20170503-开关电源中的EMI滤波电感设计
- 格式:pdf
- 大小:264.53 KB
- 文档页数:6
开关电源EMI滤波器的设计要使EMI滤波器对EMI信号有最佳的衰减特性,设计与开关电源共模、差模噪声等效电路端接的EMI滤波器时,就要分别设计抗共模干扰滤波器和抗差模干扰滤波器才能收到满意的效果。
1.抗共模干扰的电感器的设计电感器是在同一磁环上由两个绕向与匝数都相同的绕组构成。
当信号电流在两个绕组流过对,产生的磁场恰好抵消,它可几乎无损耗地传输信号。
因此,共模电流可以认为是地线的等效干扰电压Ug所引起的干扰电流。
当它流经两个绕组时,产生的磁场同相叠加,电感器对干扰电流呈现出较大的感抗,由此起到了抑制地线干扰的作用。
电路如图1所示。
信号源至负载RL连接线的电阻为Rcl、Rc2,电感器自感为L1、L2,互感为M,设两绕组为紧耦合,则得到L1=L2=M。
由于Rc1和RL串联且Rc1<<RL,则可以不考虑Vg, Vg 被短路可以不考虑Vg的影响。
其中(Is是信号电流,Ig是经地线流回信号源的电流。
由基尔霍夫定律可写出:式(2)表明负载上的信号电压近似等于信号源电压,即共模电感传输有用信号时几乎不引入衰减。
由(1)式得知,共模千扰电流Ig随f:fc的比值增大而减小。
当f:fc的比值趋于无穷时,Ig=0,即干扰信号电流只在电感器的两个绕组中流过而不经过地线,这样就达到了抑制共模干扰的作用。
所以,可以根据需要抑制的干扰电压频率来设置电感器截止频率。
一般来说,当干扰电压频率f≥5fc时,即Vn:Vg≤0.197,就可认为达到有效抑制地线中心干扰的目的。
2.抗差模干扰的滤波器设计差模干扰的滤波器可以设计成Π型低通滤波器,电路如图2所示。
这种低通滤波器主要是设置电路截止频率人的值达到有效地抑制差模传导干扰的目的。
EMI滤波电感设计EMI滤波器正常工作的开关类电源(SMPS)会产生有害的高频噪声,它能影响连接到相同电源线上的电子设备像计算机、仪器和马达控制。
用一个EMI滤波器插入电源线和SMPS之间能消除这类干扰(图1)。
一个差模噪声滤波器和一个共模噪声滤波器能够串联或在许多情况下单独使用共模噪声滤波器。
图1 EMI滤波器的插入一、共模电感设计在一个共模滤波器内,电感的每一个绕阻和电源输入线中的任一根导线相串联。
(对于电源的输入线来讲)电感绕组的接法和相位是这样的,第一个绕组产生的磁通会与第二个绕组产生的磁通相削. 于是,除了泄漏阻抗的小损耗和绕组的直流电阻以外,电感至电源输入线的插入阻抗为另。
由于磁通的阻碍,SMPS的输入电流需要功率,因此将通过滤波器,滤波器应没有任何明显的损耗。
共模噪声的定义是出现在电源输入线的一根或二根导线上的有害电流通过电感的地返回噪声源的噪声。
此电流要视共模电感的任何一个或二个绕组的全部阻抗,因为它不能被返回的电流所抵消。
共模噪声电压是电感绕组上的衰减,应从有害噪声中保持电源输入线的畅通。
1.1、选择电感材料开关电源正常工作频率20KHz以上,而电源产生的有害噪声比20KHz高,往往在100KHz~50MHz之间。
对于电感来讲,大多数选择适当和高效费比的铁氧体,因为在有害频带内能提供最高的阻抗。
当看到公共参数如磁导率和损耗系数就去识别材料是困难的。
图2给出铁氧体磁环J-42206-TC 绕10匝后的阻抗ZS和频率的关系曲线。
图2铁氧体磁环的阻抗和频率的关系在1~10MHz之间绕组到达最大阻抗,串联感抗XS和串联电阻RS(材料磁导率和损耗系数的函数)共同产生总阻抗Zt。
图3所示为图2中铁氧体材料的磁导率和损耗系数与频率的函数关系。
