第一性原理计算 ppt课件
- 格式:ppt
- 大小:197.50 KB
- 文档页数:11
第一性原理计算原理和方法(总40页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第二章 计算方法及其基本原理介绍化学反应的本质是旧键的断裂和新建的形成,参与成键原子的电子壳层重新组合是导致生成稳定多原子化学键的明显特征。
因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似,就不可能求解其Schrodinger 方程。
这些近似使一般量子力学方程简化为现代电子计算机可以求解的方程。
这些近似和关于分子波函数的方程形成计算量子化学的数学基础。
2.1 SCF-MO 方法的基本原理分子轨道的自洽场计算方法(SCF-MO)是各种计算方法的理论基础和核心部分,因此在介绍本文计算工作所用方法之前,有必要对其关键的部分作一简要阐述。
2.1.1 Schrodinger 方程及一些基本近似 为了后面介绍各种具体在自洽场分子轨道(SCF MO)方法方便,这里将主要阐明用于本文量子化学计算的一些重要的基本近似,给出SCF MO 方法的一些基本方程,并对这些方程作简略说明,因为在大量的文献和教材中对这些方程已有系统的推导和阐述[1-5]。
确定任何一个分子的可能稳定状态的电子结构和性质,在非相对论近似下,须求解定态Schrodinger 方程 ''12121212122ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =⎥⎥⎦⎤⎢⎢⎣⎡-++∇-∇-∑∑∑∑∑∑≠≠ (2.1)其中分子波函数依赖于电子和原子核的坐标,Hamilton 算符包含了电子p 的动能和电子p 与q 的静电排斥算符,图2-1分子体系的坐标∑∑≠+∇-=p q p pq p e r H 12121ˆ2 (2.2) 以及原子核的动能∑∇-=A A AN M H 2121ˆ (2.3) 和电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pAA eN R Z Z r Z H ,21ˆ (2.4) 式中Z A 和M A 是原子核A 的电荷和质量,r pq =|r p -r q |,r pA =|r p -R A |和R AB =|R A -R B |分别是电子p 和q 、核A 和电子p 及核A 和B 间的距离(均以原子单位表示之)。
第一性原理计算方法引言前面讲述的有限元和有限差分等数值计算方法中,求解的过程中需要知道一些物理参量,如温度场方程中的热传导系数和浓度场方程中的扩散系数等,这些参量随着材料的不同而改变,需要通过实验或经验来确定,所以这些方法也叫做经验或者半经验方法。
而第一性原理计算方法只需要知道几个基本的物理参量如电子质量、电子的电量、原子的质量、原子的核电荷数、布朗克常数、波尔半径等,而不需要知道那些经验或半经验的参数。
第一性原理计算方法的理论基础是量子力学,即对体系薛定额方程的求解。
量子力学是反映微观粒子运动规律的理论。
量子力学的出现,使得人们对于物质微观结构的认识日益深入。
原则上,量子力学完全可以解释原子之间是如何相互作用从而构成固体的。
量子力学在物理、化学、材料、生物以及许多现代技术中得到了广泛的应用。
以量子力学为基础而发展起来的固体物理学,使人们搞清了“为什么物质有半导体、导体、绝缘体的区别”等一系列基本问题,引发了通讯技术和计算机技术的重大变革。
目前,结合高速发展的计算机技术建立起来的计算材料科学已经在材料设计、物性研究方面发挥着越来越重要的作用。
但是固体是具有~1023数量级粒子的多粒子系统,具体应用量子理论时会导致物理方程过于复杂以至于无法求解,所以将量子理论应用于固体系统必须采用一些近似和简化。
绝热近似(Born-Oppenheimei近似)将电子的运动和原子核的运动分开,从而将多粒子系统简化为多电子系统。
Hartree-Fock近似将多电子问题简化为仅与以单电子波函数(分子轨道)为基本变量的单粒子问题。
但是其中波函数的行列式表示使得求解需要非常大的计算量;对于研究分子体系,他可以作为一个很好的出发点,但是不适于研究固态体系。
1964年,Hohenberg 和Kohn 提出了严格的密度泛函理论(Density Functional Theory, DFT )。
它建立在非均匀电子气理论基础之上,以粒子数密度()r ρ作为基本变量。