烧杯、量筒、玻棒、表面皿、温度计实验试剂甘氨酸、CuSO 4 ·5H 2 O、1:1氨水、1:3乙醇水溶液、丙酮 1 MH 2 SO 4 、3 M NaOH溶液、95%乙醇、1% BaCl的制备 6.3 g CuSO 4 ·5H 2 O 20 mL H 2 O 滴加NH 3 ·H 2 O至沉淀溶解加入25 mL NaOH (3M)Cu(OH) 2 沉淀抽滤、洗涤至无SO 4 2-干燥稍加热搅拌思考:为何要现用现制?能否由CuSO 4 和NaOH 直接制备注意事项:缓慢滴加氨水,并不断搅拌,氨水量适中,少(×) 多双层滤纸—无定形沉淀抽滤步骤洗涤产品遵循“少量多次”原则,洗涤时勿抽滤检验—表面皿洗涤,少量多次1. 裁剪滤纸2. 润湿滤纸4. 开泵5. 抽滤,洗涤图2. 减压抽滤流程 3. 侧口相对顺式—二甘氨酸合铜(II)水合物的制备Cu(gly) 2 ·xH 2 O溶液干燥 3.8 g甘氨酸15 mL H 2 O 新制Cu(OH) 2 65~70℃, 搅拌热过滤收集滤液加入10 mL 乙醇(95%) 冷却析晶1:3 乙醇洗涤65 ℃, 搅拌丙酮洗涤思考:比较95%乙醇、V 水:V 乙醇= 1:3 混合液、丙酮的极性大小, 各溶液的作用分别为何?注意事项:甘氨酸溶于60~65 ℃热水,完全溶解后再加入碾碎的Cu(OH) 2 ,不断搅拌,若有Cu(OH) 2 沉积于烧杯底部,应将其碾碎,并充分搅起严格控制温度勿超过70 ℃,反应时间不可过长;乙醇、丙酮远离明火;丙酮为脱水剂,脱脂剂,勿与皮肤直接接触。
甘氨酸合铜(Ⅱ)配合物的固、液相反应合成与表征
朱妙琴
【期刊名称】《光谱实验室》
【年(卷),期】2006(023)001
【摘要】以固相反应与液相反应两种方法合成了甘氨酸合铜(Ⅱ)配合物,研究了不同研磨时间对甘氨酸合铜(Ⅱ)配合物生成结果的影响.通过元素分析,红外光谱分析,紫外光谱分析,热重-差热等方法对产物进行了表征.实验结果表明,随着固相反应研磨时间的不同,对甘氨酸合铜(Ⅱ)配合物的生成结果有一定的影响,固、液相反应结果基本相同.
【总页数】5页(P110-114)
【作者】朱妙琴
【作者单位】浙江教育学院化学系,杭州市文三路140号,310012
【正文语种】中文
【中图分类】O657.32;O657.33
【相关文献】
1.两种体系中甘氨酸合铜配合物稳定常数的测定 [J], 张有娟;陈静;朱艳玲;郎丽杰
2.N—水杨醛甘氨酸合铜(Ⅱ)的混配配合物研究 [J], 王成刚;张超灿
3.谷氨酸甘氨酸合铜(Ⅱ)混配配合物的制备 [J], 窦后松;徐小平
4.双—β—二酮缩甘氨酸合双铜(Ⅱ)配合物的合成及非等温热分解反应动… [J], 单纯;耿超英
5.几种吡唑啉酮衍生物铜(Ⅱ)配合物的固、液相反应合成与表征 [J], 冯婷;刘浪;张丽;贾殿赠
因版权原因,仅展示原文概要,查看原文内容请购买。
铜离子配合物的合成及应用吴天昊袁航张俊焦卓浩唐琦王琪席鑫张存忠次仁旺加中南大学化学化工学院应用化学1301班指导老师张寿春摘要:铜元素是普遍存在于动植物中的生命必需的微量元素之一,在生命过程中起着重要作用。
许多金属酶和金属蛋白的活性部位均含有双核铜(Ⅱ)结构单元。
此外,铜的配位点较多,有很好的配位性能,能够跟绝大多数配体形成铜配合物,使得铜在配位催化上的研究更加方便。
铜配合物在催化、光电材料等方面的应用逐渐成为研究重点。
本文介绍了一些配合物的常用合成方法并对铜离子配合物的应用前景作出了介绍与展望。