由于感抗引起的下降,导致磁导率在750KHz以上的下降;由于电阻取决高频的源阻抗所以损耗系数随频率而增加。
图3铁氧体磁环的磁导率、损耗系数和频率的关系图4给出三种不同材料的总阻抗和频率的关系。
开关电源中输出滤波电感的设计计算(图一)(图二)(图三)开关电源次级线圈上的输出电压Uo是脉冲状态(图一),要使脉冲方波变成可供电路使用的直流电,还需要对它进行平滑处理,常用的平滑电路由整流二极管、滤波电容、滤波电感构成。
(图二)㈠. 平滑处理原理(图二)中电感L在电路中既有储能作用,且对交流成分呈高阻抗,能阻止交流成分通过。
电容C1—C4对交流信号呈低阻抗,允许交流成分通过,而对直流呈高阻抗,而阻止直流通过。
感抗:XL=2πfL电感对高频成分呈高阻抗,感抗越大,对高频信号的电抗电压越大,阻止高频成分通过的能力越强。
容抗:XC=1/2πfC电容对直流呈高阻抗,能阻止直流通过,对交流成分呈低阻抗,容抗越小,交流成分就越容易通过。
(图二)中LC的乘积越大对高频成分的平滑作用越好。
为求得最佳电感量,可按下节进行设计计算。
㈡. 开关稳压电源输出的纹波噪声平滑滤波后开关电源输出波形(图三),不难看出,经过(图二)电路平滑后的直流输出中包含了一定的纹波噪声。
它分两部分:纹波:与初级输入工频频率和开关频率同步的波形即为纹波。
噪声:在纹波上的针状毛刺就是噪声。
两类波合在一起称为:纹波噪声。
㈢输出平滑处理电路中电感L的设计计算电感L的计算有如下一些公式:流过电感L的纹波电流△Il为输出电流Io的2%~5%,即:△Il=(0.02~0.05)Io ①△Il=Ton max(Umin-Vf-Vo)/L ②L= DTonmax(Umin-Vf-Vo)/ △Il ③Uo min= T(Vo max+Vf+Vl)/D ④D=Tonmax /T ⑤㈣计算实例输出电压Vo=5V 10%±输出电流Io=开关频率F=200KHz占空比D=0.42次级线圈上的最小电压:开关周期:T=1/F=1/200×103=5μs最大导通时间:Ton max=TD=5×0.42=2.1μS输出最大直流电压: Vo max=5×10%=5.5 V次级线圈上的最小电压:Umin=5×(5.5+0.2+0.4)/2.1=14.5V在一般情况下,滤波电感中通过的电流△Il的值是Io的2%~5%本例取5%根据式②L△Il= Ton max(Umin -Vf-Vomax)/ △Il=2.1(14.5-0.4-5.5)/1=18.06μH取整L=18μH通过的电流为20A。
开关电源EMI滤波器原理和设计研究开关电源EMI滤波器是用来减少开关电源产生的电磁干扰(EMI)的一种装置。
EMI是指开关电源工作时产生的高频干扰信号,可能会对其他电子设备、无线通信和无线电接收产生干扰,影响它们的正常工作。
EMI滤波器通过合理设计,能有效地抑制开关电源产生的EMI信号,从而减少对其他设备的干扰。
EMI滤波器的原理是基于电流和电压的相位关系来实现的。
开关电源在工作时会产生高频电流脉冲,而这些电流脉冲会通过开关电源输入端的电容等元件,从而形成高频电流回路。
EMI滤波器通过给开关电源输入端加上一个电感元件,阻断高频电流回路的形成,从而减小EMI信号的辐射。
设计EMI滤波器时需要考虑以下几个因素:1.工作频率范围:EMI滤波器需要在开关电源产生EMI信号的频率范围内有效工作。
根据具体的应用环境和要求,选择合适的滤波器工作频率范围。
2.滤波特性:滤波器需要具有良好的滤波特性,对于较高频率的EMI信号能够有较好的抑制效果。
常用的滤波器类型有低通滤波器、带通滤波器和带阻滤波器等。
3.过渡区域:滤波器在过渡区域需要平衡阻抗和频率之间的变化。
