西南名校联盟2020届高考适应性月考卷(一)数学(理)
- 格式:doc
- 大小:2.09 MB
- 文档页数:19
2020届高考适应性月考卷(一)理科数学★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题(本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.己知集合{}{(6)(2)0,A x x x B x y =+-<==,则()R A B ⋂=ð( ) A.[-2,1) B. [-3,1) C. (-6,2) D. (-6,-2]2.已知实数m 、n 满足m -2i =n(2+i),则在复平面内,复数z =m +ni 所对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限3.己知向量m =(-1,1),n =(1,λ),若m ⊥n ,则m +n 与m 之间的夹角为( )4.已知命题p :2(,0),2310x x x ∀∈-∞-+>,命题q :若x ≥0,则22310x x -+≤,则以下命题正确的为( )A.p 的否定为“2[0,),2310x x x ∃∈+∞-+≤”,q 的否命题为“若x<0,则22310x x -+>” B. p 的否定为“2(,0),2310x x x ∃∈-∞-+≤”,q 的否命题为“若x<0,则22310x x -+>” C. p 的否定为“2[0,),2310x x x ∃∈+∞-+≤”,q 的否命题为“若x ≥0,则22310x x -+>” D. p 的否定为“2(,0),2310x x x ∃∈-∞-+≤”,q 的否命题为“若x ≥0,则22310x x -+>”5.如图是一个算法流程图,若输入n 的值是13,输出S 的值是46,则a 的取值范围是()A.9≤a<10B.9<a ≤10C.10<a ≤11D.8<a ≤96.在三棱锥D -ABC 中,DC ⊥底面ABC ,AD =6,AB ⊥BC ,且三棱锥D -ABC 的每个顶点都在球O 的表面上,则球O 的表面积为( )A.144πB.100πC.64πD.36π7.若关于x ,y 的混合组:2190802140(0,1)x x y x y x y y a a a +-≥⎧⎪-+≥⎪⎨+-≤⎪⎪=>≠⎩,有解,则a 的取值范围是( ) A.[1,3] B.[2C.[2,91]9]8.如图所示,网格纸上小正方形的边长为l ,下图画出的是某几何体的三视图,则该几何体的体积为()A.12B.18C.24D.369.若函数2()ln f x x a x =-+(a 是与x 无关的实数)在区间(1,e)上存在零点,则实数a 的取值范围为( )A.0<a<2B.2e <a<2 C.2e -1<a<2 D.2e +1<a<210.若非零向量a ,b 的夹角为锐角θ,且c o s a b θ=,则a 被b “同余”。
2020届高考适应性月考卷(一)文科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分)【解析】1.{012}A =,,,{30}B =-,,{3012}A B =-,,,,故选D .2.222i 2i i 12i 12i i i 1z -+-+--====+-,复数z 对应的点位于第一象限,故选A .3.设三个区域圆心角比值3∶4∶5,故区域三所占面积比为512,故选C .4.选项B ,深圳、厦门的春节期间往返机票价格同去年相比有所下降,但北京的春节期间往返机票价格同去年相比有所上升;选项C ,平均价格从高到低居于前三位的城市是北京、深圳、广州;选项D ,平均价格的涨幅从高到低居于前三位的城市为天津、西安、南京,故选A .5.令x 等于x -,得32()()()()1f x g x x x ---=-+-+,利用()f x 和()g x 的奇偶性,可知32()()1f x g x x x +=-++,当2x =时,(2)(2)3f g +=-,故选B .6.由302n a n =-可知,{}n a 为等差数列,2(28302)292n n n S n n +-==-+, 当14n =或15时,n S 取得最大值,14210S =,故选D .7.由5e 5x y =-+求导,得5e x y '=-,当0x =时,5k =-,则切线方程为05(0)y x -=--,整理得50x y +=,故选C .8.由A ,B ,C ,D 是同一球面上四个点,△ABC 是正三角形,AD ⊥平面ABC ,可知球内为直三棱柱,球心为直三棱柱的中心,底面三角形的外接圆半径为32sin 60r =︒,r的半径为222639R =+=,球的表面积为24π4π39156πS R ==⨯=,故选D . 9.由1i =,1j =时,2j =,2S =,2i =;4j =,10S =,3i =;8j =,34S =,4i =;16j =,98S =,5i =,故选B .10.利用点差法可得,设11()A x y ,,22()B x y ,,代入椭圆方程得22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,,两式相减得22221212220x x y y a b --+=,整理得12122()()x x x x a -++12122()()0y y y y b -+=,可得223a b =,222c b =,故c e a ==,故选A . 11.如图1,在可行域范围内,当取点(00),时,得最小值为0;当取点(010),时,得最大值为20,故选C . 12.由题意,令()()2F x f x x =+,由任意x y <,()()2f x f y x y->--,可得()2()2f x x f y y +<+,∴()F x 在定义域内单调递增,由(1)1f =,得(1)(1)2F f=+=,∵2(log |31|)3|31|x x f -<--等价于2(l o g |31|)xf -+22log |31|3x -<,令2log |31|x t =-,有()23f t t +<,则有1t <,即2log |31|1x -<,从而|31|2x -<,解得1x <,且0x ≠,故选A .二、填空题(本大题共4小题,每小题5分,共20分)【解析】13.由||||2a b ==,(2)a a b ⊥-,得1cos 2θ=,2||()23a b a b+=+=. 14.由{}n a 是公差为2-的等差数列,11S a =,2122S a =-,41412S a =-,再由1S ,2S ,4S 成等比数列,得2111(22)(412)a a a -=-,即11a =-.15.由双曲线方程可知,a m =,b =c =2c e a ===,得21m =,则焦点坐标为(02)±,.16.直线OP 与平面1A BD 所成的角为α的取值范围是111ππ22AOA C OA ⎡⎤⎡⎤∠∠⎢⎥⎢⎥⎣⎦⎣⎦,,,由于图11sin AOA ∠,111111sin 2sincos 222C OA C OA C OA ∠∠∠===,πsin12= ,所以sin α的取值范围是1⎤⎥⎣⎦,则cos α的取值范围为0⎡⎢⎣⎦. 三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)解:(1)由312a a d =+,可知2d =, 1(1)2n a a n d n =+-=.………………………………………………………(5分)(2)由124b a ==,212312b a a a =++=,211234b q b ===, 1(1)4(13)232113n n n n b q S q --===---.……………………………………(10分)18.(本小题满分12分)解:(1)根据频率分布直方图得第一组频率为0.0150.05⨯=, ∴120.05x=,∴240x =. ………………………………………………(4分)(2)设中位数为a ,则0.0150.075(30)0.060.5a ⨯+⨯+-⨯=, ∴95323a =≈, ∴中位数为32.…………………………………………………………(8分)(3)(i )5个年龄组的平均数为11(9396979490)945x =++++=,方差为22222211[(1)230(4)]65s =-++++-=,…………………………(9分)5个职业组的平均数为21(9398949590)945x =++++=,方差为22222221[(1)401(4)] 6.85s =-++++-=.…………………………(10分)(ii )评价:从平均数来看两组的认知程度相同,从方差来看年龄组的认知程度更好. 感想:结合本题和实际,符合社会主义核心价值观即可.………………………………………………………………(12分)19.(本小题满分12分)解:(1)由向量a 与向量b 共线,可得π()2sin 3f x x ⎛⎫=- ⎪⎝⎭,则函数()f x 的最小正周期为2πT =,函数的最大值为2.…………………………………………………………(4分)(2)由π16f A ⎛⎫-= ⎪⎝⎭,得120A =︒,……………………………………(6分)由正弦定理,可得sin sin a bA B == 得2b =, ………………………………………………………………(8分)sin sin cos cos sin C A B A B =+=, ………………………………(10分)则三角形的面积S =. …………………………………………(12分)20.