当前位置:文档之家› 第107课--三点共线问题

第107课--三点共线问题

第107课--三点共线问题
第107课--三点共线问题

第107课

三点共线问题

基本方法:

三点共线问题解题策略一般有以下几种:①斜率法:若过任意两点的直线的斜率都存在,通过计算证明过任意两点的直线的斜率相等证明三点共线;②距离法:计算出任意两点间的距离,若某两点间的距离等于另外两个距离之和,则这三点共线;③向量法:利用向量共线定理证明三点共线;

④直线方程法:求出过其中两点的直线方程,再证明第三点也在该直线上;

⑤点到直线的距离法:求出过其中某两点的直线方程,计算出第三点到该直线的距离,若距离为0,则三点共线.

⑥面积法:通过计算求出以这三点为三角形的面积,若面积为0,则三点共线.

在处理三点共线问题时,离不开解析几何的重要思想:“设而不求思想”.

一、典型例题

1.已知椭圆22:12x C y +=,41,33M ?? ???

为椭圆上一点,若,R S 是椭圆C 上的两个点,线段RS 的中垂线l 的斜率为12

且直线l 与RS 交于点P ,O 为坐标原点,求证:,,P O M

三点共线.答案:见解析

解析:因为线段RS 的中垂线l 的斜率为12

,所以直线RS 的斜率为2-.所以可设直线RS 的方程为2y x m =-+.由222,1,2

y x m x y =-+???+=??得2298220x mx m -+-=.设点()11,R x y ,()22,S x y ,()00,P x y .所以1289m x x +=

,()1212128222222299

m m y y x m x m x x m m +=-+-+=-++=-?+=.所以120429x x m x +==,12029y y m y +==.因为0014y =,所以0014y x =.所以点P 在直线14y x =上.又点()0,0O ,41,33M ?? ???也在直线14y x =上,所以,,P O M 三点共线.2.已知椭圆的焦点在x 轴上,它的一个顶点恰好是抛物线24x y =的焦点,

离心率e =

过椭圆的右焦点F

作与坐标轴不垂直的直线l ,交椭圆于A 、B 两点.

(1)求椭圆的标准方程;(2)设点(,0)M m 是线段OF 上的一个动点,且()MA MB AB +⊥ ,求m 的取值范围;

(3)设点C 是点A 关于x 轴的对称点,在x 轴上是否存在一个定点N ,使得C 、B 、N 三点共线?若存在,求出定点N 的坐标,若不存在,请说明理由.

答案:(1)2215x y +=;(2)805m <<;(3)在x 轴上存在定点5,02N ?? ???

,使得C 、B 、N 三点共线.解析:(1)设椭圆方程为22

221(0)x y a b a b

+=>>,由题意1b =,

又e ===,∴25a =,故椭圆方程为2215x y +=.(2)由(1)得右焦点(2,0)F ,则02m ≤≤,设l 的方程为(2)y k x =-(0k ≠)代入2

215x y +=,得2222(51)202050k x k x k +-+-=,∴220(1)0k ?=+>,设1122(,),(,),

A x y

B x y 则21222051k x x k +=+,212220551

k x x k -=+,且1212(4)y y k x x +=+-,2121()y y k x x -=-.∴11221212(,)(,)(2,)MA MB x m y x m y x x m y y +=-+-=+-+ ,2121(,)AB x x y y =-- ,

由()MA MB AB +⊥ ,得()0MA MB AB +?= ,则12211221()(2)()()()0MA MB AB x x m x x y y y y +?=+--++?-= ,

即12211221(2)()(4)()0x x m x x k x x k x x +--++-?-=,即2222220202(4)05151k k m k k k -+-=++,得2085m k m =>-,所以805m <<,∴当805

m <<时,有()MA MB AB +⊥ 成立.(3)在x 轴上存在定点N ,使得C 、B 、N 三点共线.依题意11(,)C x y -,

直线BC 的方程为211121()y y y x x y x x +=---,令0y =,则121122112121()N y x x y x y x x x y y y y -+=+=++, 点,A B 在直线:(2)l y k x =-上,∴1122(2),(2)y k x y k x =-=-,∴122112************(2)(2)22()(2)(2)()4N y x y x k x x k x x kx x k x x x y y k x k x k x x k +-?+-?-+===+-+-+-222222205202255151220451

k k k k k k k k k k -?-?++==?-+,∴在x 轴上存在定点5,02N ?? ???

,使得C 、B 、N 三点共线.二、课堂练习

1.抛物线2:4C y x =,已知斜率为k 的直线l 交y 轴于点P ,且与曲线C 相切于点A ,点B 在曲线C 上,且直线PB x 轴,P 关于点B 的对称点为Q ,判断点,,A Q O 是否共线,并说明理由.

答案:点,,A Q O 共线,理由见解析

解析:设直线:l y kx m =+,联立24y x y kx m

?=??=+??,得()222240k x mk x m +-+=(*)由()()2222441610mk m k mk ?=--=-=,解得1m =

,则直线1:l y kx =+,得10,P k ?? ???,211,4B k k ?? ???

又P 关于点B 的对称点为Q ,故211,2Q k k ?? ???