过渡区域越宽,滤波器的性能越好。
过渡区域的宽度需要根据具体要求进行设计。
4.安全和可靠性:EMI滤波器需要满足安全和可靠性的要求。
在设计过程中,需要考虑电源参数范围、电流和电压的安全范围等因素,以确保滤波器的稳定性和可靠性。
设计EMI滤波器的方法有多种,可以根据需求选择不同的设计方法。
常见的方法包括线性滤波器设计、Pi型滤波器设计和C型滤波器设计等。
其中,Pi型滤波器是应用最广泛的一种,它由两个电感和一个电容组成,能够对高频信号进行抑制。
总之,开关电源EMI滤波器的原理和设计研究是为了降低开关电源产生的电磁干扰,保证其他设备的正常工作。
通过合理的滤波器设计和选择合适的滤波器类型,可以有效地减少EMI信号对其他设备的干扰,提高系统的抗干扰性能。
开关电源EMI滤波器原理和设计研究开关电源EMI滤波器是用于抑制开关电源产生的电磁干扰(EMI)的一种电路。
开关电源工作时,因为开关元件的开闭引起的瞬态电流和电压变化,会在电源线上产生高频噪声干扰,通过电磁辐射和传导的方式传播到其他电路中,对其他设备和系统产生干扰。
EMI滤波器的设计旨在通过选择合适的滤波器拓扑结构、滤波器元件和参数,以及合理布局和连接方式,来有效地抑制开关电源产生的高频噪声。
EMI滤波器的原理是通过串联和并联等方式构成一个低通滤波器,将开关电源的高频噪声滤除,使其只能在设定的频率范围内传递,从而减少对其他设备和系统的干扰。
EMI滤波器的设计研究需考虑以下几个方面:1.滤波器拓扑结构选择:常见的EMI滤波器拓扑结构包括LC滤波器、RC滤波器和LCL滤波器等。
不同的拓扑结构适用于不同的滤波需求,需根据实际应用场景选择适合的拓扑结构。
2.滤波器元件选择:滤波器中的元件包括电感、电容和电阻等。
选择合适的元件需要考虑元件的频率响应特性、阻抗特性、容值和功率等参数。
3.滤波器参数优化:滤波器的参数优化可以通过频率响应曲线和阻抗匹配等方法进行,以确保滤波器在设计频率范围内能够有效地滤除高频噪声。
4.布局和连接方式设计:合理的布局和连接方式可以减少电磁辐射和传导的路径,从而进一步提高滤波器的性能。
此外,还需对滤波器进行实验验证,通过在实际电路中的应用来评估滤波器的性能和有效性。
总之,开关电源EMI滤波器的原理和设计研究是为了抑制开关电源的高频噪声干扰,需要对滤波器的拓扑结构、元件选择、参数优化以及布局和连接方式进行综合考虑和设计,以提高滤波器的性能和效果。
EMI滤波器电路原理及设计引言开关电源以其体积小、重量轻、效率高等优点被广泛应用于电力电子设备系统中,但是开关电源易受到电磁干扰,产生误动作,且本身的高频信号也会引起大量的噪声,会污染电网环境,干扰同一电网其他电子设备的正常工作。
这样就对EMC提出了更高的要求指标。
分类:开关电源中的电磁干扰(EMI)主要有传导干扰和辐射干扰。
通过正确的屏蔽和接地系统设计可以得到有效的控制,对于传导干扰来说,加装EMI滤波器,是一种比较经济有效的措施,辐射干扰的抑制可以通过加装变压器屏蔽铜片。
EMI滤波器介绍开关电源与交流电网相连,尽管开关电源是一个单端口网络,但具有相线(L),零线(N),地线(E)的开关电源实际上形成了两个AC端口,所以噪声源在实际分析中可以将其分解为共模和差模噪声源。
火线(L)与零线(N)之间的干扰叫做差模干扰(属于对称性干扰),火线(L)与地线(E)之间的干扰叫做共模干扰(非对称性干扰)。
在一般情况下,差模干扰幅度小、频率低、所造成的干扰较小;共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。