(本小题满分12分)(1)证明:∵AD ⊥平面BCD ,BC ⊂平面BCD ,∴AD BC ⊥, 又∵AC BC ⊥,ACAD A =,∴BC ⊥平面ACD ,BC ⊂平面ABC , ∴平面ABC ⊥平面ACD .……………………………………………………(6分)(2)解:如图2,作CD 的中点为F ,连接EF , 令A 到平面CED 的距离为d , 则11233A ECD ECD E ACD ACD VS d V S --===△△, 解得d . ……………………………………(12分) 21.(本小题满分12分)(1)解:函数21()(1)ln 2f x x a x a x =+--,a ∈R , 可得()1af x x a x'=+--,因为()f x 存在极值点为2, 所以(2)0f '=,即2a =.………………………………………………(5分)(2)证明:()f x 的导数为()1(1)1(0)a a f x x a x x x x ⎛⎫'=+--=+-> ⎪⎝⎭, ①当0a ≤时,()0f x '>恒成立,所以()f x 在(0)+∞,上为增函数,不符合题意;…………………………………………………………(6分)②当0a >时,由()0f x '=,得x a =,图2当x a >时,()0f x '>,所以()f x 为增函数; 当0x a <<时,()0f x '<,所以()f x 为减函数, 所以当x a =时,()f x 取得极小值()f a , ………………………………(8分)又因为()f x 存在两个不同零点,所以()0f a <,即21(1)ln 02a a a a a +--<,整理得1ln 12a a >-, 令1()ln 12h a a a =+-,11()02h a a '=+>,()h a 在定义域内单调递增,e e e e e e (e)ln 1ln e 1ln 2224224h h ⎛⎫⎛⎫⎛⎫⎛⎫=+-+-=- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,………………………………………………………………(10分)由ln20.6931≈,e 2.71828≈知,eln 204-<, 故e2a >成立. …………………………………………………………(12分)22.(本小题满分12分)解:(1)设0(0)A x ,,0(0)B y ,,()P x y ,, 由2BP PA =,得00()2()x y y x x y -=--,,, …………………………(2分)即000032()223x x x x x y y y y y ⎧=-=⎧⎪⇒⎨⎨-=-⎩⎪=⎩,,,………………………………………………(4分)又因为2209x y +=,所以223(3)92x y ⎛⎫+= ⎪⎝⎭,化简得2214x y +=,这就是点P 的轨迹方程.………………………………………………………………(6分)(2)当过点(10),的直线为0y =时, (20)(20)4OM ON =-=-,,,当过点(10),的直线不为0y =时,可设为1x ty =+,11()M x y ,,22()N x y ,, 联立22141x y x ty ⎧+=⎪⎨⎪=+⎩,,化简得22(4)230t y ty ++-=,…………………………………………………………(8分)由韦达定理得12224t y y t +=-+,12234y y t =-+, 12221212(1)(1)OM ON x x y y ty ty y y =+=+++21212(1)()1t y y t y y =++++222223241(1)1444t t t t t t t ---+=+++=+++2224(4)1717444t t t -++==-+++, 又由222412(4)16480t t t ∆=++=+>恒成立,得t ∈R ,……………………………………………………(10分)对于上式,当0t =时,max 1()4OM ON =, 综上所述,OM ON 的最大值为14. ………………………………(12分)。
绝密★启用前[测试时间:2020年3月5日15:00-17:00]西南名校2020届高三3月联考理科数学试卷注意事项:1.考试时间120分钟,满分150分。
2.因受新型冠状病毒影响,原定的考试时间无法进行考试,故本套试卷选择通过网络公布,以免影响高三考生的正常复习进度,公布后,考生和教师可自行打印使用此试卷。
建议打印用纸:试卷、答案:A4纸或A3纸二合一打印答题卡:A3纸(建议彩印)注:本套试卷免费公布,不得为任何个人或企业盈利所用。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}22ln(34),01x A x y x x B x x ⎧-⎫==--=≥⎨⎬-⎩⎭,全集U =R ,则()R A B = ð()A.[1,2]B.[1,2)(3,4]-C.[1,3)-D.[1,1)[2,4]- 2.已知()3i 2i ,R ia b a b -=+∈,其中i 为虚数单位,则复数i z a b =-在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知命题:p 在△ABC 中,A B >是sin sin A B >的充要条件;命题:q “1x >”是“82x >”的必要不充分条件,则下面的命题正确的是()A.p q ∧ B.p q ⌝∧ C.()p q ⌝∨ D.()p q ∧⌝4.已知正项等比数列{}n a 的前n 项和为n S ,且2474S S =,则公比q 的值为() A.1B.1或12C.32D.32±5.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程2y x =,且点P 为双曲线右支上一点,且12,F F 为双曲线左右焦点,△12F F P 的面积为43,且1260F PF ∠=︒,则双曲线的实轴的长为()A.1B.2C.4D.436.已知某几何体三视图如图所示,则该几何体的各条棱中最长棱的长度为()A.4 B.5 C.13 D.267.要得到函数1cos 2y x =的图象,只需将函数1πsin 223y x ⎛⎫=+ ⎪⎝⎭的图象上所有点的()A.横坐标缩短到原来的12(纵坐标不变),再向左平移π3个单位长度B.横坐标缩短到原来的12(纵坐标不变),再向右平移π6个单位长度C.横坐标伸长到原来的2倍(纵坐标不变),再向左平移π6个单位长度D.横坐标伸长到原来的2倍(纵坐标不变),再向右平移π3个单位长度8.已知直线:280l x y +-=上的两点,A B ,且4AB =,点P 为圆22:230D x y x ++-=上任一点,则△PAB 的面积的最大值为()A.532+ B.253+ C.432+ D.454+9.已知()1n x λ+展开式中第三项的二项式系数与第四项的二项式系数相等,()20121n n n x a a x a x a x λ+=++++ ,若12242n a a a ++= ,则()0121n n a a a a -+-+- 的值为()A.1B.-1C.81D.-8110.已知在四面体ABCD 中,2AB AD BC CD BD =====,平面ABD ⊥平面BDC ,则四面体ABCD 的外接球的表面积为()A.20π3 B.6π C.22π3 D.8π11.已知函数)(x f 是定义域为R 的偶函数,且满足)()2(x f x f =-,当10≤≤x 时,22)(x x f =,)(x g =)22(|1|log <<-a x a ,则函数)()()(x g x f x h -=所有零点的和为()A.3B .4C 5D .612.已知函数()321162f x x bx cx =++的导函数()'f x 是偶函数,若方程()'ln 0f x x -=在区间1,e e ⎡⎤⎢⎥⎣⎦上有两个不相等的实数根,则实数c 的取值范围是()A.2111,2e 2⎡⎫---⎪⎢⎣⎭,B.2111,2e 2⎡⎤---⎢⎥⎣⎦C.2111e ,22⎡⎫--⎪⎢⎣⎭D.2111e ,22⎡⎤--⎢⎥⎣⎦二、填空题:本题共4小题,每小题5分,共20分。
