运动生物化学第六章
- 格式:ppt
- 大小:1.06 MB
- 文档页数:28
一、名词解释:1、运动生物化学:研究体育运动对机体化学组成、化学变化的影响规律以及这些影响和运动能力的关系。
2、必需氨基酸:人体自身不能合成或合成速率低不能满足人体需要,必须从食物中摄取进行补充的氨基酸3、必需脂肪酸:维持哺乳动物正常生长所必需,但机体自己不能合成,必须依赖食物供应的不饱和脂肪酸,称之为必需脂肪酸。
4、蛋白质:由许多氨基酸通过肽键连接而形成的高分子有机化合物。
5、糖异生:非糖物质在肝脏内转变为葡萄糖和糖原的过程。
6、二肽:两个氨基酸由一个肽键连接形成的化合物。
7、酶:是生物细胞产生的具有催化功能的蛋白质。
8、酶活性:酶所具有的催化能力。
9、同工酶:在生化中把催化相同反应,而催化特性、理化性质及生物学性质不同的一类酶。
10、激素:由内分泌细胞合成并分泌的化学物质。
11、生物氧化:有机物质在生物体细胞内氧化分解产生CO2和H2O并释放出大量能量的过程。
12、底物水平磷酸化:指在物质分解代谢过程中,代谢物脱氢后,能量在分子内部重新分布,形成高能磷酸化合物,然后将高能磷酸基团转移到ADP形成ATP的过程。
13、氧化磷酸化:在生物氧化过程中,代谢物脱下的氢经呼吸链氧化生成水时,所释放出的能量用于ADP磷酸化生成ATP的过程。
14、糖酵解:糖原和葡萄糖在无氧条件下分解生成乳酸,并合成ATP的过程称为糖的无氧代谢。
15、三羧酸循环:由乙酰CoA和草酰乙酸缩合生成含三个羧基的柠檬酸,反复进行脱氢、脱羧,又生成草酰乙酸的重复循环反应的过程。
16、脂肪动员:储存在皮下或腹腔的脂肪组织中的脂肪,在脂肪酶的作用下分解为脂肪和甘油,并释放入血以供其他组织氧化利用,这个过程称之为脂肪动员。
17、β—氧化:脂肪酸氧化分解时,其碳链的断裂是在β—位碳原子处发生。
18、酮体:脂肪酸在肝内分解氧化时的特有的中间代谢产物。
19、氨基酸代谢库:经食物消化、吸收的氨基酸(外源性氨基酸)与体内组织蛋白质降解产生的氨基酸(内源性氨基酸)混合在一起,分布与体内各处。
科目:运动生物化学1、名词解释:运动生物化学运动生物化学是从分子水平探讨运动人体的变化规律,并将这些理论应用于体育锻炼与竞技体育的实践的一门学科。
2、运动生物化学的主要学习内容有哪些?运动生物化学的主要学习内容有:(1)、揭示运动人体变化的本质(2)、评定和监控运动人体的机能(3)、科学地指导体育锻炼和运动训练第二章糖代谢与运动1. 名词解释:糖:O O|| ||糖是一类含有多羟基(—OH)的醛类(—C—H)或酮类(—C—)化合物的总称。
血糖:葡萄糖是血糖的基本成分,人体空腹血糖浓度大约为4.4~6.6mmol/L,总量为6g。
糖酵解:糖在氧气供应不足情况下,经细胞液中一系列酶催化,最后生成乳酸的过程称为糖酵解。
糖的有氧氧化:葡萄糖或者糖原在有氧条件下氧化分解,生成二氧化碳和水,同时释放出大量的能量。
是人体内糖分解代谢的主要途径。
糖异生作用:p562. 说明糖的分类和生物学功能。
糖的种类繁多,根据其结构特点,可以分为单糖、寡糖、多糖三类。
1、糖可提供机体所需的能量2、糖在脂肪代谢中的调节作用3、糖具有节约蛋白质的作用4、糖具有促进运动性疲劳恢复的作用3. 糖酵解和糖有氧氧化的过程是?产物是?一分子葡萄糖释放多少ATP?糖酵解的产物是乳酸,一分子葡萄糖分子经糖酵解产生2分子的ATP,一分子糖原分子则产生3A TP。
有氧氧化的产物是水、二氧化碳和ATP。
一分子葡萄糖分子彻底氧化产生38分子的A TP,一分子糖原分子则产生39ATP。
4. 糖异生作用在运动中的意义是什么?1、ni补体内糖量不足,维持血糖相对稳定。
体内糖储量有限,糖的消耗量大于储量,仅靠肝糖原分解维持血糖浓度还不够,故糖异生在此诱发了他的作用。
2、乳酸异生为糖有利于运动中乳酸消除,回收乳酸分子中的能量,更新肝糖原,防止乳酸中毒有重要意义。
5. 说明不同运动时,随时间的延长,血糖的变化情况。
为什么说血糖与长时间运动耐力有关?血糖浓度在正常空腹时较为恒定,大约为4.4~6.6mmol/L。