,此时,(*)可化为222120k x x k -+=,解得21x k =,故12y kx k k =+=,即212,A k k ?? ???

,所以2OA OQ k k k ==,即点,,A Q O 共线.2.已知椭圆22143

x y +=,点F 是椭圆的右焦点.是否在x 轴上存在定点D ,使得过D 的直线l 交椭圆于,A B 两点.设点E 为点B 关于x 轴的对称点,且,,A F E 三点共线?若存在,求D 点坐标;若不存在,说明理由.答案:存在定点()4,0D 满足条件,理由见解析

解析:由题意易知直线l 斜率不为0.设直线l 方程为x my t =+,(),0D t ,联立2214

3x my t x y =+???+=??,消去x 得()

2223463120m y mt y t ++?+-=,设()11,A x y ,()22,B x y ,则()22,E x y -,则122212263431234mt y y m t y y m -?+=?+??-?=?+?

,且0?>,由,,A F E 三点共线有()()2112110x y x y -+-=,即()()1212210my y t y y +-+=,()22231262103434

t mt m t m m --∴?+-?=++,解得4t =,∴存在定点()4,0D 满足条件.三、课后作业

1.已知抛物线2:4C y x =的焦点为F ,直线l 过点()1,0-,直线l 与抛物线C 相交于,A B 两点,点A 关于x 轴的对称点为D .证明:,,B F D 三点共线.

解析:依题意,直线l 的斜率存在且不为零,设直线l 的方程为()10x my m =-≠,由214x my y x

=-???=??消去x 整理得2440y my -+=,设()()1122,,,A x y B x y ,则()11,D x y -,且12124,4y y m y y +==.

又直线BD 的方程为()122221y y y y x x x x +-=--,即2222144y y y x y y ??-=- ? ?-??

,令0y =,得1214

y y x ==.所以点()1,0F 在直线BD 上,即,,B F D 三点共线.2.已知椭圆:E 22162

x y +=,其右焦点为F ,过x 轴上一点()3,0A 作直线l 与椭圆E 相交于,P Q 两点,设(1)AP AQ λλ=> ,过点P 且平行于y 轴的直线与椭圆E 相交于另一点M ,试问,,M F Q 是否共线,若共线请证明;反之说明理由.

答案:,,M F Q 三点共线,理由见解析

解析:设()11,P x y ,()22,Q x y ,则11(3,)AP x y =- ,22(3,)AQ x y =- ,

由已知得方程组()1212221122223316216

2x x y y x y x y λλ-=-??=????+=???+=??,注意到1λ>,解得2512x λλ-=,因为()()112,0,,F M x y -,所以11211211(2,)((3)1,),,22FM x y x y y y λλλλλ--????=--=-+-=-=- ? ?????

,又22(2,)FQ x y =- 21,2y λλ-??= ???

,所以FM FQ λ=- ,从而三点共线.3.已知椭圆22:1x y E +=,过定点()3,4P -且斜率为k 的直线交椭圆E 于不同的两点,M N ,在线段MN 上取异于,M N 的点H ,满足PM

MH

PN NH =,证明:点H 恒在一条直线上,并求出这条直线的方程.

答案:210x y -+=,证明见解析

解析:设()()()112200,,,,,M x y N x y H x y ,由PM

MH

PN NH =,得01122033x x x x x x -+=+-,整理可得()1212012236x x x x x x x ++=++设直线():3434l y k x kx k =++=++,联立2234132y kx k x y =++???+=??,得()

()()2222363433460k x k k x k +++++-=由题0?>,∴()

12263432k k x x k -++=+,()21223346

k x x k +-=+,则22122218241812122463232

k k k k x x k k --++-++==++,()()22121222692416125472728423+3232k k k k k x x x x k k ++---++=

=++,∴072846710312241212k k x k k k

++===-+---,而P 在l 上,则001053433411212k y kx k k k k k =++=-+

++=-+--,∴00210x y -+=,即H 恒在直线210x y -+=上.

《过不共线三点作圆》教案新部编本

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

《过不共线三点作圆》教案 教学目标 知识与技能 1.理解、确定圆的条件及外接圆和外心的定义. 2.掌握三角形外接圆的画法. 过程与方法 经过不在同一直线上的三点确定一个圆的探索过程,让我们学会用尺规作不在同一直线上的三点的圆. 情感态度 在探究过不在同一直线上的三点确定一个圆的过程中,进一步培养探究能力和动手能力,提高学习数学的兴趣. 教学重点 确定圆的条件及外接圆和外心的定义. 教学难点 任意三角形的外接圆的作法. 教学过程 一、情境导入,初步认识 如图所示,点A,B,C表示因支援三峡工程建设而移民的某县新建的三个移 民新村.这三个新村地理位置优越,空气清新,环境幽雅.花园式的建筑住宅让人 心旷神怡,但安居后发现一个极大的现实问题:学生就读的学校离家太远,给学生 上学和家长接送学生带来了很大的麻烦. 根据上面的实际情况,政府决定为这三个新村就近新建一所学校,让三个村到学校的距离相等,你能帮助他们为学校选址吗? 二、思考探究,获取新知 1.确定圆的条件活动1如何过一点A作一个圆?过点A可以作多少个圆? 活动2如何过两点A、B作一个圆?过两点可以作多少个圆? 【教学说明】以上两个问题要求学生独立动手完成,让学生初步体会,已知一点和已知两点都不能确定一个圆,并帮助学生得出如下结论. (1)过平面内一个点A的圆,是以点A以外的任意一点为圆心,以这点到A的距离为半径的圆,这样的圆有无数个. (2)经过平面内两个点A,B的圆,是以线段AB垂直平分线上的任意一点为圆心,以这一点到A或B的距离为半径的圆.这样的圆有无数个.