2020年普通高等学校招生全国统一考试适应性考试(一)数学(理)一、选择题(每小题5分,共60分) 1. 下列各式的运算结果为纯虚数的是 A. (1+i)2B. i 2(1-i)C. i(1+i)2D. i(1+i)【★答案★】A 【解析】 【分析】利用复数的四则运算,再由纯虚数的定义,即可求解.【详解】由题意,对于A 中,复数2(1)2i i +=为纯虚数,所以正确; 对于B 中,复数2(1)1i i i ⋅-=-+不是纯虚数,所以不正确; 对于C 中,复数2(1)2i i ⋅+=-不是纯虚数,所以不正确;对于D 中,复数(1)1i i i ⋅+=-+不是纯虚数,所以不正确,故选A.【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其四则运算技巧和常规思路. 其次要熟悉复数相关基本概念是解答此类问题的关键,着重考查了推理与计算能力,属于基础题. 2. 已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为( )A .9B. 8C. 5D. 4【★答案★】A 【解析】 【分析】根据枚举法,确定圆及其内部整点个数. 【详解】223x y +≤23,x ∴≤x Z ∈1,0,1x ∴=-当1x =-时,1,0,1y =-; 当0x =时,1,0,1y =-;当1x =时,1,0,1y =-; 所以共有9个, 故选:A.【点睛】本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.3. 正方体1111ABCD A B C D -中, E 为棱1AA 的中点(如图)用过点1B E D 、、的平面截去该正方体的上半部分,则剩余几何体的左视图为( )A. B.C. D.【★答案★】D 【解析】 【分析】利用平面的基本性质,得到几何体的直观图,然后判断左视图即可.【详解】由题意可知:过点B 、E 、1D 的平面截去该正方体的上半部分,如图直观图,则几何体的左视图为D ,故选D.【点睛】本题考查简单几何体的三视图,解题的关键是得到直观图,是基本知识的考查. 4. (x +y )(2x -y )5的展开式中x 3y 3的系数为A. -80B. -40C. 40D. 80【★答案★】C 【解析】()()()()555222x y x y x x y y x y +-=-+-,由()52x y -展开式的通项公式()()515C 2rrrr T x y -+=-可得:当3r =时,()52x x y -展开式中33x y 的系数为()3325C 2140⨯⨯-=-;当2r时,()52y x y -展开式中33x y 的系数为()2235C 2180⨯⨯-=, 则33x y 的系数为804040-=. 故选C.【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解. 5. 已知cos5a π=,则3sin5π=( ) A. 21a a - B. 21a a --C. 221a a -D. 221a a --【★答案★】C 【解析】 【分析】根据诱导公式及正弦的二倍角公式求解即可. 【详解】cos=5a π,2sin =15a π∴-,332sin=sin =sin =2sin cos 55555ππππππ⎛⎫- ⎪⎝⎭, 3sin5π∴=221a a - 故选:C .【点睛】本题主要考查了正弦的二倍角公式,诱导公式,同角三角函数间的关系,属于中档题.6. 函数ln |1|()1x f x x +=+的大致图像为( )A.B.C. D.【★答案★】A 【解析】 【分析】此题主要利用排除法,当x →+∞时,可得()0f x >,故可排除C ,D ,当x →-∞时,可排除选项B ,故可得★答案★.【详解】当x →+∞时,()ln 10x +>,10x +>,∴()0f x >,故可排除C ,D 选项; 当x →-∞时,()ln 10x +>,10x +<,∴()0f x <,故可排除B 选项, 故选A.【点睛】本题考查函数的图象的判断与应用,考查函数的零点以及特殊值的计算,是中档题;已知函数解析式,选择其正确图象是高考中的高频考点,主要采用的是排除法,最常见的排出方式有根据函数的定义域、值域、单调性、奇偶性、周期性等性质,同时还有在特殊点处所对应的函数值或其符号,其中包括,,0,0x x x x +-→+∞→-∞→→等.7. 在平面直角坐标系中,A 、B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线280x y +-=相切,则圆C 的面积的最小值为( )A. ()1245π- B.59π C.516π D.165π【★答案★】D 【解析】 【分析】如图,设AB 的中点为C ,坐标原点为O ,圆半径为r ,由已知得||||OC CE r ==,过点O 作直线280x y +-=的垂直线段OF ,交AB 于D ,交直线280x y +-=于F ,则当D 恰为AB 中点时,圆C 的半径最小,即面积最小.【详解】如图,设AB 的中点为C ,坐标原点为O ,圆半径为r , 由已知得||||OC CE r ==,过点O 作直线280x y +-=的垂直线段OF , 交AB 于D ,交直线280x y +-=于F ,则当D 恰为OF 中点时,圆C 的半径最小,即面积最小 此时圆的直径为(0,0)O 到直线280x y +-=的距离为: 22|8|8521d -==+, 此时5412r d ==∴圆C 的面积的最小值为:2416()55min S ππ=⨯=. 故选:D .【点睛】本题主要考查了直线与圆的位置关系,考查圆的面积的最小值的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用,属于中档题.8. 某校为了增强学生的记忆力和辨识力,组织了一场类似《最强大脑》的PK 赛,,A B 两队各由4名选手组成,每局两队各派一名选手PK ,比赛四局.除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0分.假设每局比赛A 队选手获胜的概率均为23,且各局比赛结果相互独立,比赛结束时A 队的得分高于B 队的得分的概率为( ) A.1627B.5281C.2027D.79【★答案★】C 【解析】 【分析】先确定A 队的得分高于B 队的得分的情况,再分类讨论利用独立事件乘法公式求对应情况的概率,最后根据加法计数原理求结果.【详解】A 队的得分高于B 队的得分的情况有三种:A 队的得分为5分,A 队的得分为4分,A 队的得分为3分.当A 队的得分为5分时,概率为42()3当A 队的得分为4分时,概率为223212()()()333C当A 队的得分为3分时,概率为12333321221()()()()()33333C C + 因此所求概率为4221233333221221221162412820()()()()()()()()()+++3333333338181818127C C C +++==故选:C【点睛】本题考查独立事件乘法公式、分类加法计数原理,考查基本分析求解能力,属基础题. 9. 我国南宋著名数学家秦九韶提出了由三角形三边求三角形面积的“三斜求积”,设ABC ∆的三个内角A ,B ,C 所对的边分别为a ,b ,c ,面积为S ,则“三斜求积”公式为222222142a c b S a c ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦,若2sin 2sin a C A =,()226a c b +=+,则用“三斜求积”公式求得ABC ∆的面积为( ) A. 3 B. 1 C.32D.12【★答案★】C 【解析】 【分析】根据正弦定理:由2sin 2sin a C A =得ac 的值,再由()226a c b +=+得222a c b +-的值,利用公式可得结论.【详解】∵2sin 2sin a C A =,∴22a c a =,2ac =,因为()226a c b +=+,所以22226a c ac b ++=+,22262642a c b ac +-=-=-=,从而ABC ∆的面积为221232422⎡⎤⎛⎫-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 故选C .【点睛】本题主要考查给出新的公式,并用新的公式解题的能力,比较基础.10. 已知P 为双曲线2222:1(0,0)x y C a b a b-=>>上一点,12F F ,为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( )A. 43y x =±B. 34yx C. 35y x =±D. 53y x =±【★答案★】A 【解析】 【分析】依据题意作出图象,由双曲线定义可得1122PF F F c ==,又直线PF 2与以C 的实轴为直径的圆相切,可得2MF b =,对2OF M ∠在两个三角形中分别用余弦定理及余弦定义列方程,即可求得2b a c =+,联立222c a b =+,即可求得43b a =,问题得解. 【详解】依据题意作出图象,如下:则1122PF F F c ==,OM a =, 又直线PF 2与以C 实轴为直径的圆相切, 所以2OM PF ⊥, 所以222MF c a b =-=由双曲线定义可得:212PF PF a -=,所以222PFc a =+,所以()()()()22222222cos 2222c a c c b OF M c c a c ++-∠==⨯⨯+整理得:2b a c =+,即:2b a c -= 将2c b a =-代入222c a b =+,整理得:43b a =, 所以C 的渐近线方程为43b y x x a =±=± 故选A【点睛】本题主要考查了双曲线的定义及圆的曲线性质,还考查了三角函数定义及余弦定理,考查计算能力及方程思想,属于难题.11. 