开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰主要来自电网的抖动、雷击、外界辐射等。
1.开关电源的EMI干扰源开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰主要来自电网的抖动、雷击、外界辐射等。
(1)功率开关管功率开关管工作在On-O ff快速循环转换的状态,dv/dt和di/dt都在急剧变换,因此,功率开关管既是电场耦合的主要干扰源,也是磁场耦合的主要干扰源。
(2)高频变压器高频变压器的EMI来源集中体现在漏感对应的di/dt快速循环变换,因此高频变压器是磁场耦合的重要干扰源。
(3)整流二极管整流二极管的EMI来源集中体现在反向恢复特性上,反向恢复电流的断续点会在电感(引线电感、杂散电感等)产生高 dv/dt,从而导致强电磁干扰。
EMI滤波电感设计技术 2009-08-05 14:14 阅读11 评论0字号:大中小EMI滤波器正常工作的开关类电源(SMPS)会产生有害的高频噪声,它能影响连接到相同电源线上的电子设备像计算机、仪器和马达控制。
用一个EMI滤波器插入电源线和SMPS之间能消除这类干扰(图1)。
一个差模噪声滤波器和一个共模噪声滤波器能够串联或在许多情况下单独使用共模噪声滤波器。
600)makesmallpic(this,6 00,1800);">图1 EMI滤波器的插入一、共模电感设计在一个共模滤波器内,电感的每一个绕阻和电源输入线中的任一根导线相串联。
(对于电源的输入线来讲)电感绕组的接法和相位是这样的,第一个绕组产生的磁通会与第二个绕组产生的磁通相削. 于是,除了泄漏阻抗的小损耗和绕组的直流电阻以外,电感至电源输入线的插入阻抗为另。
由于磁通的阻碍,SMPS的输入电流需要功率,因此将通过滤波器,滤波器应没有任何明显的损耗。
共模噪声的定义是出现在电源输入线的一根或二根导线上的有害电流通过电感的地返回噪声源的噪声。
此电流要视共模电感的任何一个或二个绕组的全部阻抗,因为它不能被返回的电流所抵消。
共模噪声电压是电感绕组上的衰减,应从有害噪声中保持电源输入线的畅通。
1.1、选择电感材料开关电源正常工作频率20KHz以上,而电源产生的有害噪声比20KHz高,往往在100KHz ~50MHz之间。
对于电感来讲,大多数选择适当和高效费比的铁氧体,因为在有害频带内能提供最高的阻抗。
当看到公共参数如磁导率和损耗系数就去识别材料是困难的。
图2给出铁氧体磁环J-42206-TC 绕10匝后的阻抗ZS和频率的关系曲线。
600)makesmallpic(this,600,180 0);">图2铁氧体磁环的阻抗和频率的关系在1~10MHz之间绕组到达最大阻抗,串联感抗XS和串联电阻RS(材料磁导率和损耗系数的函数)共同产生总阻抗Zt。
EMI电源滤波器的设计EMI(Electromagnetic Interference)电源滤波器是一种用来减少或阻止电源上的电磁干扰的设备。
电磁干扰可能会来自电源本身,也可能是外部电源信号通过电源线传播进来。
在电气和电子设备中,EMI电源滤波器的设计是非常重要的,它可以有效地减少电磁干扰对电子设备正常运行的干扰。
本文将介绍EMI电源滤波器的设计过程和相关考虑因素。
首先,EMI电源滤波器的设计需要明确滤波器的目标和要求。
不同的应用场景和要求可能需要不同类型或不同参数的滤波器,因此在设计之前需要明确这些要求。
一般来说,EMI电源滤波器的主要目标是滤除电源线上的高频干扰信号,保证电源线上的电能传输稳定和可靠。
接下来,设计者需要考虑滤波器的工作频率范围。
