第一章直流伺服电机
- 格式:ppt
- 大小:4.33 MB
- 文档页数:34
直流伺服电动机的分类
直流伺服电动机具有良好的启动、制动和调速特性,可以便利地在较宽的范围内实现平滑无级调速,故其常用在对伺服电动机的调速性能要求较高的设备中。
直流伺服电动机依据磁场励磁的方式不同,可以分为它励式、永磁式、并励式、串励式、复励式五种;按结构来分,可以分为电枢式、无槽电枢式、印刷电枢式、空心杯电枢式等;按转速的凹凸可分为两大类,高速直流伺服电动机和低速大扭矩宽调速电动机。
1.高速直流伺服电动机
高速直流伺服电动机又可分为一般直流伺服电动机和高性能直流伺服电动机。
一般高速它励式直流伺服电动机的应用历史最长,但是,这种电动机的转矩-惯量比很小,不能适应现代伺服掌握技术进展的要求。
2.低速大扭矩宽调速电动机
低速大扭矩宽调速电动机又称为直流力矩电机,由于它的转子直径较大,线圈绕组多,所以力矩大,转矩—惯量比高,热容量高,能长时间过载,不需要中间传动装置就可以直联丝杠工作;并且,由于没有励磁回路的损耗,它的形状尺寸比其它直流伺服电机小。
另外,低速大扭矩宽调速电动机还有一个重要的特点:低速特性好,能够在较低的速度下平稳运行,最低速可以达到1r/min,甚至达到0.1r/min。
1。
伺服电机知识汇总(直流/交流伺服电机)伺服电机servomotor“伺服”一词源于希腊语“奴隶”的意思。
“伺服电机”可以理解为绝对服从控制信号指挥的电机:在控制信号发出之前,转子静止不动;当控制信号发出时,转子立即转动;当控制信号消失时,转子能即时停转。
伺服电机是自动控制装置中被用作执行元件的微特电机,其功能是将电信号转换成转轴的角位移或角速度。
伺服电机分为交流伺服和直流伺服两大类交流伺服电机的基本构造与交流感应电动机(异步电机)相似。
在定子上有两个相空间位移90°电角度的励磁绕组Wf和控制绕组WcoWf,接恒定交流电压,利用施加到Wc上的交流电压或相位的变化,达到控制电机运行的目的。
交流伺服电机具有运行稳定、可控性好、响应快速、灵敏度高以及机械特性和调节特性的非线性度指标严格(要求分别小于10%~15%和小于15%~25%)等特点。
直流伺服电机基本构造与一般直流电动机相似。
电机转速n=E/K1j=(Ua-IaRa)/K1j,式中E 为电枢反电动势,K为常数,j为每极磁通,Ua、Ia为电枢电压和电枢电流,Ra为电枢电阻,改变Ua或改变φ,均可控制直流伺服电动机的转速,但一般采用控制电枢电压的方法,在永磁式直流伺服电动机中,励磁绕组被永久磁铁所取代,磁通φ恒定。
直流伺服电动机具有良好的线性调节特性及快速的时间响应。
直流伺服电机的优点和缺点优点:速度控制精确,转矩速度特性很硬,控制原理简单,使用方便,价格便宜。
缺点:电刷换向,速度限制,附加阻力,产生磨损微粒(无尘易爆环境不宜)交流伺服电机的优点和缺点优点:速度控制特性良好,在整个速度区内可实现平滑控制,几乎无振荡,90%以上的高效率,发热少,高速控制,高精确度位置控制(取决于编码器精度),额定运行区域内,可。
伺服电机的种类特点及应用伺服电机是一种能够根据控制信号准确地控制角度、位置或速度的电动机。
它通过内置的位置、速度或力传感器以及反馈控制系统,可以实现精确定位、快速响应和稳定控制。
伺服电机在工业自动化、机器人、航空航天、医疗设备等领域有着广泛的应用。
根据不同的控制方式和结构特点,伺服电机可以分为直流伺服电机、交流伺服电机和步进伺服电机。
1. 直流伺服电机直流伺服电机是最常见和应用最广泛的伺服电机之一。
它具有结构简单、响应速度快、转矩规模广等特点。
直流伺服电机通常由直流电机、编码器、功率放大器等组成。
它可以通过调整功率放大器的电压或电流,实现对电机转矩的精确控制。
直流伺服电机被广泛应用于工业自动化、机器人、航空航天等领域。
2. 交流伺服电机交流伺服电机是一种使用交流电作为动力源,通过电子器件来控制电机的转速和位置的伺服电机。
它具有高效能、性能稳定等特点。
交流伺服电机通常由交流电机、编码器、位置控制器等组成。
它可以通过位置控制器控制电机的输出位置、并通过编码器进行位置反馈,实现高精度的位置控制。
交流伺服电机被广泛应用于工业自动化、机器人、数控机床等领域。
步进伺服电机是一种通过控制信号使电机按固定的步距转动的伺服电机。
它具有结构简单、定位精度高、价格低廉等特点。
步进伺服电机通常由步进电机、驱动器、编码器等组成。
它不需要反馈传感器就能够实现准确定位控制,并且能够在断电后保持当前位置。