已知A ,B ,C 为球O 的球面上的三个定点,60ABC ∠=,2AC =,P 为球O 的球面上的动点,记三棱锥p 一ABC 的体积为1V ,三棱锥O 一ABC 的体积为2V ,若12V V 的最大值为3,则球O 的表面积为( ) A.169πB.649πC.32π D. 6π【★答案★】B 【解析】 【分析】设ABC ∆的外接圆圆心为'O ,其半径为r ,球O 的半径为R ,且'OO d =,根据体积比求得2R d =,利用球的性质,得23R r =,再由三角形的性质,求得23r =,利用球的表面积公式,即可求解.【详解】由题意,设ABC∆外接圆圆心为'O ,其半径为r ,球O 的半径为R ,且'OO d =依题意可知12max3V R d V d ⎛⎫+== ⎪⎝⎭,即2R d =,显然222R d r =+,故23R r =, 又由42sin 3AC r ABC ==∠,故23r =,∴球O 的表面积为221664439R r πππ==,故选B. 【点睛】本题主要考查了球的表面积的计算,以及球的性质的应用,其中解答中根据几何体的结构特征,合理利用求得性质,求得球的半径是解答的关键,着重考查了空间想象能力,属于基础题.12. 己知函数()y f x =定义域为R ,满足(2)2()f x f x +=,且当2(]0,x ∈时,()(2)f x x x =-,若对任意(,]x m ∈-∞,都32()9f x ≤恒成立,则m 的取值范围为( ) A. 13,3⎛⎤-∞ ⎥⎝⎦B. 14,3⎛⎤-∞ ⎥⎝⎦C. 16,3⎛⎤-∞ ⎥⎝⎦D. 17,3⎛⎤-∞ ⎥⎝⎦【★答案★】B 【解析】 【分析】根据题意,首先求出函数()y f x =在区间(0,2]上的值域为[0,1],再根据条件(2)2()f x f x +=,判断当6(4],x ∈时()[0,4]f x ∈,32[0,4]9∈,并求解6(4],x ∈时()f x 的解析式,和32()9f x =时对应的两根中较小根,即可得到m 的取值范围.【详解】当2(]0,x ∈时,2()(2)(1)1f x x x x =-=--+, 可求得()[0,1]f x ∈,且在(0,1]上单调增,在[1,2]上单调减, 根据(2)2()f x f x +=,可知当(2,4]x ∈,()[0,2]f x ∈,当6(4],x ∈,()[0,4]f x ∈,且()f x 在(4,5]上单调增,在[5,6]上单调减, 因为32[0,4]9∈,当6(4],x ∈时,()2(2)4(4)f x f x f x =-=-, (42],0x -∈,2()4(4)4[(5)1]f x f x x =-=--+,令2324[(5)1]9x --+=,解得143x =或163x =, 所以对任意(,]x m ∈-∞,都32()9f x ≤恒成立,m 的取值范围为14(,]3-∞,故选:B.【点睛】该题以分段函数的形式考查了函数的值域,函数解析式的求解,以及利用恒成立求参数取值范围的问题,属于较难题目,解决该题的关键是利用条件可分析函数的图象,利用数形结合比较好分析.二、填空题(每小题5分,共20分)13. 设平面向量()1,2a =,()2,b y =-,若a b ⊥,则3a b +=__________. 【★答案★】52【解析】 【分析】根据向量垂直关系求得1y =,利用2239a b a b +=+即可求得模长. 【详解】由题:平面向量()1,2a =,()2,b y =-,若a b ⊥, 所以0,220a b y ⋅=-+=,解得:1y =,223954552a b a b +=+=+=.故★答案★为:52【点睛】此题考查根据向量垂直求参数,求向量的模长,关键在于熟练掌握向量的基本运算法则.14. 设函数32()(2)f x x ax a x =+++.若()f x 的图象关于原点(0,0)对称,则曲线()y f x =在点(1,(1))f 处的切线方程为______.【★答案★】520x y --= 【解析】 【分析】根据()f x 的图象关于原点(0,0)对称,求得0a =,再求()f x 在1x =处的导数,即为切线斜率,再写出切线方程.【详解】由题知()f x 为奇函数,可得(1)(1)=--f f 即233a +=,则0a =,32()2,()32f x x x f x x '∴=+=+,(1)325,(1)3f f '∴=+==,∴切线方程为35(1)y x -=-即520x y --=.故★答案★为:520x y --=.【点睛】本题考查了函数奇偶性的应用和导数几何意义的应用,属于基础题.15. 已知函数()cos 2sin f x x x =+,若12,x x 为()f x 的最大值点和最小值点的横坐标,则()12cos x x +=____.【★答案★】14【解析】 【分析】由题意可得2()2sin sin 1f x x x =-++,令sin x t =,则219()248f x t ⎛⎫=--+ ⎪⎝⎭,[1,1]t ∈-,利用二次函数的性质即可得11sin 4x =,2sin 1x =-,利用诱导公式即可得解.【详解】由题意2()cos2sin 2sin sin 1f x x x x x =+=-++, 令sin x t =,则[1,1]t ∈-,则2219()21248f x t t t ⎛⎫=-++=--+ ⎪⎝⎭,[1,1]t ∈-,故14t =时,即11sin 4x =时,()f x 取得最大值; 1t =-时,即2sin 1x =-时,()f x 取得最小值,此时()2322k k Z x ππ=+∈,∴()12111cos co 3s sin 422x x x k x ππ+⎛⎫+=+== ⎪⎝⎭.故★答案★为:14. 【点睛】本题考查了三角函数最值的求解及诱导公式的应用,考查了换元法的应用,属于中档题. 16. 过抛物线()220y px p =>的焦点F 作两条互相垂直的弦AB 、CD ,若AB CD +的最小值为16,则抛物线的方程为__________. 【★答案★】24y x = 【解析】 【分析】设直线AB 的方程为:2p y k x ⎛⎫=-⎪⎝⎭,则直线CD 的方程为12p y x k ⎛⎫=-- ⎪⎝⎭,()()()()11223344,,,,,,,A x y B x y C x y D x y ,分别与抛物线的方程联立可得 1222px x p k +=+, 2342x x p pk +=+,1234||||2AB CD x x x x p +=++++,利用基本不等式可得最值,进而可得抛物线的方程.【详解】解:设直线AB 的方程为:2p y k x ⎛⎫=- ⎪⎝⎭,则直线CD 的方程为12p y x k ⎛⎫=-- ⎪⎝⎭,()()()()11223344,,,,,,,A x y B x y C x y D x y ,联立222p y k x y px⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,化为()22222204k p k x pk p x -++=, 2122222pk p p x x p k k +∴+==+,同理可得2342x x p pk +=+, 2212342221||||22224k p AB CD x x x x p p p pk p p k p k ⎛⎫∴+=++++=++++=++ ⎪⎝⎭2212248p k p p k≥⋅⋅+=,当且仅当1k =±时取等号, ∴AB CD +的最小值为8p ,816p ∴=,则2p =,所以抛物线的方程为24y x =. 故★答案★为:24y x =.【点睛】本题考查了焦点弦长公式、相互垂直的直线斜率之间的关系、直线与抛物线相交问题转化为方程联立,可得根与系数的关系,考查了推理能力与计算能力,属于中档题. 三、解答题(共70分)17. 在数列{}n a 中,14a =,21(1)22n n na n a n n +-+=+.(1)求证:数列n a n ⎧⎫⎨⎬⎩⎭是等差数列;(2)求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S . 【★答案★】(1)证明见解析. (2)n S =2(1)nn +.【解析】 【分析】(1)根据数列n a n ⎧⎫⎨⎬⎩⎭通项公式的特征,我们对21(1)22n n na n a n n +-+=+,两边同时除以(1)n n +,得到121n n a a n n +-=+,利用等差数列的定义,就可以证明出数列n a n ⎧⎫⎨⎬⎩⎭是等差数列; (2)求出数列1n a ⎧⎫⎨⎬⎩⎭的通项公式,利用裂项相消法,求出数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .【详解】(1)21(1)22n n na n a n n +-+=+的两边同除以(1)n n +,得121n n a a n n +-=+,又141a=, 所以数列n a n ⎧⎫⎨⎬⎩⎭是首项为4,公差为2的等差数列. (2)由(1)得12(1)n a a n n =+-,即222,22n n an a n n n=+∴=+, 故2111112221n a n n n n ⎛⎫==- ⎪++⎝⎭, 所以111111111122231212(1)n n s n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 【点睛】本题考查了证明等差数列的方法以及用裂项相消法求数列前n 和. 已知1n n na b c =⋅,,n n b c 都是等差数列,那么数列{}n a 的前n 和就可以用裂项相消法来求解. 18. 