EMI电源滤波器一般工作在几十kHz至几十MHz的范围内,设计时需要选择适当的频率范围,并且根据实际应用场景确定滤波器的通带和阻带要求。
在设计过程中,选择合适的滤波器拓扑结构是非常重要的。
常见的EMI电源滤波器拓扑结构包括低通滤波器、带通滤波器和带阻滤波器等。
低通滤波器用于滤除高频干扰信号,常见的结构包括RC低通滤波器和LC低通滤波器等。
带通滤波器可以滤除一定范围的频率信号,常见的结构包括LC带通滤波器和RL带通滤波器等。
带阻滤波器可以滤除一些特定频率范围的信号,常见的结构包括LC带阻滤波器和RL带阻滤波器等。
根据实际应用需求,选择合适的滤波器结构。
在滤波器的具体参数设计中,设计者还需要考虑滤波器的阻抗匹配问题。
滤波器与电源或负载间的阻抗匹配是保证滤波器正常工作的重要因素。
通过合适的阻抗匹配,可以最大限度地减小传输线上的能量反射,提高滤波器的传输效率,并减少干扰信号的发射和接收。
此外,设计者还需要根据实际应用场景确定滤波器的输入和输出连接方式。
常见的连接方式包括串联连接、并联连接和混合连接等。
选择合适的连接方式可以提高滤波器的实际性能和可靠性。
最后,为了确保EMI电源滤波器的正确设计和工作,设计者需要进行相关的测试和验证。
Y电容放在共模电感的前面和放在共模电感的后面,滤波效果大不一样的,具体怎么不一样我忘记了,好象Y电容放在共模电感的后面效果会更好一些,如果是两级复合式滤波可能会更好吧串模干扰是两条电源线之间(简称线对线)的噪声,共模干扰则是两条电源线对大地(简称线对地)的噪声。
我来补充一下EMI滤波器的电路:EMI基本电路(原文件名:11H24632VP19205.jpg)上面的图有两个输入端、两个输出端和一个接地端,使用时外壳应接通大地。
电路中包括共模扼流圈(亦称共模电感)L、滤波电容C1~C4。
L对串模干扰不起作用,但当出现共模干扰时,由于两个线圈的磁通方向相同,经过耦合后总电感量迅速增大,因此对共模信号呈现很大的感抗,使之不易通过,故称作共模扼流圈。
它的两个线圈分别绕在低损耗、高导磁率的铁氧体磁环上,当有电流通过时,两个线圈上的磁场就会互相加强。
两级复合式EMI滤波器(原文件名:11H24632ZP2KT.jpg)上图是一种两级复合式EMI滤波器的内部电路,由于采用两级滤波,因此滤除噪声的效果更佳。
针对现场存在重复频率为几千赫兹的快速瞬态群脉冲干扰的问题,国内外还开发出群脉冲滤波器,能对上述干扰起到抑制作用。
为减小体积、降低成本,单片开关电源一般采用简易式单级EMI滤波器单片开关电源一般采用简易式单级EMI滤波器(原文件名:11H2463294P3H63.jpg)图(a)与图(b)这样的电路一般在开关电源里很少见(整体效果不好).图(c)中的L、C1和C2用来滤除共模干扰,C3和C4滤除串模干扰。
R为泄放电阻,可将C3上积累的电荷泄放掉,避免因电荷积累而影响滤波特性;断电后还能使电源的进线端L、N不带电,保证使用的安全性。
图(d)则是把共模干扰滤波电容C3和C4接在输出端。
这个C3和C4就是Y电容,共模和差模信号与滤波器山东莱芜钢铁集团动力部周志敏(莱芜271104)1概述随着微电子技术的发展和应用,电磁兼容已成为研究微电子装置安全、稳定运行的重要课题。
开关电源滤波电感器的设计学习教案汇报人:2023-12-25•开关电源滤波电感器的基本概念•开关电源滤波电感器的设计要点目录•开关电源滤波电感器的性能测试•开关电源滤波电感器的应用实例•开关电源滤波电感器的发展趋势与展望目录01开关电源滤波电感器的基本概念开关电源滤波电感器是一种利用电磁感应原理将电能转换为磁能,再通过磁能将电能传输给负载的电子元件。