步进伺服电机被广泛应用于数控机床、印刷机械、标志设备等需要精确定位的领域。
除了上述分类外,还可以根据控制方式将伺服电机分为位置伺服电机、速度伺服电机和力矩伺服电机。
1. 位置伺服电机位置伺服电机是一种能够精确控制电机位置的伺服电机。
通过位置反馈传感器,可以实时监测电机位置,并通过控制器对电机的控制信号进行调节,使电机按照预定位置运动。
位置伺服电机广泛应用于需要精确定位的场合,如机床、自动化生产线等。
2. 速度伺服电机速度伺服电机是一种能够精确控制电机转速的伺服电机。
目录直流(DC)与交流(AC)伺服电机及驱动 (1)1.直流(DC)伺服电机及其驱动 (1)(1)直流伺服电机的特性及选用 (1)(2)直流伺服电机与驱动 (2)(3)PWM直流调速驱动系统原理 (3)2.交流(AC)伺服电机及其驱动 (4)直流(DC)与交流(AC)伺服电机及驱动1.直流(DC)伺服电机及其驱动(1)直流伺服电机的特性及选用直流伺服电机通过电刷和换向器产生的整流作用,使磁场磁动势和电枢电流磁动势正交,从而产生转矩。
其电枢大多为永久磁铁。
直流伺服电机具有较高的响应速度、精度和频率,优良的控制特性等优点。
但由于使用电刷和换向器,故寿命较低,需要定期维修。
20世纪60年代研制出了小惯量直流伺服电机,其电枢无槽,绕组直接粘接固定在电枢铁心上,因而转动惯量小、反应灵敏、动态特性好,适用于高速且负载惯量较小的场合,否则需根据其具体的惯量比设置精密齿轮副才能与负载惯量匹配,增加了成本。
直流印刷电枢电动机是一种盘形伺服电机,电枢由导电板的切口成形,导体的线圈端部起换向器作用,这种空心式高性能伺服电机大多用于工业机器人、小型NC机床及线切割机床上。
宽调速直流伺服电机的结构特点是励磁便于调整,易于安排补偿绕组和换向极,电动机的换向性能得到改善,成本低,可以在较宽的速度范围内得到恒转速特性。
永久磁铁的宽调速直流伺服电机的结构如下图所示。
有不带制动器a和带制动器b两种结构。
电动机定子(磁钢)1采用矫顽力高、不易去磁的永磁材料(如铁氧体永久磁铁)、转子(电枢)2直径大并且有槽,因而热容量大,结构上又采用了通常凸极式和隐极式永磁电动机磁路的组合,提高了电动机气隙磁通密度。
同时,在电动机尾部装有高精密低纹波的测速发电机,并可加装光电编码器或旋转变压器及制动器,为速度环提供了较高的增量,能获得优良的低速刚度和动态性能。
日本发那科(FANUC)公司生产的用于工业机器人、CNC机床、加工中心(MC)的L系列(低惯量系列)、M系列(中惯量系列)和H系列(大惯量系列直流伺服电机)。
直流伺服电机实验报告直流伺服电机实验报告引言:直流伺服电机是一种常见的电动机类型,广泛应用于工业自动化、机械控制和航空航天等领域。
本实验旨在通过对直流伺服电机的测试和分析,了解其性能特点和控制原理。
一、实验目的本实验的主要目的是:1. 理解直流伺服电机的基本原理和工作方式;2. 测试直流伺服电机的性能参数,如转速、转矩和响应时间等;3. 掌握直流伺服电机的控制方法,如位置控制和速度控制。
二、实验装置与步骤1. 实验装置:本实验使用的实验装置包括直流伺服电机、电源、电压表、电流表、转速表和控制器等。
2. 实验步骤:(1)接线:按照实验装置的接线图连接电源、电机和测量仪器。
(2)电机参数测量:通过改变电压和电流的大小,测量直流伺服电机的转速和转矩特性。
(3)控制方法测试:使用控制器对直流伺服电机进行位置控制和速度控制,观察并记录控制效果。
三、实验结果与分析1. 电机参数测量结果:通过改变电压和电流的大小,测量了直流伺服电机在不同工作条件下的转速和转矩。
结果显示,随着电压和电流的增加,电机的转速和转矩也随之增加。
这说明直流伺服电机的性能受电压和电流的影响较大。
2. 控制方法测试结果:通过控制器对直流伺服电机进行位置控制和速度控制,观察了电机的响应时间和控制效果。
结果显示,直流伺服电机对位置控制和速度控制的响应时间较短,控制效果较好。
这说明直流伺服电机具有较高的控制精度和灵敏度。
四、实验结论通过本实验,我们对直流伺服电机的性能特点和控制原理有了更深入的了解。
实验结果表明,直流伺服电机具有较高的转速和转矩,且对位置控制和速度控制具有较好的响应性能。
这使得直流伺服电机在工业自动化和机械控制领域有着广泛的应用前景。
五、实验心得通过本次实验,我深入学习了直流伺服电机的工作原理和控制方法。
在实验过程中,我不仅掌握了实验装置的使用方法,还学会了如何测量和分析电机的性能参数。
这对我今后从事相关领域的研究和工作具有重要意义。