已知长方形ABCD 中,1AB =,2AD =,现将长方形沿对角线BD 折起,使AC a =,得到一个四面体A BCD -,如图所示.(1)试问:在折叠的过程中,异面直线AB 与CD 能否垂直?若能垂直,求出相应的a 的值;若不垂直,请说明理由;(2)当四面体A BCD -体积最大时,求二面角A CD B --的余弦值. 【★答案★】(1)1;(2)277.【解析】【分析】(1)若AB⊥CD,得AB⊥面ACD ,由于AB⊥AC.,所以AB2+a2=BC,解得a 2=1,成立;(2)四面体A ﹣BCD体积最大时面ABD⊥面BCD,以A为原点,在平面ACD中过O作BD的垂线为x轴,OD为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A﹣CD﹣B的余弦值.【详解】(1)若AB⊥CD,因为AB⊥AD,AD∩CD=D,所以AB⊥面ACD⇒AB⊥AC.由于AB=1, AD=BC=2 ,AC=a,由于AB⊥AC.,所以AB2+a2=BC, 所以12+a2=(2)2⇒a=1,所以在折叠的过程中,异面直线AB与CD可以垂直,此时a的值为1 (2)要使四面体A-BCD体积最大,因为△BCD面积为定值22,所以只需三棱锥A-BCD的高最大即可,此时面ABD⊥面BCD.过A作AO⊥BD于O,则AO⊥面BCD,以O为原点建立空间直角坐标系o xyz(如图),则易知,显然,面BCD的法向量为 ,设面ACD的法向量为n=(x,y,z),因为所以,令y =2,得n =(1,2,2),故二面角A -CD -B 的余弦值即为|cos n OA ,.【点睛】传统方法求线面角和二面角,一般采用“一作,二证、三求”三个步骤,首先根据二面角的定义结合几何体图形中的线面关系作出线面角或二面角的平面角,进而求出;而角的计算大多采用建立空间直角坐标系,写出向量的坐标,利用线面角和二面角公式,借助法向量求空间角. 19. 小明在某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前54单没有奖励,超过54单的部分每单奖励20元.(1)请分别求出甲、乙两种薪酬方案中日薪y (单位:元)与送货单数n 的函数关系式; (2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在1(,](1,2,3,4,5)55n nn -=时,日平均派送量为502n +单.若将频率视为概率,回答下列问题: ①估计这100天中的派送量指标的平均数(同一组中的数据用该组区间的中点值作代表) ; ②根据以上数据,设每名派送员的日薪为X (单位:元),试分别求出甲、乙两种方案的日薪X 的分布列及数学期望. 请利用数学期望帮助小明分析他选择哪种薪酬方案比较合适?并说明你的理由.【★答案★】(1)100y n =+,140,05420940,54n y n n <≤⎧=⎨->⎩;(2)①0.44,②见解析 【解析】 【分析】(1)根据题意,列出解析式,即可(2)①分别计算出每个区间中点值的个数,然后乘以总数,求和,除以个数,即可得到平均值②分别计算出每个指标下薪资待遇,计算期望,比较大小,做出选择.【详解】(1)甲:100y n =+,乙:()140,054{1405420,54n y n n <≤=+-⨯>,故为100y n =+,140,05420940,54n y n n <≤⎧=⎨->⎩; (2)①读图可知,20个0.1,30个0.3,20个0.5,20个0.7,10个0.9,故平均数 200.1300.3200.5200.7100.90.44100x ⋅+⋅+⋅+⋅+⋅==②甲: P(概率) 0.2 0.3 0.2 0.2 0.1 X (日薪) 152154156158160EX=0.21520.31540.21560.21580.1160155.4⋅+⋅+⋅+⋅+⋅= 乙: P (概率) 0.2 0.3 0.2 0.2 0.1 X (日薪) 140140180220260EX=0.21400.31400.21800.22200.1260176⋅+⋅+⋅+⋅+⋅= 乙的期望更高,故选择乙方案.【点睛】本道题是一个统计题,掌握好平均数和数学期望的计算方法,即可得出★答案★. 20. 已知O 为坐标原点,圆M :222150x y x +--=,定点(1,0)F -,点N 是圆M 上一动点,线段NF 的垂直平分线交圆M 的半径MN 于点Q ,点Q 的轨迹为C . (Ⅰ)求曲线C 的方程;(Ⅱ)不垂直于x 轴且不过F 点的直线l 与曲线C 相交于,A B 两点,若直线FA 、FB 的斜率之和为0,则动直线l 是否一定经过一定点?若过一定点,则求出该定点的坐标;若不过定点,请说明理由.【★答案★】(1)22143x y +=(2)(4,0)-【解析】 【分析】(Ⅰ)由垂直平分线性质与椭圆的定义可知点Q 的轨迹为椭圆,长轴长等于半径,点F 、点N 分别为左右焦点,由椭圆参数的性质可求得椭圆方程;(Ⅱ)由题意假设直线l 的方程与交点坐标,与椭圆联立,由斜率公式,表示出两直线斜率,由斜率之和为0列式可求得参数的等量关系,代入直线,即可求得恒过某点.【详解】(Ⅰ)由题意可知4MQ FQ +=,又24MF =<,由椭圆的定义知动点Q 的轨迹是,M F为焦点的椭圆,故24,22a c ==,即所求椭圆的方程为22143x y +=(Ⅱ)设直线l 的方程为y kx m =+,点()11,A x y ,()22,B x y ,联立曲线C 与直线l 的方程得()2223484120k xkmx m +++-=,21212228412,3434km m x x x x k k --+==++ 由已知,直线FA 、FB 的斜率之和为()()121212121212121222011111kx x k m x x m y y kx m kx m x x x x x x x x +++++++=+==+++++++, ()()1212220kx x k m x x m ++++=,即有:()22241282203434m km k k m m k k--+++=++,化简得:4m k = 直线l 的方程为()4y k x =+,所以直线过l 过定点()4,0-.【点睛】本题综合考察直线与圆锥曲线的知识,若求轨迹方程时与圆有关,则一般会根据圆的半径列等式,证明恒过某点需要将直线表示出来,说明参数对某个点的取值无影响即可. 21. 已知函数()()ln 0f x a x a =≠与212y x e=的图象在它们的交点(),P s t 处具有相同的切线. (1)求()f x 的解析式;(2)若函数()()()21g x x mf x =-+有两个极值点1x ,2x ,且12x x <,求()21g x x 的取值范围. 【★答案★】(1)()ln f x x =;(2)21,0e e ⎡⎫-⎪⎢⎪⎣⎭【解析】 【分析】(1)求得两个函数的导数,由公切线的斜率相同可得,a s 的方程;将切点代入两个函数,可得,a s 的方程;联立两个方程即可求得a 的值,进而得()f x 的解析式;(2)将()f x 的解析式代入并求得()g x ',由极值点定义可知1x ,2x 是方程2220x x m -+=的两个不等实根,由韦达定理表示出1212,x x x x +,结合12x x <可得121012x x <<<<.代入()21g x x 中化简,分离参数并构造函数()12ln h t t t t =-+,求得()h t '并令()0h t '=求得极值点,由极值点两侧符号判断单调性,并求得最小值,代入端点值求得最大值,即可求得()21g x x 的取值范围. 【详解】(1)根据题意,函数()()ln 0f x a x a =≠与212y x e= 可知()a f x x '=,1y x e'=, 两图象在点(),P s t 处有相同的切线, 所以两个函数切线的斜率相等,即1as e s⨯=,化简得s ae =, 将(),P s t 代入两个函数可得2ln 2es a s =,综合上述两式可解得1a =, 所以()ln f x x =.(2)函数()()()()2211ln g x x mf x x m x =-+=-+,定义域为()0,∞+,()()22221m x x mx x g x x-+=-='+, 因为1x ,2x 为函数()g x 的两个极值点,所以1x ,2x 是方程2220x x m -+=的两个不等实根, 由根与系数的关系知121x x =+,122mx x =,()* 又已知12x x <,所以121012x x <<<<, ()()2222111ln g x x m x x x -+=,将()*式代入得()()2221221112ln g x x x x x x x -+=()()222222222121ln 12ln 1x x x x x x x x =-+-=-+-,令()12ln h t t t t =-+,1,12t ⎛⎫∈⎪⎝⎭, ()2ln 1h t t '=+,令()0h t '=,解得1t e=, 当11,2t e ⎛⎫∈⎪⎝⎭时,()0h t '<,()h t 在11,2e ⎛⎫ ⎪⎝⎭单调递减; 当1,1t e ⎛⎫∈⎪⎝⎭时,()0h t '>,()h t 在1,1e ⎛⎫ ⎪⎝⎭单调递增; 所以()min 12211e e e h t h e ⎛⎫==-=-⎪⎝⎭, ()()1max ,12h t h h ⎧⎫⎛⎫<⎨⎬ ⎪⎝⎭⎩⎭,()11ln 20122h h ⎛⎫=-<= ⎪⎝⎭, 即()21g x x 的取值范围是21,0e e ⎡⎫-⎪⎢⎪⎣⎭. 