关键词:配位化学;金属配合物;铜离子;合成方法;光学应用;医学应用1.引言近年来.由于金属配合物在日常生活和工业上都有广泛的应用,尤其过渡金属对探索和研究药物分子抗菌、抗肿瘤的作用机制具有重要意义。
在催化、光学材料以及电学材料等方面具有新型功能的金属配合物的研究也受到人们的广泛关注。
铜元素在动植物中是普遍存在的,它是生命必需的微量元素之一,在生命过程中起着重要作用。
许多金属酶和金属蛋白的活性部位均含有双核铜(Ⅱ)结构单元.铜化合物具有多变的配位结构和活化小分子的催化特性,常被用作双取代过氧化物分解的催化剂。
此外,铜的配位环境易于调变,结构的易变性导致合成了多种单核或多核的铜配合物。
铜配合物以其独特的性能、结构优势,在催化、光电材料等方面的应用逐渐成为研究重点。
我国的铜资源丰富,分布广泛,铜的开采技术也相当成熟,因此,获取铜的成本并不高,这为铜在配位化学各领域中的应用提供了先决条件。
2.铜离子配合物简介铜是人类发现最早的金属之一,是人类广泛使用的一种金属,属于重金属,电子排布式:1s22s22p63s23p63d104s1 最常见的价态是+1和+2。
铜的配位环境易于调变,结构的易变性导致合成了多种单核或多核的铜配合物。
2.1 Cu(I)配合物中心离子为一价铜离子的单核配合物称为Cu(I)配合物。
Cu(I)的核外电子排布为d10,d轨道填充电子全满使铜原子的电荷排布趋于对称。
反式甘氨酸合铜化学式1.引言1.1 概述反式甘氨酸合铜是一种重要的有机金属化合物,它具有广泛的应用领域和研究价值。
反式甘氨酸是一种氨基酸,其分子中含有两个羧基和一个胺基,可作为金属络合剂与金属离子形成配合物。
合铜化学式是指通过化学反应将反式甘氨酸与铜离子结合形成的配合物的化学式。
反式甘氨酸合铜具有许多重要的物理和化学特性,使其在医药、催化剂以及材料科学等领域得到广泛应用。
首先,在医药领域,反式甘氨酸合铜可以作为抗氧化剂,具有抗炎、抗菌和抗氧化的作用,可以用于治疗一些炎症性疾病。
其次,在催化剂领域,反式甘氨酸合铜可以作为催化剂的活性中心,在有机合成反应中发挥重要作用。
此外,反式甘氨酸合铜还可以作为染料或颜料的成分,广泛应用于染料工业和颜料制备领域。
在合铜化学式的研究中,研究人员通过实验方法和理论计算方法,对反式甘氨酸与铜离子之间的化学反应进行了深入的探究。
通过分析反式甘氨酸与铜离子之间的键合方式和键合强度,可以了解反式甘氨酸合铜的稳定性以及其在不同条件下的反应行为。
这对于进一步优化反式甘氨酸合铜的性能以及推动其应用具有重要意义。
总之,反式甘氨酸合铜是一种具有重要应用和研究价值的有机金属化合物。
在本文中,我们将详细介绍反式甘氨酸的特性和合铜化学式的研究进展,以期为相关领域的研究者提供参考和启示。
我们相信,通过这篇文章的阅读,读者将对反式甘氨酸合铜有更深入的了解,并能够将其应用于更广泛的领域。
1.2文章结构文章结构本文将首先介绍概述,即反式甘氨酸合铜化学式这一课题的背景和重要性。
接着,文章将按照以下顺序展开讨论:对反式甘氨酸的概念进行解释和介绍,然后深入探讨合铜化学式的相关知识。
最后,我们将总结本文所涉及的核心内容,并展望未来该领域的研究方向和潜在的应用价值。
通过本文的阐述,读者将能够全面了解反式甘氨酸合铜化学式的意义和意义,并对该领域的发展有一个清晰的认识。
1.3 目的本文的目的是介绍反式甘氨酸合铜化学式的相关知识。