定义主要作用是过滤电源中的电磁干扰,稳定输出电压,提高电源的品质和可靠性。
作用定义与作用0102工作原理当电源输入端接通时,电流通过电感器产生磁场,储存能量;当电源断开时,磁场消失,能量通过电感反电动势释放给负载。
工作原理基于电磁感应定律,当电流通过电感器时,会产生一个反电动势阻碍电流的变化。
按工作频率可分为低频和高频电感器;按结构可分为绕线型、叠层型和薄膜型电感器。
具有高自感、低电阻的特性,能够有效地滤除电源中的高频噪声和电磁干扰,提高电源的稳定性和可靠性。
分类与特点特点分类02开关电源滤波电感器的设计要点磁芯材料应具有高磁导率、低磁损和温度稳定性。
常见的磁芯材料有铁氧体、坡莫合金和铁硅铝等。
考虑磁芯材料的饱和磁感应强度,以确保电感器在正常工作范围内不会达到磁芯饱和。
考虑磁芯材料的居里温度,以确保电感器在高温下仍能保持稳定的性能。
磁芯材料的选择匝数过少会导致电感量不足,匝数过多则会导致线圈电阻增大,影响滤波效果。
根据实际应用需求,可采用多层绕制或多股线绕制来增加匝数。
根据电感器的设计要求和磁芯的磁导率,计算出所需的匝数。
线圈匝数的确定气隙大小对电感器的电感量和磁芯的磁导率都有影响。
气隙过大,磁芯的磁导率会降低;气隙过小,则会导致电感量过大。
根据设计要求和磁芯的磁导率,合理设置气隙大小,以获得所需的电感量和滤波效果。
在实际应用中,可采用机械加工或激光打孔的方式进行气隙调整。
气隙大小的设置在线圈绕制过程中,应采用合适的绝缘材料和工艺,以确保线圈之间的电气隔离和机械强度。
开关电源的EMI滤波器设计开关电源、EMI、滤波器1 引言电磁干扰滤波器(EMI Filter)是近年来被推广应用的一种新型组合器件。
它能有效地抑制电网噪声,提高伺服系统和电子设备的抗干扰能力及系统的可靠性,可广泛用于电子测量仪器、计算机机房设备、开关电源、测控系统等领域。
本文介绍的就是一种开关电源的EMI滤波器设计。
2 滤波器设计根据直流电机伺服驱动开关电源系统的特点,本设计中的EMI滤波器采用双级LC网络设计,双级LC 网络插入开关电源电路中的位置如图1所示。
图1 LC网络在开关电源电路中的位置图2 双级LC网络假定直流电源侧为低阻抗电压源US,DC/DC变换器输入端为高阻抗电流源i(t)。
那么LC滤波器只能选择“”型结构,最简单的双“”级LC网络如图2所示。
其频域传递函数为:(1)由于LC网络谐振时,会产生很大的电流(电压)峰值,这个网络有3个频率点的谐振峰值是必须限制的,否则,会产生更大的EMI。
限制这3个频率点的峰值是设计这个滤波器的主要指导思想。
这3个频率点分别是:第一级滤波器的谐振频率:f1=(2)第二级滤波器的谐振频率:f2=(3)第3个频率点就是DC/DC变换器的开关频率f。
下面具体讨论滤波器设计方法,即选取LC网络中元件参数的方法:由上面3个式子,3个频率点对应的传递函数的幅值分别为:(4)(5)(6)元件参数选取方法讨论如下:为了限制f1点的谐振峰值,要求插入衰减20logH1=20logC1/C2<0,即C1/C2<1。
根据经验,它们的比值范围为:(7)为了限制f2点的谐振峰值,同理选取:(8)为了限制f点的谐振峰值,要求,即:(9)元件参数选取步骤归纳如下:(1)由式(7)~(9)确定了比值,这样只有二个参数是独立的;(2)由于滤波器负载侧(开关电流i(t)侧)谐波分量较大,C2应选一个大容量电容器;(3)由(1)、(2)步结果代入式(9),就可以确定另一个独立参数;(4)由直流侧电源Us确定电容器额定电压值Uce≥2Us。
开关电源中的EMI 滤波电感设计
普高(杭州)科技开发有限公司 张兴柱 博士