证明三点共线问题的方法

证明三点共线问题的方法 1、利用梅涅劳斯定理的逆定理 例1、如图1,圆内接ΔABC 为不等边三角形,过点A 、B 、C 分别作圆的切线依次交直线BC 、CA 、AB 于1A 、1B 、1C ,求证:1A 、1B 、1C 三点共线。 解:记,,BC a CA b AB c ===,易知1111AC C CC B S AC C B S ??= 又易证1 1 AC C CC B ?? .则112 2 2AC C CC B S AC b S CB a ????== ???. 同理12121212,BA c CB a A C b B A c ==.故111222 1112221AC BA CB b c a C B A C B A a b c ??=??=. 由梅涅劳斯定理的逆定理,知1A 、1B 、1C 三点共线。 2、利用四点共圆(在圆内,主要由角相等或互补得到共线) 例2 、如图,以锐角ΔABC 的一边BC 为直径作⊙O ,过点A 作⊙O 的两条切线,切点为M 、N ,点H 是ΔABC 的垂心.求证:M 、H 、N 三点共线。(96中国奥数 证明:射线AH 交BC 于D ,显然AD 为高。 记AB 与⊙O 的交点为E ,易知C 、H 、E 三点共线。 联结OM 、ON 、DM 、DN 、MH 、NH , 易知090AMO ANO ADO ∠=∠=∠=, ∴A 、M 、O 、D 、N 五点共圆,更有A 、M 、D 、N 四点共圆, 此时,0+180AND ∠∠=AMD 因为2AM AE AB AH AD =?=?(B 、D 、H 、E 四点共圆), 即 AM AD AH AM = ;又MAH DAM ∠=∠,所以AMH ADM ?? ,故AHM AMD ∠=∠ 同理,AHN AND ∠=∠。 因为0180AHM AHN AMD AND ∠+∠=∠+∠=,所以,M 、H 、N 三点共线。 3、利用面积法 如果S S EMN FMN =??,点E 、F 位于直线MN 的异侧,则直线MN 平分线段EF ,即M 、N 与 EF 的中点三点共线。 A B C C 1 B 1A 1

平面向量中三点共线定理探究

平面向量中“三点共线向量定理”探究 三点共线定理在教材中没有作为定理使用,但在各级考试中却应用广泛,笔者尝试通过 聚焦结论,优化思路,多维度揭示定理的价值所在. () 0.a b b a b a b λλ≠=r r r r r r r r 向量共线定理:对平面内的任意两个向量 、 , // 的充要条件是:存在唯一的 实数 ,使由该定理可以得到平面内三点共线定理: ()121212+= OA OB OP OP OA OB R λλλλλλ=+∈u u u r u u u r u u u r u u u r u u u r u u u r 三点共线定理:已知平面内一组基底 , 及任一向量 ,, , 则A ,B ,P 三点共线,当且仅当 1. ()() ()1122121,,1,=1,,+= A B P AP AB OP OA OB OA OP OA O OP OA O B B λλλλλλλλλλλλλ=?-=-?=-+-=+=u u u r u u u r u u u r u u u r u u u r u u u u u u r u u u r u u u r u u u r u u u r u u u r r 证明:如图 , 三点共线,当且仅当有唯一一个实数 , ,且使令则 1. ()()()()()() 1212112212=1,1;2+= OA OP OP OA OB OP OA OB OA AP AB OB OP OA OB λλλλλλλλλλλλλλ?-===-+?-=-?=+u u u r u u u r u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u u u u r r u ur 的系数之和等于1 即为向量,的变化而变化的定理特.如图, 且1征:向量, 的系数点P 的位置是随着令 , 当点P 在线段AB 内()() ()() ()() 12121212121,1,,=10,10,1=1,01,0=10,,0=0=110 =1=10 1. λλλλλλλλλλλλλλλλλλλλλλλλλ-∈=∈-∈-∞=∈+∞<-<<>∈+∞=∈-∞-===-===此时 此时,0,当点P 在线段AB 的延长线上时, ,点P 在线段AB 反向延长线上时, ,当点P 与点A , ,当点P 与点B 重合时, 时此时此时此时,, ,重合时, 111AP PB OP OA OB λλλλ ?==+++u u u r u u u r u u u r u u u r u u u r 推论:在OAB 中,P 为直线AB 上的一点,且则 O 1()