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201610802216.9(22)申请日 2016.09.05(71)申请人 河北东华冀衡化工有限公司地址 053400 河北省衡水市武邑县冀衡路10号(72)发明人 徐志伟 冯辉 王秀茹 王立辉 马宁宁 赵红梅 高金辉 宋铁犇 李兴强 宋秋月 赫旭欢 苏杰 (74)专利代理机构 石家庄众志华清知识产权事务所(特殊普通合伙) 13123代理人 张明月(51)Int.Cl.C07C 227/18(2006.01)C07C 227/40(2006.01)C07C 229/76(2006.01)(54)发明名称一种甘氨酸铜的制备方法(57)摘要本发明公开了一种甘氨酸铜的制备方法,包括以下步骤:①氧化铜溶解:将氧化铜溶于氨水中,形成铜氨络合物;②合成反应:将甘氨酸与铜氨络合物按一定比例投入到反应釜中反应,加热反应一段时间,得到反应液;③产物提纯:将反应液降温并离心,得到甘氨酸铜固体1和滤液,再将滤液减压蒸馏得到甘氨酸铜固体2和液体馏分,将甘氨酸铜固体1和甘氨酸铜固体2干燥后得到产品;④氨回收:用吸收剂吸收反应过程中产生的氨气并作为回收液,将回收液回用至步骤①代替氨水溶解氧化铜。
本发明提供了一种既能避免杂质离子的干扰,又能提高反应速率的甘氨酸铜的制备方法。
权利要求书1页 说明书5页 附图1页CN 106278916 A 2017.01.04C N 106278916A1.一种甘氨酸铜的制备方法,包括以下步骤:①氧化铜溶解:将氧化铜溶于氨水中,形成铜氨络合物;②合成反应:将甘氨酸与铜氨络合物按一定比例投入到反应釜中反应,加热反应一段时间,得到反应液;③产物提纯:将反应液降温并离心,得到甘氨酸铜固体1和滤液,再将滤液减压蒸馏得到甘氨酸铜固体2和液体馏分,将甘氨酸铜固体1和甘氨酸铜固体2干燥后得到产品;④氨回收:用吸收剂吸收反应过程中产生的氨气并作为回收液,将回收液回用至步骤①代替氨水溶解氧化铜。
顺式二甘氨酸合同的制备方法说实话顺式二甘氨酸铜的制备方法这事,我一开始也是瞎摸索。
最初我就是按照一些书上的基本步骤来的,但是总是失败。
我当时就想,原料肯定是关键。
这个顺式二甘氨酸铜嘛,甘氨酸那肯定得是纯净的。
我第一次用的甘氨酸好像有点受潮了,这就像你做饭的时候,食材本身就不新鲜,肯定做不出好菜一样,结果反应出来的东西根本就不对,到处都是杂质。
这就给了我第一个教训,原料可得保存好,使用之前得检查好是否纯净、干燥。
后来我关注到反应的环境。
就像人需要合适的生活环境一样,这个反应也需要合适的环境。
我试过在普通的室内环境,稍微有点偏差。
我就想啊,温度和酸碱度得控制好。
我觉得温度可能就像给反应这个小火炖菜的火候一样,太热或者太冷都不行。
我就找了一个能比较精确控制温度的设备,慢慢摸索,发现大概在某个温度范围的时候反应会比较顺利。
再说到酸碱度,这个可太难把控了。
我试了好多次加不同的酸或者碱去调节酸碱度。
有时候加太多了就像糖放多了菜太甜一样,反应就会走向别的方向,形成乱七八糟的副产品。
后来啊,我每次就小心翼翼地一滴一滴加,边加边观察反应的情况。
这就像给病人体检一样,得时刻关注指标的变化。
反应的时间也很关键。
开始我觉得反应时间越长应该越好,就让它一直反应下去,结果呢,又出现很多杂质。
这就好像面包烤过了头,变得黑乎乎的没法吃了。
所以我就不停地测试不同的时间,去看什么时候产品的纯度最高、产量最好。