【点睛】本题考查了导数的计算及几何意义,根据公切线求参数值,由导数研究函数的极值点、单调性与最值,构造函数法的综合应用,属于难题.选作题,共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.22. 平面直角坐标系xOy 中,曲线1C 的参数方程为131121x y λλλλ-+⎧=⎪⎪+⎨-⎪=⎪+⎩(λ为参数,且1λ≠-).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为212cos 320ρρθ++=.(1)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)已知点P 的极坐标为22,4π⎛⎫⎪⎝⎭,Q 为曲线2C 上的动点,求PQ 的中点M 到曲线1C 的距离的最大值.【★答案★】(1)()34103x y x +-=≠,2212320x y x +++=.(2)85【解析】 【分析】(1)化简得到341x y +=,再考虑4331x λ=-≠+,利用极坐标方程公式得到★答案★. (2)P 的直角坐标为()2,2,设点()00,M x y ,故()0022,22Q x y --,代入圆方程得到M 在圆心为()2,1-,半径为1的圆上,计算得到最大距离.【详解】(1)因为13,112,1x y λλλλ-+⎧=⎪⎪+⎨-⎪=⎪+⎩①②,所以3×①+4×②,得341x y +=.又133(1)4433111x λλλλλ-++-===-≠+++,所以1C 的普通方程为()34103x y x +-=≠,将cos x ρθ=,222x y ρ=+代入曲线2C 的极坐标方程,得曲线2C 的直角坐标方程为2212320x y x +++=.(2)由点P 的极坐标22,4π⎛⎫ ⎪⎝⎭,可得点P 的直角坐标为()2,2.设点()00,M x y ,因为M 为PQ 的中点,所以()0022,22Q x y -- 将Q 代入2C 的直角坐标方程得()()2200211x y ++-=, 即M 在圆心为()2,1-,半径为1的圆上. 所以点M 到曲线1C 距离的最大值为|23141|8155d -⨯+⨯-=+=,由(1)知1C 不过点()3,2N -,且312391423420MN k +⎛⎫⎛⎫⋅-=⋅-=≠- ⎪ ⎪--⎝⎭⎝⎭, 即直线MN 与1C 不垂直.综上知,M 到曲线1C 的距离的最大值为85. 【点睛】本题考查了参数方程,极坐标方程,距离的最值问题,意在考查学生的计算能力和转化能力.23. 已知a ,b ,c 为正数,且满足1a b c ++=.证明:(1)13ab bc ac ++≤; (2)11110a b c a b c ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭≥ 【★答案★】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据分析法,结合不等式关系中222a b ab +≥,222b c bc +≥,222a c ac +≥,即可证明不等式成立;(2)根据题中条件,直接构造基本不等式进行证明即可.【详解】(1)1a b c ++=,2222()2221a b c a b c ab bc ac ∴++=+++++=,又由均值不等式, 得222a b ab +≥,222b c bc +≥,222a c ac +≥, 则222222222222a b b c a c a b c ab bc ac +++++=++≥++, 3()1ab bc ac ∴++≤, 即13ab bc ac ++≤得证; (2)a ,b ,0c >,1a b c ++=,1a ∴,1b ,10c>, 则1111a b c a b c a b c a b c a b c a b c++++++⎛⎫⎛⎫⎛⎫+++++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭4b a c a b c a b a c c b ⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 又由均值不等式得22b a b a a b a b+≥⨯=, 同理可得2c a a c+≥,2b c c b +≥, 则1114610a b c a b c ⎛⎫⎛⎫⎛⎫+++++≥+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 当且仅当13a b c ===时等号成立,得证. 【点睛】本题考查了不等式的证明,基本不等式的应用,属于中档题.感谢您的下载!快乐分享,知识无限!。
西南名校联盟高考数学适应性月考卷(一)文(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. 设集合A={x|x²3x+2=0},则A中元素的个数为()A. 0B. 1C. 2D. 3A. a>0, b>0, c>0B. a<0, b<0, c<0C. a>0, b<0, c>0D. a<0, b>0, c<03. 已知等差数列{an}的公差为2,且a1+a3+a5=21,则a4的值为()A. 7B. 9C. 11D. 134. 在三角形ABC中,若sinA : sinB : sinC = 3 : 4 : 5,则三角形ABC的形状为()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 不能确定5. 若复数z满足|z1|=|z+i|,则z在复平面上的对应点位于()A. 直线y=x上B. 直线y=x上C. 直线x=0上D. 直线y=0上二、判断题(每题1分,共20分)6. 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上一定有最大值和最小值。
()7. 任何两个等差数列的通项公式一定相同。
()8. 若矩阵A的行列式为0,则A一定是不可逆矩阵。
()9. 在三角形中,若两边之和等于第三边,则该三角形为直角三角形。
()10. 对于任意实数x,都有(x²)²=x⁴成立。
()三、填空题(每空1分,共10分)11. 已知数列{an}的通项公式为an=n²+n+1,则a5=______。
12. 若向量a=(2,3),向量b=(1,2),则2a3b=______。
13. 在直角坐标系中,点P(3,4)关于原点的对称点坐标为______。
14. 若函数f(x)=x²4x+c在x=2处取得最小值,则c=______。
15. 设矩阵A为2阶方阵,若|A|=3,则|3A|=______。
四川省仁寿一中等西南四省八校2020届高三9月份联考(理)数学试题注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题1.设集合{}24A x x =<,{}2,1,0,1B =--,则AB =( ) A .{}0,1 B .{}1,0,1-C .{}2,1,0--D .{}2,1,0,1-- 2.()()131i i +-=( )A .42i +B .24i +C .22i -+D .22i -3.设x ∈R ,则“2x <1”是“x 3<1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知命题p :0x ∀>,lg 0x >,则p ⌝是( )A .0x ∀>,lg 0x ≤B .00x ∃>,0lg 0x <C .0x ∀>,lg 0x <D .00x ∃>,0lg 0x ≤5.在等差数列{}n a 中,242a a +=,53a =,则{}n a 的前6项和为()A .6B .9C .10D .116.如图是函数()()506f x x πωω⎛⎫=+> ⎪⎝⎭的部分图像,若|AB |=4,则()1f -=( )A .-1B .1C .32-D .327.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=( ) A .50-B .0C .2D .50 8.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( ) A .10 B .20 C .40 D .809.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是( )A .[]26,B .[]48, C. D.⎡⎣10.已知函数()()201941,01log ,1x x x f x x x ⎧-≤≤=⎨>⎩,若a ,b ,c 互不相等,且()()()f a f b f c ==,则a b c ++的取值范围是( )A .()1,2020B .()1,2019C .()2,2020D .()2,2019 11.直线()0x a a =>分别与曲线21y x =+,ln y x x =+相交于A ,B 两点,则|AB |的最小值为( )A .1B .2 CD12.