点共线与三线共点的证明方法

三点共线与三线共点的证明方法 公理 1.若一条直线上的两点在一个平面内,那么这条直线在此平面内。 公理2.过不在一条直线上的三点,有且只有一个平面。 推论1.经过一条直线和直线外的一点有且只有一个平面; 推论2.经过两条相交直线有且只有一个平面; 推论3.经过两条平行直线有且只有一个平面。 公理 3.若两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 例1.如图,在四面体ABCD中作截图PQR, PQ、CB的延长线交于M,RQ、DB的延长线交于N,RP、DC的延长线交于K.求证M、N、 K三点共线. 由题意可知,M、N、K分别在直线PQ、

RQ 、RP 上,根据公理1可知M 、N 、K 在平面PQR 上,同理,M 、N 、K 分别在直线CB 、DB 、DC 上,可知M 、N 、K 在平面BCD 上,根据公理3可知M 、N 、K 在平面PQR 与平面BCD 的公共直线上,所以M 、N 、K 三点共线. 例2.已知长方体1111ABCD A B C D -中,M 、N 分别为1AA 与AB 的中点,求证:1 D M 、DA 、CN 三线共点. 由M 、N 分别为1AA 与AB 的中点知1//MN A B 且112MN A B =,又1A B 与1D C 平行且相等,所以1//MN D C 且112MN D C =,根据推论3可知M 、N 、C 、1D 四点共面,且1D M 与CN 相交,若1D M 与CN 的交点为K ,则点K 既在平面11ADD A 上又在平面ABCD 上,所以点K 在平面11ADD A 与平面ABCD 的交线DA 上,故1 D M 、DA 、CN 三线交于点K ,即三线共点. 从上面例子可以看出,证明三线共点

向量三点共线定理及其延伸应用汇总

向量三点共线定理及其扩展应用详解 一、平面向量中三点共线定理的扩展及其应用 一、问题的提出及证明. 1、向量三点共线定理:在平面中A 、B 、C 三点共线的充要条件是: .O A xOB yOC =+(O 为平面内任意一点),其中1x y +=. 那么1x y +<、1x y +>时分别有什么结证?并给予证明. 结论扩展如下:1、如果O 为平面内直线BC 外任意一点,则 当1x y +<时 A 与O 点在直线BC 同侧,1x y +>时, A 与O 点在直线BC 的异侧,证明如下: 设 O A xOB yOC =+ 且 A 与B 、C 不共线,延长OA 与直线BC 交于A 1点 设 1O A O A λ=(λ≠0、λ≠1)A 1与B 、C 共线 则 存在两个不全为零的实数m 、n 1 O A m O B n O C =+ 且1m n += 则 OA mOB nOC λ=+ m n OA OB OC λ λ ?=+ m x λ ∴= 、n y λ = 1 m n x y λ λ ++= = (1)1λ> 则 1x y +< 则 11 1 OA OA OA λ = < ∴A 与O 点在直线BC 的同侧(如图[1]) (2)0λ<,则1 01x y λ +=<<,此时OA 与1OA 反向 A 与O 在直线BC 的同侧(如图[2]) 图[2] B C A 1 O A O A 1 B C A 图[1]

(3)1o λ<<,则1x y +> 此时 111 OA OA OA λ => ∴ A 与O 在直线BC 的异侧(如图[3]) 图[3] 2、如图[4]过O 作直线平行AB , 延长BO 、AO 、将AB 的O 侧区 域划分为6个部分,并设OP xOA yOB =+, 则点P 落在各区域时,x 、y 满足的条件是: (Ⅰ)区:0001x y x y ??<+??>??<+?? ????-<+

三点共线与三线共点的证明办法

三点共线与三线共点的证明方法 公理1.若一条直线上的两点在一个平面内,那么这条直线在此平面内。 公理2.过不在一条直线上的三点,有且只有一个平面。 推论1.经过一条直线和直线外的一点有且只有一个平面; 推论2.经过两条相交直线有且只有一个平面; 推论3.经过两条平行直线有且只有一个平面。 公理3.若两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 例1.如图,在四面体ABCD 中作截图PQR ,PQ 、CB 的延长线交于M ,RQ 、DB 的延长线交于N ,RP 、DC 的延长线交于K .求证M 、N 、K 三点共线. 由题意可知,M 、N 、K 分别在直线PQ 、RQ 、RP 上,根据公理1可知M 、N 、K 在平面PQR 上,同理,M 、N 、K 分别在直线CB 、 DB 、DC 上,可知M 、N 、K 在平面BCD 上, 根据公理3可知M 、N 、K 在平面PQR 与平面BCD 的公共直线上,所以M 、N 、K 三点共线. 例2.已知长方体1111ABCD A B C D -中,M 、N 分别为1AA 与AB 的中点,求证:1D M 、DA 、CN 三线共点. 由M 、N 分别为1AA 与AB 的中点知1//MN A B 且112MN A B =,又1A B 与1D C 平行且相等,所以1//MN D C 且112MN D C =,根据推论3可知M 、N 、C 、1D 四点共面,且1D M 与CN 相交,若1D M 与CN 的交点为K ,则点K 既在平面11ADD A 上又在平面ABCD 上,所以点K 在平面11 ADD A