第一章概论一、项目概况(一)项目名称并激式直流伺服电机项目(二)项目选址某某经济园区项目建设区域以城市总体规划为依据,布局相对独立,便于集中开展科研、生产经营和管理活动,并且统筹考虑用地与城市发展的关系,与项目建设地的建成区有较方便的联系。
(三)项目用地规模项目总用地面积47236.94平方米(折合约70.82亩)。
(四)项目用地控制指标该工程规划建筑系数53.18%,建筑容积率1.32,建设区域绿化覆盖率6.43%,固定资产投资强度182.02万元/亩。
(五)土建工程指标项目净用地面积47236.94平方米,建筑物基底占地面积25120.60平方米,总建筑面积62352.76平方米,其中:规划建设主体工程39973.01平方米,项目规划绿化面积4006.85平方米。
(六)设备选型方案项目计划购置设备共计132台(套),设备购置费3651.46万元。
(七)节能分析1、项目年用电量1008043.37千瓦时,折合123.89吨标准煤。
2、项目年总用水量38940.98立方米,折合3.33吨标准煤。
3、“并激式直流伺服电机项目投资建设项目”,年用电量1008043.37千瓦时,年总用水量38940.98立方米,项目年综合总耗能量(当量值)127.22吨标准煤/年。
达产年综合节能量51.96吨标准煤/年,项目总节能率24.19%,能源利用效果良好。
(八)环境保护项目符合某某经济园区发展规划,符合某某经济园区产业结构调整规划和国家的产业发展政策;对产生的各类污染物都采取了切实可行的治理措施,严格控制在国家规定的排放标准内,项目建设不会对区域生态环境产生明显的影响。
(九)项目总投资及资金构成项目预计总投资17604.47万元,其中:固定资产投资12890.66万元,占项目总投资的73.22%;流动资金4713.81万元,占项目总投资的26.78%。
(十)资金筹措该项目现阶段投资均由企业自筹。
(十一)项目预期经济效益规划目标预期达产年营业收入42277.00万元,总成本费用32241.16万元,税金及附加355.06万元,利润总额10035.84万元,利税总额11775.15万元,税后净利润7526.88万元,达产年纳税总额4248.27万元;达产年投资利润率57.01%,投资利税率66.89%,投资回报率42.76%,全部投资回收期3.84年,提供就业职位851个。
第一章1-1名词解释:1、直流测速发电机的输出特性:直流测速发电机的输出特性是指励磁磁通φ和电刷接触电阻Ra为常数时,输出电压U随转子转速n的变化曲线,即U=f(n)2、电枢反应:由于电枢在绕动的过程中产生的磁场影响了主磁场、3、相位误差:自控系统要求异步测速发电机的输出电压和励磁电阻相位相同,即U2和U1的相位相同,在既定的转速范围内,输出电压和励磁电压之间的相位差△Ψ称为相位误差。
第二章直流伺服电动机2—1直流伺服电动机1、直流伺服电动机的动态特性:直流伺服电动机的动态特性是指:电动机的电枢上外施电压突变时,电动机从一种稳定转速过渡到另一稳定转速的过程,即 n=f(t)或Ω=f(t)。
2、双极性PWM的死区:在双极性驱动下,由于开关管自身都有开关延时,如果“开”“关”延时时间不同,可能在同一桥臂出现直通现象,引起电源短路,为了避免这种情况,在同一桥臂的两个开关管在“开”“关”交替时,增加一个低电平延时,这个低电平延时称为死区。
2—21、霍尔效应:通有电流的导体或半导体薄片至于磁场中,由于受到洛伦兹力的作用载流子将向薄片侧边积累,则在垂直于电流I磁场B的方向上出现一个电位差UH,这个现象称为霍尔效应。
2、无传感器位置检测:电动机通过检测定子绕组的反电动势或定子三次谐波或续流二极管电流通路作为转子磁钢的位置信号,该信号检出后,经数字电路处理,送给逻辑开关电路去控制无刷直流电动机换向。
2—31、磁状态角:电枢磁场在空间保持某一状态时转子所转过的空间电角度,即定子上前后出现的两个不同磁场轴线间所夹的电角度称为磁状态角,或成状态角Θm。
2---41、反电动势积分法:当有磁极转过不导通相时,不导通绕组会产生反电动势,通过对电动机不导通相反电动势的积分信号来获取转子位置信息,积分值一旦达到阈值,即换相值清。
2、续流二极管法:通过监视并联在逆变器两端的续流二极管的导通情况来确定电动机功率管的换相瞬时,在某些连接法中,无刷直流电机三相绕组中总有一相处于断开状态,断开相处于发电状态,产生的电动势会使通过其中的一个二极管流入电源,监视6个续流二极管的导通,关断状况就可以获得6个功率管的开关顺序。