《运动生物化学》课程教学大纲课程编码:50913005 学分:2 总学时:36说明【课程性质】《运动生物化学》课程为体育教育专业学科平台课程。
【教学目的】通过本课程的学习,使学生了解运动时人体物质变化特点以及物质代谢与能量代谢的规律,懂得运动生物化学在运动训练和体育锻炼中的重要作用,掌握增强体质、促进健康、提高运动能力的训练方法以及训练和锻炼效果评定的生化原理与方法,着力提高学生从事指导运动训练和体育锻炼的能力和综合素质。
【教学任务】了解人体的正常机能活动及体育运动中人体生化的变化和适应的规律,培养学分析问题和解决问题的能力,理论联系实际,以指导体育教学和训练中的实际问题,因材施教,进而提高运动成绩。
【教学原则和方法】教学原则:注重掌握基础理论知识,正确掌握实验方法和技能技巧,培养学生动手能力和分析问题解决问题的能力。
教学方法:理论联系实际,运用启发式教学,通过实验培养实际操作能力。
【教学内容】人体的化学组成、运动时机体的能量代谢、运动和糖代谢、运动和脂类代谢、运动和蛋白质代谢、不同人群体育锻炼的生化特点与评定、运动性疲劳的生化、体育锻炼效果的生化评定。
【先修课程要求】本课程要求学生先修《运动解剖学》等课程。
【学时分配】【教材与主要参考书】教材:《运动生物化学》,张蕴琨,高等教育出版社,2007年8月,第1版参考书:[1]《运动生物化学》,冯美云,人民体育出版社,2005年6月,第1版[2]《运动生物化学习题集》,曹建民,人民体育出版社,2011年1月,第1版[3]《运动生物化学概论》,许豪文,高等教育出版社 2001年9月,第1版[4]《运动生物化学题解》,张蕴琨,高等教育出版社,2007年7月,第1版大纲内容绪论【教学目的和要求】理解运动生物化学的研究任务及与各学科的关系。
了解运动生物化学的发展简史。
【内容提要】一、运动生物化学的研究任务二、运动生物化学在体育科学中的地位三、运动生物化学的发展【教学重点与难点问题】教学重点:运动生物化学的概念。
《运动生物化学》习题参考答案绪论一、名词解释1.运动生物化学运动生物化学是生物化学的分支,是从分子水平研究人体化学组成对运动的适应,揭示运动过程中人体物质、能量代谢及调节规律的学科。
二.问答题1.运动生物化学的研究内容是什么?(一)人体化学组成对运动的适应(二)运动时物质能量代谢的特点和规律(三)运动训练的生物化学分析2.试述运动生物化学的发展简史。
答:运动生物化学的研究开始于20世纪20年代,在40-50年代有较大发展,尤其是该时期前苏联进行了较为系统的研究,并于1955年出版了第一本运动生物化学的专著《运动生物化学概论》,初步建立了运动生物化学的学科体系,到60年代,该学科成为一门独立的学科。
至今,运动生物化学已经成为体育科学中一门重要的专业基础理论学科。
第一章糖类、脂类一、名词解释1、单糖:凡不能被水解成更小分子的糖称为单糖2、类脂:指一些理化性质与三脂酰甘油相似,不含结合脂肪酸的脂类化合物。
3、必需脂肪酸:把维持人体正常生长所需,但体内又不能合成必须从外界摄取的多不饱和脂肪酸称为必需脂肪酸二.填空题1.单糖、低聚糖、多糖2、葡萄糖3、血糖、肝糖原、肌糖原4.甘油、脂肪酸5、氧化供能三.问答题1、糖的供能特点答:1.当以90%-95%VO2max以上强度运动时,糖供能占95%左右。
2.是中等强度运动的主要燃料。
3.在低强度运动中糖是脂肪酸氧化供能的引物,并在维持血糖水平中起关键作用。
4.任何运动开始,加力或强攻时,都需要由糖代谢提供能量。
2、糖在运动中的供能特点是什么?答:运动时三脂酰甘油供能的重要性是随运动强度的增大而降低,随运动持续时间的延长而增高。
尽管三脂酰甘油作为能源物质效率不如糖,但其释放的能量是糖或蛋白质所提供能量的2倍。
所以,在静息状态、低强度和中等强度运动时,是理想的细胞燃料。
3、胆固醇在体内的主要代谢去路?答:1、在肝脏内胆固醇可被氧化成胆酸,胆酸主要与甘氨酸或牛磺酸结合生成胆汁酸随胆汁排出,是排泄的主要途径2、储存于皮下的胆固醇经日光(紫外线)照射,可进一步转化生成维生素D33、胆固醇在肾上腺皮质可转化成肾上腺皮质激素,在性腺可转变为性腺激素第二章蛋白质一、名词解释1、必需氨基酸:人体不能自身合成,必须从外界摄取以完成营养需要的氨基酸,称为必需氨基酸。