与平面ABCD的交线DA上,故 D M、DA、CN三线交于点K,即三线 1 共点. 从上面例子可以看出,证明三线共点的步骤就是,先说明两线交于一点,再证明此交点在另一线上,把三线共点的证明转化为三点共线的证明,而证明三点共线只需要证明三点均在两个相交的平面上,也就是在两个平面的交线上。

向量法证明三点共线的又一方法及应用

向量法证明三点共线的又一方法及应用 蒋李萍 2011年10月24日 平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力. 下面就一道习题的应用探究为例进行说明. 原题 已知OB λOA μOC =+,其中1λμ+=. 求证:A 、B 、C 三点共线 思路:通过向量共线(如AB k AC =)得三点共线. 证明:如图,由1λμ+=得1λμ=-,则 (1)OB λOA μOC μOA μOC =+=-+ ∴()OB OA μOC OA -=- ∴AB μAC = ∴A 、B 、C 三点共线. 思考:1. 此题揭示了证明三点共线的又一向量方法,点O 具有灵活性; 2. 反之也成立(证明略):若A 、B 、C 三点共线,则存在唯一实数对λ、μ,满 足OB λOA μOC =+,且1λμ+=.揭示了三点共线的又一个性质; 3. 特别地,12λμ== 时,1 ()2 OB OA OC =+,点B 为AC 的中点,揭示了OAC 中线OB 的一个向量公式,应用广泛. 应用举例: 例1 如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且1 3 BN BD =. 利用向量法证明:M 、N 、C 三点共线. 思路分析:选择点B ,只须证明BN λBM μBC =+,且1λμ+=. 证明:由已知BD BA BC =+,又点N 在BD 上,且1 3 BN BD = ,得 1111()3333BN BD BA BC BA BC ==+=+ 又点M 是AB 的中点, 1 2BM BA ∴=,即2BA BM = 21 33BN BM BC ∴=+ 而21133 += ∴M 、N 、C 三点共线. D A B C M N

(完整版)平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用 对平面内任意的两个向量b a b b a //),0(, 的充要条件是:存在唯一的实数 ,使b a 由该定理可以得到平面内三点共线定理: 三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点 的O ,存在唯一的一对实数x,y 使得:OP xOA yOB u u u v u v u u u v 且1x y 。 特别地有:当点P 在线段AB 上时,0,0x y 当点P 在线段AB 之外时,0xy 笔者在经过多年高三复习教学中发现,运用平面向量中三点 共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。 例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若 1200OB a OA a OC u u u r u u u r u u u r ,且A 、B 、C 三点共线, (设直线不过点O ),则S 200=( ) A .100 B .101 C .200 D .201 解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200() 1002 a a S ,故选A 。 点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。 例2 已知P 是ABC 的边BC 上的任一点,且满足R y x AC y AB x AP .,,则y x 4 1 的最小值是 解:Q 点P 落在ABC V 的边BC 上 B ,P,C 三点共线 AP xAB yAC u u u r u u u r u u u r Q 1x y 且x>0,y>0 14141444()1()()145y x y x x y x y x y x y x y x y   Q x>0,y>040,0y x x y 由基本不等式可知:4424y x y x x y x y ,取等号时

初中数学竞赛:证明三点共线

初中数学竞赛:证明三点共线 【内容提要】 1.要证明A,B,C三点在同一直线上, 常用方法有:①连结AB,BC证明∠ABC是平角 ②连结AB,AC证明AB,AC重合 ③连结AB,BC,AC证明AB+BC=AC ④连结并延长AB证明延长线经过点C 2.证明三点共线常用的定理有: ①过直线外一点有且只有一条直线和已知直线平行 ②经过一点有且只有一条直线和已知直线垂直 ③三角形中位线平行于第三边并且等于第三边的一半 ④梯形中位线平行于两底并且等于两底和的一半 ⑤两圆相切,切点在连心线上 ⑥轴对称图形中,若对应线段(或延长线)相交,则交点在对称轴上 【例题】 例1.已知:梯形ABCD中,AB∥CD,点P是形内的任一点,PM⊥AB, PN⊥CD 求证:M,N,P三点在同一直线上 ∵AB∥CD,∴EF∥CD ∠1+∠2=180 ,∠3+∠4=180 ∵PM⊥AB,PN⊥CD ∴∠1=90 ,∠3=90 ∴∠1+∠3=180 ∴M,N,P三点在同一直线上 例2.求证:平行四边形一组对边的中点和两条对角线的交点,三点在同一直线上 已知:平行四边形ABCD中,M,N分别是AD和BC的中点,O是AC和BD的交点