还有溶剂的选择,这个我也走了不少弯路。
我试过好多种溶剂,就想找到一种最适合这个反应的。
有些溶剂就像不合群的人一样,加进去之后整个反应就变得很乱,而有一种溶剂,就好像找到了钥匙一样,反应在其中进行得比较顺利。
不过,我这儿说的适合的溶剂也不一定就是最好的,我现在对于溶剂这块也还在继续探索下去的过程中。
我得提醒一下,在做这个制备的时候,安全措施一定要做好。
有些试剂可能是有腐蚀性或者有毒性的,就像拿着一把双刃剑,能帮我们做出东西来,但要是不小心也能伤到自己,防护眼镜、手套这些东西千万不能少。
甘氨酸螯合铜的合成及表征研究
李德广;杜相革
【期刊名称】《安徽农业科学》
【年(卷),期】2009(037)005
【摘要】[目的]优化甘氨酸螯合铜的合成条件.[方法]以甘氨酸为原料,对甘氨酸螯合铜的反应条件进行探讨,研究反应液pH值、反应温度、反应时间对螯合反应的影响.[结果]在反应液pH值较低时,产物吸光度随着pH值的增加而增加,当反应液pH值达到7以后,吸光度变化不明显,说明pH值为7时,反应进行完全;当反应温度低于50℃时,产物吸光度随着温度的增加而增加;时间对反应影响不大,为了便于操作,选择反应时间30 min.用有机溶刺沉淀法可制得高纯度的甘氨酸螯合铜,并可用红外光谱法对产品进行确认.[结论]确定了甘氨酸螯合铜合成的最佳条件:反应液pH 值为7,反应温度50℃,反应时间30 min.该反应条件下,甘氨酸螯合铜的产率可达90%以上.
【总页数】2页(P1897-1898)
【作者】李德广;杜相革
【作者单位】中国农业大学农学与生物技术学院,北京,100193;中国农业大学农学与生物技术学院,北京,100193
【正文语种】中文
【中图分类】S482.2
【相关文献】
1.甘氨酸钙螯合物的微波固相合成与表征 [J], 钟国清
2.一水合甘氨酸亚铁螯合物的合成及其表征 [J], 俞露;崔艳丽;管海跃;徐明瀚;毛建卫
3.一水合甘氨酸锌螯合物的合成及其表征 [J], 管海跃;崔艳丽;毛建卫
4.甘氨酸螯合铁、蛋氨酸螯合铜预防仔猪贫血效果的研究 [J], 许丽;韩友文;滕冰
5.甘氨酸锌螯合物的合成与结构表征 [J], 钟国清
因版权原因,仅展示原文概要,查看原文内容请购买。
nh2ch2coo配位原子
NH2CH2COO(甘氨酸合铜)中的配位原子是氧和氮。
甘氨酸离子NH2CH2COO-中的配位原子是氧和氮,各提供一对电子到铜的轨道中,形成两个配位键。
NH2CH2COO(甘氨酸合铜)是一种特殊的配合物,其中铜离子与甘氨酸分子配位。
在这个配合物中,配位原子是氧和氮。
首先,我们来看甘氨酸分子。
甘氨酸分子中包含一个羧基(-COOH)和一个氨基(-NH2)。
在形成配合物时,羧基中的氧原子和氨基中的氮原子都有孤对电子,这些孤对电子可以与铜离子的空轨道配位。
具体来说,当铜离子与甘氨酸分子配位时,羧基中的氧原子利用其孤对电子与铜离子形成配位键,同样地,氨基中的氮原子也利用其孤对电子与铜离子形成配位键。
这样就形成了两个配位键,使铜离子被稳定地锚定在甘氨酸分子中。
配位原子的选择不是随机的,而是基于它们可以提供孤对电子来填补金属空轨道的能力。
在甘氨酸合铜中,氧和氮的电负性较强,它们有能力提供孤对电子来进行配位。
总之,NH2CH2COO(甘氨酸合铜)中的配位原子是氧和氮,它们通过提供孤对电子与铜离子形成稳定的配位键。
这种配位作用在化学中非常普遍,对于理解物质的化学性质和反应机制具有重要意义。