开关电源中的功率变换器工作于高频开关方式,其输入线上的电流含有高频分量,这些高频分量对接在同一供电处的其它电子设备会产生干扰,严重时可能导致其它电子设备的正常工作,为此国际上专门制订了相关的EMI 标准,来限制各种电子设备对外产生的辐射与传导噪声。
其中最常用的传导EMI 标准有CISPR22、VDE 和FCC ,通过测试电子设备的传导EMI 来判断其是否满足相应的EMI 标准。
图1是测试开关电源传导EMI 的线路图,其中供
电电源既可以是直流,也可以是交流,图中为交流。
LISN 为测试EMI 的阻抗匹配网络,
uH L L 5021==,uF C C 1.021==,Ω==5021R R ,这个网络对于输入的低频分量,其1L 、
2L 可看作短路,1C 、2C 可看作开路,所以不影响输入到输出的功率传递;对于蓝色框内开
关电源所产生的高频分量,其1L 、2L 可看作开路,1C 、2C 可看作短路,因此开关电源输入线(线1和线2)上的高频电流分量将完全流过1R 、2R ,再将1R 、2R 上的电流信号用频谱分析仪进行测试,就可获得每一根输入线上的电流信号频谱,这些电流信号频率也被叫作传导EMI 噪声频谱,1R 、2R 就是测试传导EMI 的等效负载。
利用传导EMI 的的测试线路,可以将不加EMI 滤波器时的开关电源,所产生的噪声用图2(a)的电路等效,如果再将不加EMI 滤波器的开关电源在高频段用一个噪声电压源和三个噪声阻抗表示的话,则图2(a)的电路可以进一步用图2(b)来等效。
由图2(b)
可知,产生传导EMI
i
i (a) (b) 图2: 不加EMI 滤波器的开关电源之EMI 等效电路
的根源有三个,一个是EMI 源N v ,一个是EMI 途径1Z 、2Z 和c Z ,再一个就是EMI 的负载1R 和2R 。
等效电路中的EMI 负载是固定的50欧电阻,而变化的是EMI 源及EMI 途径。
如何确定用不同功率变换器、不同PCB Layout 、不同结构件、不同控制方式等实现的开关电源之传导EMI 等效电路是分析和设计传导EMI 滤波器的关键,同时也是指导抑制传导EMI 的有力手段。
另外如将图2(b)中每根线上的噪声电流写成下面的形式:
m cm D i i t i +=)(1 m cm D i i t i −=)(2
则每根线上的噪声就可分别转化为共模噪声cm i 与差模噪声m D i 之合成,此时的图2(b)可画成图3所示。
测试时也可用特殊的噪声分离器,先测试出共模噪声和差模噪声,然后结合没有
i )
图3: 用共模和差模表示的EMI 等效电路
EMI 滤波的开关电源之共模和差模EMI 等效电路,来分别加上合适的共模和差模EMI 滤波器,以达到EMI 标准的要求。
由此可知,传导EMI 滤波器一般可以用共模滤波和差模滤波来组成。
在开关电源中用得比较多的传导EMI 滤波器如图4所示,它由一个两阶差模滤波器和一个两阶共模滤波器组成,滤波器中的差模电容一般在0.1uF~1uF 之间,而共模电容则
L'
N'
EG
AC+
AC-
图4: 两阶EMI 滤波器的一般结构
需由安全要求决定,其值较小(通常为数千pF )。
一旦滤波器中的电容确定后,剩下的元件就是如何设计差模电感和共模电感了。
假定在设计这两个电感之前,已通过测试和计算,获得了为满足低频段EMI 衰减要求的滤波器转折频率分别为cm f 和m D f ,
设计前将包含图4所示EMI 滤波器的开关电源EMI 测试线路重新画于图5。
对图5可分别绘制相应的EMI 差模
图5: 包含EMI 滤波器的开关电源之EMI 测试线路等效电路和EMI 共模等效电路,如图6(a)和6(b)。