求证:M ,O ,N 三点在同一直线上 证明一:连结MO ,NO ∵MO ,NO 分别是△DAB 和△CAB 的中位线 ∴MO ∥AB ,NO ∥AB 根据过直线外一点有且只有一条直线和已知直线平行 ∴ M ,O ,N 三点在同一直线上 证明二:连结MO 并延长交BC 于N , ∵MO 是△DAB 的中位线 ∴MO ∥AB 在△CAB 中 ∵AO =OC ,ON , ∥AB ∴BN , =N , C ,即N , 是BC 的中点 ∵N 也是BC 的中点, ∴点N ,和点N 重合 ∴ M ,O ,N 三点在同一直线上 例3.已知:梯形ABCD 中,AB ∥CD ,∠A +∠B =90 ,M ,N 分别是AB 和CD 的中点,BC ,AD 的延长线相交于P 求证:M ,N ,P 三点在同一直线上 证明:∵∠A +∠B =90 , ∠APB =Rt ∠ 连结PM ,PN 根据直角三角形斜边中线性质 PM =MA =MB ,PN =DN =DC ∴∠MPB =∠B ,∠NPC =∠B ∴PM 和PN 重合 ∴M ,N ,P 三点在同一直线上 ,

向量证明三线共点与三点共线问题.doc

用向量证明三线共点与三点共线问题 山东徐鹏 三线共点、三点共线是几何中经常遇到的问题,直接证明往往很困难,用向量法解决则 简捷得多. 证明A、 B、 C 三点共线,只要证明AB 与AC 共线即可,即证明AB AC .证明三线共点一般须证两线交点在第三条直线上. 例 1.证明:若向量OA 、OB 、OC 的终点A、B、C 共线,则存在实数、,且1, A B C O 图1 使得OC OA OB ;反之,也成立. 的终点 A 、 B 、 C 共线,则证明:如图 1 ,若OA 、OB 、 OC AB BC BC m AB BC OC OB AB OB OA OC OB m(OB OA) OC mOA (1 m)OB m, 1 m, , ,且1, OC OA OB OC OA OB 1, 1 OC OA (1 )OB OC OB OA OB BC BA BC和 BA OA OB OC 例 2.证明:三角形的三条中线交于一点. 证明:如图 2,D、E、F 分别是ABC三边上的中

C D E G A F B 图2 点. 设 CA a, CB b, AD BE G.设 AG AD, BG BE .则 AG AB BG (b a) BE (b a) ( BC 1 CA) b a ( 1 a b) 1 ( 2 1 b) 2 1 b 1)a (1 )b ,又 AG AD (AC CD) ( a a 2 2 2 1 1 2 2 3 所以解得 1 2 1 2 3 则 CG CA AG a 2 AD a 2 ( a 1 b) 1 a 1 b 1 1 3 2 3 2 3 3 CF a b,所以 CG CF ,所以G在中线CF上,所以三角形三条中线交于一点. 2 2 3

平面向量中“三点共线定理”妙用教学文稿

平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用 对平面内任意的两个向量b a b b a //),0(, 的充要条件是:存在唯一的实数 ,使 b a 由该定理可以得到平面内三点共线定理: 三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点 的O ,存在唯一的一对实数x,y 使得:OP xOA yOB u u u v u v u u u v 且 1x y 。 特别地有:当点P 在线段AB 上时,0,0x y 当点P 在线段AB 之外时,0xy 笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。 例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若 1200OB a OA a OC u u u r u u u r u u u r ,且A 、B 、C 三点共线,(设直线不过点O ),则S 200= ( ) A .100 B .101 C .200 D .201 解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200() 1002 a a S ,故选 A 。 点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。 例2 已知P 是ABC 的边BC 上的任一点,且满足R y x AC y AB x AP .,,则 y x 4 1

三点共线经典题型

三点共线经典题型 例1如图△ABC,D是△ABC内的一点,延长BA至点E,延长DC至点F,使得AE=CF,G,H,M分别为BD,AC,EF的中点,如果G,H,M三点共线,求证:AB=CD. 分析 由三角形的中位线得,MS∥AE,MS=0.5AE,HS∥CF,HS=0.5CF 由已知得HS=SM,从而得出∠SHM=∠SMH,则得出∠TGH=∠THG,GT=TH,最后不难看出AB=CD. 解答: 证明:取BC中点T,AF的中点S,连接GT,HT,HS,SM, ∵GHM分别为BD,AC,EF的中点, ∴MS∥AE,MS=0.5AE,HS∥CF,HS=0.5CF ∵GT∥CD,HT∥AB,GT=0.5CD,HT=0.5AB, ∴GT∥HS,HT∥SM ∴∠SHM=∠TGH,∠SMH=∠THG, ∴∠TGH=∠THG, ∴GT=TH,

∴AB=CD. 例2如图,已知菱形ABCD,∠B=60°,△ADC内一点M满足∠AMC=120°,若直线BA与CM交于点P,直线BC与AM交于点Q,求证:P,D,Q三点共线. 资料个人收集整理,勿做商业用途 分析 求证:P,D,Q三点共线就是证明平角的问题,可以求证∠PDA+∠ADC+∠CDQ=180°,根据△PAC∽△AMC,△AMC∽△ACQ,可以得出∠PAD=∠DCQ=60°;进而证明△PAD∽△DCQ,得出∠APD=∠CDQ,则结论可证资料个人收集整理,勿做商业用途 解答连接PD,DQ, 由已知∠PAC=120°,∠QCA=120°, ∴△PAC∽△AMC,△AMC∽△ACQ.资料个人收集整理,勿做商业用途 ∴PA/AM=AC/MC,AC/AM=QC/MC ∴AC2=PA?QC,又AC=AD=DC. ∴PA/DC=AD/QC,又∠PAD=∠DCQ=60°, ∴△PAD∽△DCQ,∴∠APD=∠CDQ. 资料个人收集整理,勿做商业用途 ∴∠PDA+∠ADC+∠CDQ=180°,