若0x >,0y >,21x y +=,则2xy x y+的最大值为( ) A .14 B .15 C .19 D .112第II 卷(非选择题)二、填空题13.设向量(),1a x =,()1,2b =-r ,a b ⊥,则2a b -=______.14.某高中三年级甲、乙两班各选出7名学生参加高中数学竞赛,他们取得的成绩(满分140分)的茎叶图如下,其中甲班学生成绩中位数为81,乙班学生成绩的平均数为86,则x y +=_________.15.已知公比为整数的等比数列{}n a 的前n 项和为n S ,且24a =,314S =,若2log n n b a =,则数列11n n b b +⎧⎫⎨⎬⎩⎭的前100项和为_________.16.设点P 是椭圆C :22184x y +=上的动点,F 为C 的右焦点,定点()2,1A ,则PA PF +的取值范围是___________.三、解答题17.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知4tan 3A =,1tan 3B =,5a =.(1)求tan C ;(2)求ABC ∆中的最长边.18.为了调查民众对国家实行“新农村建设”政策的态度,现通过网络问卷随机调查了年龄在20周岁至80周岁的100人,他们年龄频数分布和支持“新农村建设”人数如下表:(1)根据上述统计数据填下面的22⨯列联表,并判断是否有95%的把握认为以50岁为分界点对“新农村建设”政策的支持度有差异;(2)为了进一步推动“新农村建设”政策的实施,中央电视台某节目对此进行了专题报道,并在节目最后利用随机拨号的形式在全国范围内选出4名幸运观众(假设年龄均在20周岁至80周岁内),给予适当的奖励.若以频率估计概率,记选出4名幸运观众中支持“新农村建设”人数为ξ,试求随机变量ξ的分布列和数学期望.参考数据:参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.19.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120BCD ∠=︒,侧面PAB ⊥底面ABCD ,90BAP ∠=︒,2AB AC PA ===.(1)求证:平面PBD ⊥平面PAC ;(2)过AC 的平面交PD 于点M ,若平面AMC 把四面体P ACD -分成体积相等的两部分,求二面角P MC A --的正弦值.20.已知椭圆C :22221(0)x y a b a b+=>>的离心率为12,以原点为圆心,椭圆的短半120+=相切.(1)求椭圆C 的方程;(2)设(4,0)A -,过点(3,0)R 作与x 轴不重合的直线l 交椭圆C 于P ,Q 两点,连接AP ,AQ 分别交直线163x =于M ,N 两点,若直线MR 、NR 的斜率分别为1k 、2k ,试问:12k k 是否为定值?若是,求出该定值,若不是,请说明理由.21.已知函数()3211,32f x x ax a =-∈R .(I)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(II)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.22.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程是4sin ρθ=,曲线2C 的参数方程为:4x y t ⎧=⎪⎨=⎪⎩(t 为参数). (1)求曲线1C ,2C 的直角坐标方程;(2)设曲线1C ,2C 交于点A ,B ,已知点()4,0M ,求11MA MB+.23.已知函数()13f x x x =-++,()g x x a =+.(1)求不等式()6f x ≥的解集;(2)对x R ∀∈,都有()()0f x g x -≥,求实数a 的取值范围.四川省仁寿一中等西南四省八校2020届高三9月份联考(理)数学试题参考答案1.B【分析】先计算得到集合A,再计算A B得到答案.【详解】{}{}24=-22A x x x x=<<<{}B=--2,1,0,1{}A B=-1,0,1故答案选B【点睛】本题考查了集合的交集,属于基础题型.2.A【分析】把复数乘积展开,化简为a+bi(a、b∈R)的形式,可以判断选项.【详解】∵(1+3i)(1-i)=1+3+3i-i=4+2i故选:A.【点睛】本题考查复数代数形式的运算,是基础题.3.A【分析】求出不等式的等价形式,结合充分条件和必要条件的定义进行判断即可.【详解】由2x<1得x<0,由“x3<1”得x<1,x<0是x<1的充分不必要条件则“2x<1”是“x3<1”的充分不必要条件,故选:A .【点睛】本题主要考查充分条件和必要条件的判断,结合不等式的关系是解决本题的关键. 4.D【分析】根据全称命题的否定方法,结合已知中的原命题,可得答案.【详解】∵命题p :∀x >0,总有lgx >0,∴命题¬p 为:∃x 0>0,使得lg x 0≤0,故选:D .【点睛】本题考查了命题的否定,考查了推理能力,属于基础题.5.B【分析】利用等差数列{a n }通项公式列方程组求出a 1,d ,由此能求出{a n }的前6项和.【详解】∵在等差数列{a n }中,a 53=,a 2+a 4=2,∴1111433242a d a d a d a d +=⎧⎨+++=+=⎩, 解得a 11=-,d 1=,∴{a n }的前6项和S 6的值:616562S a d ⨯=+=61⨯-+()15×19=. 故选B .【点睛】 本题考查等差数列的前n 项和的公式,考查等差数列的通项公式的应用,考查运算求解能力,是基础题.6.D【分析】由图可设A (a,则B (a 2T +,,可得AB =(2T,,利用向量模的坐标运算,求得T 2πω==4,从而可得ω的值,代入x=-1计算可得结果.【详解】设A (a ,函数f (x )=(ωx +56π)的周期为T ,则B (a 2T+,,∴AB =(2T ,,∵|AB|224T =+12=16, ∴T 2=16, ∴T 2πω==4,解得:ω2π=.∴f (x )=(2πx +56π),∴f (-1)32=,故选:D . 【点睛】本题考查函数y =A sin (ωx +φ)的图象解析式的确定及应用,涉及向量模的坐标运算及其应用,属于中档题. 7.C分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 详解:因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1)(3)(1)(1)4f x f x f x f x f x T +=--∴+=-+=-∴=, 因此(1)(2)(3)(50)12[(1)(2)(3)(4)](1)(2)f f f f f f f f f f ++++=+++++,因为(3)(1)(4)(2)f f f f =-=-,,所以(1)(2)(3)(4)0f f f f +++=,(2)(2)(2)(2)0f f f f =-=-∴=,从而(1)(2)(3)(50)(1)2f f f f f ++++==,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解. 8.C分析:写出103152rr r r T C x -+=,然后可得结果详解:由题可得()5210315522rrrr r rr T C x C xx --+⎛⎫== ⎪⎝⎭令103r 4-=,则r 2= 所以22552240rr C C =⨯=故选C.点睛:本题主要考查二项式定理,属于基础题。
2020届高考适应性月考卷(一)理科数学注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效。
3.考试结束后,请将本试卷和答题卡一并交回。
满分150分,考试用时120分钟。
4.考试结束后,请在教师指导下扫描二维码现看名师讲解。
一、选择题(本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.己知集合{}{}(6)(2)0,2A x x x B x y x =+-<==-,则()R A B ⋂=ð( ) A.[-2,1) B. [-3,1) C. (-6,2) D. (-6,-2]2.已知实数m 、n 满足m -2i =n(2+i),则在复平面内,复数z =m +ni 所对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限3.己知向量m =(-1,1),n =(1,λ),若m ⊥n ,则m +n 与m 之间的夹角为( )4.已知命题p :2(,0),2310x x x ∀∈-∞-+>,命题q :若x ≥0,则22310x x -+≤,则以下命题正确的为( )A.p 的否定为“2[0,),2310x x x ∃∈+∞-+≤”,q 的否命题为“若x<0,则22310x x -+>” B. p 的否定为“2(,0),2310x x x ∃∈-∞-+≤”,q 的否命题为“若x<0,则22310x x -+>” C. p 的否定为“2[0,),2310x x x ∃∈+∞-+≤”,q 的否命题为“若x ≥0,则22310x x -+>” D. p 的否定为“2(,0),2310x x x ∃∈-∞-+≤”,q 的否命题为“若x ≥0,则22310x x -+>” 5.如图是一个算法流程图,若输入n 的值是13,输出S 的值是46,则a 的取值范围是( )A.9≤a<10B.9<a ≤10C.10<a ≤11D.8<a ≤96.在三棱锥D -ABC 中,DC ⊥底面ABC ,AD =6,AB ⊥BC ,且三棱锥D -ABC 的每个顶点都在球O 的表面上,则球O 的表面积为( )A.144πB.100πC.64πD.36π7.若关于x ,y 的混合组:2190802140(0,1)x x y x y x y y a a a +-≥⎧⎪-+≥⎪⎨+-≤⎪⎪=>≠⎩,有解,则a 的取值范围是( )A.[1,3]B.[2,10]C.[2,91]D.[10,9]8.如图所示,网格纸上小正方形的边长为l ,下图画出的是某几何体的三视图,则该几何体的体积为()A.12B.18C.24D.369.若函数2()ln f x x a x=-+(a 是与x 无关的实数)在区间(1,e)上存在零点,则实数a 的取值范围为( ) A.0<a<2 B.2e <a<2 C.2e -1<a<2 D.2e+1<a<2 10.若非零向量a ,b 的夹角为锐角θ,且cos a b θ=,则a 被b “同余”。