下面结合图6的EMI 等效电路,分别给出差模电感和共模电感的设计方法。
(a) 差模EMI 等效电路 (b) 共模EMI 等效电路
图6:含EMI 滤波器的开关电源之EMI 等效电路
A :EMI 差模滤波电感的设计方法
第一步:根据差模滤波器的转折频率m D f 和选择的差模电容,用下式决定差模电感的大小:
x
Dm D C f L 21
)
21(
2π= 第二步:根据输入最大有效值电流,由下式选择绕组的线径:
J
I d Lrms
π4=
(mm) 第三步:初步选择一个铁芯大小,其材料可选用导磁率不是很高的铁氧体,形状可选用环形,
并计算所选铁芯可以绕制的最大匝数:
有两个绕组,单层,每个绕组可以绕制150°到170°,故最大可绕制的匝数为:
d
d N core
π]360160[max =
匝 其中:core d 为铁芯的内径。
第四步:按下式计算该铁芯不饱和可以绕制的最大匝数:
810×=
c
m Lpeak
D D A B I L N 匝 其中:Lpeak I 为电感中流过的最大电流峰值,m B 为铁芯所允许的最大工作磁密。
如果max N N D <,且相差不是太远,则铁芯的大小是合适的;如果max N N D >,
则需另选一个大一点的铁芯进行重新设计。
第五步:计算差模电感铁芯的有效导磁率:
c
D o m
D e A N l L 2
µµ=
B :EMI 共模滤波电感的设计方法
第一步:根据共模滤波器的转折频率cm f 和选择的差模电容,用下式决定差模电感的大小:
y
cm c C f L 1
)
21(
2π= 第二步:根据输入最大有效值电流,由下式选择绕组的线径:
J
I d Lrms
π4=
(mm) 第三步:初步选择一个铁芯大小,其材料可选用导磁率非常高的Mn-Zn 铁养体,形状可选
用环形,并计算所选铁芯可以绕制的最大匝数:
有两个绕组,单层,每个绕组可以绕制150°到170°,故最大可绕制的匝数为:
d
d N core
π]360160[max =
匝 其中:core d 为铁芯的内径。
第四步:按下式计算该电感的匝数:
L
c
c A L N 1000
= 匝 其中:c L 单位(mH )
,L A 单位(mH/1000匝),可从铁芯手册中获得。
如果max N N c <,且相差不是太远,则铁芯的大小是合适的;如果max N N c >,
则需另选一个大一点的铁芯进行重新设计。
比较上面EMI 差模滤波电感和EMI 共模滤波电感的设计方法,可以看出它们是非常类似的,只是两种铁芯材料的选择有所不同,差模电感一般电感量较小,其最大磁密由输入电流的峰值决定,所以它的有效导磁率不能太高,一般应选择加有均匀气隙分布的铁氧体;而在共模电感中,因其输入电流及差模电流在两个绕组中所产生的磁通相互抵消,所以它的磁饱和是有共模干扰电流的幅度决定的,另外由于共模电容非常小,所以共模电感一般都会非常大,因此共模电感铁芯的选择应该是导磁率尽可能高的铁氧体材料,如Mn-Zn 铁氧体,以便在整个EMI 频段(10KHz-30MHz )内都得到高阻抗。
再者这两个EMI 滤波电感的绕组在开关纹波不大时,均可采用单根线绕制。
在低成本的开关电源中,往往不用差模电感,而直接用共模电感的漏感来作为差模电感,此时因先按要求设计及制作好共模电感,然后通过测试,测取其漏感值)(Leak c L ,并控制漏感的大小,使其在最大输入电流峰值下不会饱和,即2)
()10×<
peak L c
c m leak c I A N B L (,最后再
按)
(21
)
21(Leak c Dm x L f C π=计算差模电容。