平面向量补充讲义----三点共线定理(修改版)

平面向量补充讲义----三点共线定理 班级:__________姓名:___________ 三点共线定理:若平面内,向量12,OP OP 不共线,向量12OP OP OP λμ=+, 则12,,P P P 三点共线的等价条件是1λμ+=.(如图,共线时λ满足:221P P P P λ=) 说明1:若12,,P P P 三点共线,设221P P P P λ=,则11OP OP PP =+,则 例1.如图,在△ABC 中,13 AN NC =,点P 是BN 上的一点,若211 AP mAB AC =+,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211 练习 例2.,点在边上,,设,则( ) 例3.如图,点是△的重心,、分别是边、上的动点, 且、、三点共线.设,,求: 的值 推论:如图,若平面内,向量12,OP OP 不共线,点P 为直线12P P 的 平行线上任意一点,且向量 12OP OP OP λμ=+,则λμ+为定值. (这条平行线称为等和线) 例4 .已知点G 为ABC ?重心,P 为GBC ?内动点(不包括边界),且AP AB AC λμ=+,则λμ+的取 值范围是__________________;2λμ+的取值范围是_______________________. OAB ?P AB 3AB AP =,OA a OB b ==OP =12.33A a b +21.33 B a b +. C 1233a b -. D 2133a b -G OAB P Q OA OB P G Q x =y =y x 11+2 12P 1

点共线问题的证明方法

一、点共线问题 证明点共线,常常采用以下两种方法:①转化为证明这些点是某两个平面的公共点,然后根据公理3证得这些点都在这两个平面的交线上;②证明多点共线问题时,通常是过其中两点作一直线,然后证明其他的点都在这条直线上. 1.如图1,正方体1111ABCD A BC D -中,1AC 与截面1DBC 交O 点,AC BD ,交M 点,求证:1C O M ,,三点共线. 证明:连结11AC ,1C ∈ 平面11A ACC ,且1C ∈平面1DBC , 1C ∴是平面11A ACC 与平面1DBC 的公共点. 又M AC M ∈∴∈ , 平面11A ACC . M BD M ∈∴∈ ,平面1DBC . M ∴也是平面11A ACC 与平面1DBC 的公共点. 1C M ∴是平面11A ACC 与平面1DBC 的交线.O 为1AC 与截面1DBC 的交点, O ∴∈平面11A ACC O ∈,平面1DBC ,即O 也是两平面的公共点. 1O C M ∈∴,即1C M O ,,三点共线. 2.如图,在四边形ABCD 中,已知AB ∥CD ,直线AB ,BC ,AD ,DC 分别与平面α相交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线(在同一条直线上). 分析:先确定一个平面,然后证明相关直线在这个平面内,最后证明四点共线. 证明 ∵ AB//CD , AB ,CD 确定一个平面β. 又∵AB ∩α=E ,AB β,∴ E ∈α,E ∈β, 即 E 为平面α与β的一个公共点. 同理可证F ,G ,H 均为平面α与β的公共点. ∵ 两个平面有公共点,它们有且只有一条通过公共点的公共直线, ∴ E ,F ,G ,H 四点必定共线. 点 评:在立体几何的问题中,证明若干点共线时,先证明这些点都是某两平面的公共点,而后得出这些点都在二平面的交线上的结论.

向量法证明三点共线的又一方法及应用 -

向量法证明三点共线的又一方法及应用 平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力. 下面就一道习题的应用探究为例进行说明. 原题 已知OB λOA μOC =+u u u r u u u r u u u r ,其中1λμ+=. 求证:A 、B 、C 三点共线 思路:通过向量共线(如AB k AC =u u u r u u u r )得三点共线. 证明:如图,由1λμ+=得1λμ=-,则 (1)OB λOA μOC μOA μOC =+=-+u u u r u u u r u u u r u u u r u u u r ∴()OB OA μOC OA -=-u u u r u u u r u u u r u u u r ∴AB μAC =u u u r u u u r ∴A 、B 、C 三点共线. 思考:1. 此题揭示了证明三点共线的又一向量方法,点O 具有灵活性; 2. 反之也成立(证明略):若A 、B 、C 三点共线,则存在唯一实数对λ、μ,满 足OB λOA μOC =+u u u r u u u r u u u r ,且1λμ+=.揭示了三点贡献的又一个性质; 3. 特别地,12λμ==时,1()2 OB OA OC =+u u u r u u u r u u u r ,点B 为AC u u u r 的中点,揭示了OAC V 中线OB 的一个向量公式,应用广泛. 应用举例 例 1 如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且13 BN BD =. 利用向量法证明:M 、N 、C 三点共线. 思路分析:选择点B ,只须证明 BN λBM μBC =+u u u r u u u u r u u u r ,且1λμ+=. D A B C M N