2020届高考适应性月考卷(一)
理科数学
注意事项:
1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效。
3.考试结束后,请将本试卷和答题卡一并交回。
满分150分,考试用时120分钟。
4.考试结束后,请在教师指导下扫描二维码现看名师讲解。
一、选择题(本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)
1.己知集合{}{(6)(2)0,A x x x B x y =+-<==,则()R A B ⋂=ð( ) A.[-2,1) B. [-3,1) C. (-6,2) D. (-6,-2]
2.已知实数m 、n 满足m -2i =n(2+i),则在复平面内,复数z =m +ni 所对应的点位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
3.己知向量m =(-1,1),n =(1,λ),若m ⊥n ,则m +n 与m 之间的夹角为( )
4.已知命题p :2
(,0),2310x x x ∀∈-∞-+>,命题q :若x ≥0,则22310x x -+≤,则以下命题正确的为( )
A.p 的否定为“2
[0,),2310x x x ∃∈+∞-+≤”,q 的否命题为“若x<0,则22310x x -+>” B. p 的否定为“2
(,0),2310x x x ∃∈-∞-+≤”,q 的否命题为“若x<0,则22310x x -+>” C. p 的否定为“2
[0,),2310x x x ∃∈+∞-+≤”,q 的否命题为“若x ≥0,则22310x x -+>” D. p 的否定为“2
(,0),2310x x x ∃∈-∞-+≤”,q 的否命题为“若x ≥0,则22310x x -+>” 5.如图是一个算法流程图,若输入n 的值是13,输出S 的值是46,则a 的取值范围是( )
A.9≤a<10
B.9<a ≤10
C.10<a ≤11
D.8<a ≤9
6.在三棱锥D -ABC 中,DC ⊥底面ABC ,AD =6,AB ⊥BC ,且三棱锥D -ABC 的每个顶点都在球O 的表面上,则球O 的表面积为( )
A.144π
B.100π
C.64π
D.36π
7.若关于x ,y 的混合组:2190802140(0,1)
x x y x y x y y a a a +-≥⎧⎪-+≥⎪⎨+-≤⎪
⎪=>≠⎩,有解,则a 的取值范围是( ) A.[1,3] B.[2
,,
9]
8.如图所示,网格纸上小正方形的边长为l ,下图画出的是某几何体的三视图,则该几何体的体积为
( )
A.12
B.18
C.24
D.36
9.若函数2()ln f x x a x
=-+(a 是与x 无关的实数)在区间(1,e)上存在零点,则实数a 的
取值范围为( ) A.0<a<2 B.
2e <a<2 C.2e -1<a<2 D.2e
+1<a<2 10.若非零向量a ,b 的夹角为锐角θ,且cos a b θ=,则a 被b “同余”。
已知b 被a “同余”,则a -b 在a 上的投影是( )
A.22()()a b a -
B.222()()()a b a -
C. 22
()()b a a - D. 22()()a b b
- 11.在同一直角坐标系中,函数f(x)=sinax(a ∈R)与g(x)=(a -1)x 2
-ax 的部分图象不可能为( )
12.己知关于x 的不等式2
2ln 2(1)2x m x mx +-+≤在(0,+∞)上恒成立,则整数m 的最小值为( )
A.1
B.2
C.3
D.4
第Ⅱ卷
二、填空题(本题共4小题,每小题5分,共20分)
13.5(3)(2)x y x y -+的展开式中,含24x y 项的系数为 (用数字作答) 14.若圆Ω:x 2+y 2-4x +8=0。
,直线l 1过点(-1,0)且与直线l 2:2x -y =0垂直,则直线l 1截圆Ω所得的弦长为
15.如图所示,0,1,OA OB OA OB −−→−−→−−→−−→⋅===,点C 在线段AB 上运动,且(1)(01)OC OA OB λλλ−−→−−→−−→=+-≤≤,D 为OB 的中点,则DC OC −−→−−→
⋅取得最小值时λ的值
为
16.己知数列{a n}是各项均为正数的等比数列,其前n项和为S n。
点A n,B n均在函数f(x)=log2x的图像上,A n的横坐标为a n,B n的横坐标为S n+l。
直线A n B n的斜率为k n,若k1=1,k2
=1
2
,则数列{a n f(a n)}的前n项和T n=。
三、解答题(本大题共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分12分)
己知a,b,c为△ABC内角A,B,C所对的边,△ABC的面积为C=60°,
且4csinA=bsinC。
(1)求a+b的值;
(2)若点D为AC边上一点,且BD=AD,求CD的长。
18.(本小题满分12分)
如图所示,四棱锥S-ABCD的底面是直角梯形,且∠BAD=∠ADC=90°,棱SA⊥底面ABCD,SA=AD=2DC=2,AB=4,点E、F分别在线段SB、SC上。
(1)证明:BD⊥AF;
(2)若三棱锥E-ABC的体积是四棱锥S-ABCD体积的3
5
,求二面角E-AC-B的余弦值。
19.(本小题满分12分)
为了实现文化脱贫,某高校鼓励即将毕业的大学生到西部偏远山区去支教,校学生就业部针对即将毕业的男女生是否愿意到西部支教进行问卷调查,专家得到的情况如下表所示:
(1)完成上述联表;
(2)根据表中的数据,试通过计算,判断是否有95%的把握说明是否愿意去西部支教与性别有关;
(3)若在接受调查的所有男生中按照“是否愿意去支教”进行分层抽样,随机抽取10人,再在10人中抽取3人进行面谈,记面谈的男生中,不愿意去支教的人数为ξ,求ξ的分布列以及数学期望。
参考数据及公式如下:
2
2()()()()()
n ad bc K a b c d a c b d -=++++,其中n =a +b +c +d.
20.(本小题满分12分)
己知点1)2
P 在椭圆C :22221x y a b +=(a>b>0)上,F 为右焦点,PF 垂直于x 轴。
A ,B ,C ,D 为椭圈上四个动点,且AC ,BD 交于原点O 。
(1)求椭圆C 的方程:
(2)判断动直线l :()(,)2p q x p q y p p q R ++-=∈与椭圆C 的位置关系;
(3)设1122(,),(,)A x y B x y ,满足12
15
y y OA OB −−→−−→=⋅判断k AB +k BC 的值是否为定值,若是请求出此定值,并求出四边形ABCD 面积的最大值,否则请说明理由。
21.(本小题满分12分)
己知函数f(x)=x -alnx +a 3-1(a>0)。
(1)当a =2时,求曲线y =f(x)在点(1,f(1))处的切线方程;
(2)讨论函数f(x)在(
1a ,+∞)上的单调性; (3)若函数g(x)=2x 3-x 2lnx -16x +20,求证:g(x)>0。
请考生注意:只能做所选定的题目。
如果多做,则按所做的第一个题目计分。
22.(本小题满分10分)选修4-4:坐标系与参数方程
在平面直角坐标系xoy 中,曲线C
的参数方程是2cos x y θθ
=⎧⎪⎨=⎪⎩,(θ为参数),以射线ox 为极轴建立极坐标系,直线l
的极坐标方程为cos sin 0ρθρθ-=。
(1)先将曲线C 的参数方程化成直角坐标方程,再将直线l 的极坐标方程化成参数方程(使得参数具有几何意义);
(2)求直线l 与曲线C 相交所得的弦AB 的长。
23.(本小题满分10分)选修4-5:不等式选讲 函数:21()(1)4
f x x =+ (1)证明()()22f x f x +-≥;
(2)若存在,1x R x ∈≠-,使得
[]21()14()
f x m m f x +≤--成立,求m 的取值范围。