这是运动生化后部份的温习资料,9.10.11章的要紧以选择和判定的形式考察,章各类题型都可能有第六章运动性疲劳及恢复进程的生化特点运动性疲劳:机体生理进程不能持续其性能在一特定水平上和/或不能维持预定的运动强度。
在运动进程中显现了机体工作能力临时性降低,但通过适当的休息和调整后,能够恢恢复有性能水平。
肌肉运动能力下降是运动性疲劳的大体特性和本质特点运动性疲劳是运动训练中常见的一种正常现象。
运动性疲劳发生的部位及转变疲劳的分类:一、躯体性疲劳:要紧表现运动能力的下降中枢性疲劳:指运动引发的中枢神经系统不能产生和维持足够的冲动给肌肉以知足运动所需的现象。
发生部位:起于大脑、止于脊髓运动神经元。
外周性疲劳:是指运动引发的骨骼肌功能下降,不能维持预订收缩的现象。
发生部位:发生于神经肌肉接点至骨骼肌收缩蛋白。
二、心理性疲劳:要紧表现行为的改变。
一、不同时刻全力运动疲劳时的代谢特点超量恢恢复理一、超量恢复:是指运动时消耗的物质,在运动后恢复期,不仅可恢复到原先水平,而且在一按时刻内显现超过原先水平的恢复现象。
二、运动后物质代谢的恢复在训练课中,如何选择最适宜的休息间歇以保证完成训练量,又取得良好的训练成效,是值得注意的问题。
运动中,能源物质消耗、代谢产物增加;运动后,能源物质恢复,代谢产物排除;各类物质的恢复和排除所需的时刻是不同的,通经常使用半时反映来描述其恢复或排除的快慢。
运动中消耗的物质,在运动后的恢复期中,数量增加至运动前数量的一半所需要的时刻称为半时反映;而运动中代谢的产物,在运动后的恢复期中,数量减少一半所需要的时刻也称为半时反映。
一、乳酸的排除作用若是运动肌中有大量的乳酸生成,那么选择氢离子透过肌膜达二分之一量的时刻,作为适宜休息间歇的最适宜的时刻。
目前研究结果以为,30秒全力运动的半时反映为60秒,因此,最适宜的休息间歇为60秒左右。
1分钟全力运动后,半时反映约为3-4分钟,因此,休息时刻要长达4-5分钟。
《运动生物化学》课程笔记第一章绪论一、运动生物化学的定义与任务1. 定义:运动生物化学是一门交叉学科,它结合了生物学、化学和体育学的知识,专注于研究体育运动对生物体化学成分、代谢过程及其调控机制的影响。
它旨在理解运动如何影响细胞和组织的生化过程,以及这些变化如何反馈到运动表现和健康状态。
2. 任务:(1)揭示运动对生物体化学成分的影响,包括对肌肉、骨骼、心血管系统等的影响。
(2)研究运动过程中代谢途径的变化,如糖代谢、脂肪代谢和蛋白质代谢。
(3)探讨运动如何影响酶活性、激素分泌和其他生化指标的调控。
(4)分析运动对能量产生、利用和储存的影响。
(5)研究运动与疾病预防和治疗的关系,为运动处方的制定提供科学依据。
(6)为运动员的营养补充、训练监控和疲劳恢复提供指导。
二、运动生物化学的研究内容与方法1. 研究内容:(1)生物大分子的结构与功能:研究运动对蛋白质、核酸、糖类和脂质等生物大分子的结构与功能的影响。
(2)酶与激素的作用:探讨运动如何影响酶的活性、激素的分泌和作用机制。
(3)能量代谢与物质代谢:研究运动状态下能量代谢途径的转换、物质代谢的调节和相互转化。
(4)运动性疾病的生化机制:分析运动性疲劳、运动性损伤和运动性疾病的生化基础。
(5)运动与生长发育、免疫、自由基的关系:研究运动如何影响生长发育过程、免疫系统的功能和自由基的产生与清除。
2. 研究方法:(1)实验室研究:包括生物化学实验、分子生物学实验、细胞培养等技术。
(2)现场调查:通过问卷调查、生理生化指标测试等方法,收集运动员的训练和比赛数据。
(3)动物实验:利用动物模型模拟运动状态,研究运动对生化过程的影响。
(4)数学模型:建立数学模型来模拟运动过程中的生化变化,进行定量分析。
(5)分子生物学方法:使用PCR、Western blot、基因测序等技术研究运动对基因表达和蛋白质功能的影响。
三、运动生物化学的发展简史1. 创立阶段(20世纪初):科学家开始关注运动对生物体化学成分的影响,初步探讨了运动与代谢的关系。