(0 0)2 (4 5)2 (3 7)2 101.
8.设z为任意实数,相应的所有点P(1,2,z)的集合是什么图形? 解:是过点(1,2,0)且垂直于xOy平面的直线.
能力提升 9.坐标平面yOz上一点P满足:(1)横、纵、竖坐标之和为2;(2)到
点A(3,2,5)、B(3,5,2)的距离相等.求点P的坐标. 解:设P(x,y,z) 由题意知
x y z 2
(x 3)2 (y 2)2 (z 5)2
(x
3)2
(y
5)2
(z
2)2
x 0
解方程组得x=0,y=1,z=1
∴P点坐标为(0,1,1).
10.侧棱垂直底面的三棱柱叫直三棱柱.已知直三棱柱ABC-
A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱 AA1=2,M、N分别是A1B1,A1A的中点.求MN的长. 分析:当几何体中过某一点的三条棱两两垂直时,可建立恰当
D.yOz平面上
解析:A(2,0,3)其中纵坐标为0,∴点A应在xOz平面上.
答案:C
4.设点B是点A(2,-3,5)关于xOy面的对称点,则|AB|=( )
A.10
B. 10
C. 38
D.38
解析:点A(2,-3,5)到平面xOy的距离为5,由于B与A关于平面
xOy对称,所以点B到平面xOy的距离也是5.故|AB|=10.
(2)坐标平面和坐标轴上点的坐标特点
坐标平面 xOy平面
xOz平面
yOz平面
坐标特点
z=0
y=0
x=0
点的坐标 (x,y,0)