向量证明三线共点与三点共线问题

用向量证明三线共点与三点共线问题 山东 徐鹏 三线共点、三点共线是几何中经常遇到的问题,直接证明往往很困难,用向量法解决则简捷得多. 证明A 、B 、C 三点共线,只要证明AB 与AC 共线即可,即证明AC AB λ=.证明三线共点一般须证两线交点在第三条直线上. 例1. 证明:若向量OA 、OB 、OC 的终点A 、B 、C 共线,则存在实数λ、μ, 且1=+μλ,使得OB OA OC μλ+=;反之,也成立. 证明:如图1,若OA 、OB 、OC 的终点A 、B 、C 共线,则AB //BC ,故存在实数m,使得AB m BC =,又OB OC BC -=,OA OB AB -=,故)(OA OB m OB OC -=-, OB m OA m OC )1(++-=.令,1,m m +=-=μλ则存在,1,,=+μλμλ且使得 OB OA OC μλ+=. 若OB OA OC μλ+=,其中,1=+μλ则λμ-=1,OB OA OC )1(λλ-+=.从而有OC -OB =λ(OA -OB ),即BA BC λ=.又因为BA BC 和有公共点B,所以A 、B 、C 三点共线,即向量OA 、OB 、OC 的终点A 、B 、C 共线. 例2. 证明:三角形的三条中线交于一点. 证明:如图2,D 、E 、F 分别是ABC ?三边上的中 A O B C 图1

点. 设BE BG AD AG G BE AD b CB a CA μ===?==,,,.设.则 =-+-=++-=+-=+=)2 1( )2 1()()(b a a b CA BC a b BE a b BG AB AG μμμ b a )1(1(2 1μμ-+-),又b a b a CD AC AD AG λλλλλ2 1)2 1()(+-=+-=+== ?????? ? ==??????? -=-=-323 2121121μλμλμλ解得 所以 则b a b a a AD a AG CA CG 3131)21(323 2+ = + -+=+ =+= b a CF 2 121+ = ,所以CF CG 3 2=,所以G 在中线CF 上,所以三角形三条中线交于一点. A B C E D F 图2 G

证明三点共线的几种方法

证明三点共线的几种方法 贵阳市三十九中学 李明 在高中数学学习中,许多同学感觉到对所学的基本概念,基本公式已经理解,熟练。但解题时却力不从心,无从入手。究其原因:是学生缺乏对解题策略的探究。所以,多种方法解题,是可以帮助学生消化基础知识,优化思维素质,提高分析问题和解决问题能力的。 现就人教版高中第二册(上)第87页第3题的多种解法如下: 题目:证明三点A (-2,12),B(1,3),C (4,-6)在同一条直线上。 一、用解析法解题: 解(1): ∵两点确定一条直线, ∴直线AB 的斜率K AB =Y B -Y A X B -X A = -3 直线AC 的斜率K AC = Y C -Y A X C -X A = -3 ∵K AB = K AC 则直线AB,AC 平行,两直线共起点A 点, ∴直线AB,AC 重合, ∴A,B,C 三点共线。 解(2): 由直线方程的两点式求得直线AB 的方程:3x+y -6=0 把点C 坐标代入直线AB 的方程,得: 3×4-6-6=0 ∵C 点在直线AB 上, ∴A,B,C 三点共线。 解(3): 直线夹角为0来证明三点共线 直线AB 的斜率K AB = Y B -Y A X B -X A = -3 直线AC 的斜率K AC = Y C -Y A X C -X A = -3 设直线AB 与直线AC 的的夹角为 θ,则 tan θ=|K AB -K AC 1+ K AB ?K AC |= 0 又∵0≤θ<1800 ∴θ=0 ∴A,B,C 三点共线。 解(4)的面积为0证明三点共线 ∵直线AB 的方程为:3x+y-6=0 ∴点C (4,-6)到直线AB 的距离d= |3×4-6-6| 32+12 = 0 又∵|AB|=(3-12)2+(1+2)2 =310

三点共线,线共点

第三讲 点共线、线共点 在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。 1. 点共线的证明 点共线的通常证明方法是:通过邻补角关系证明三点共线;证明两点的连线必过第三点;证明三点组成的三角形面积为零等。n (n ≥4)点共线可转化为三点共线。 例1 如图,设线段AB 的中点为C ,以AC 和CB 为对角线作平行四边形AECD , BFCG 。又作平行四边形CFHD ,CGKE 。求证:H ,C ,K 三点共线。 证 连AK ,DG ,HB 。 由题意,AD EC KG ,知四边形AKGD 是平行四边形,于是AK DG 。同样可证AK HB 。四边形AHBK 是平行四边形, 其对角线AB ,KH 互相平分。而C 是AB 中点,线段KH 过C 点,故K ,C ,H 三点共线。 A B C D E F H K G

例2 如图所示,菱形ABCD 中,∠A =120 O 为△ABC 外接圆,M 为其上 一点,连接MC 交AB 于E ,AM 交CB 延长线于F 。求证:D ,E ,F 三点共线。 证 如图,连AC ,DF ,DE 。 因为M 在 O 上, 则∠AMC =60°=∠ABC =∠ACB , 有△AMC ∽△ACF ,得 CD CF CA CF MA MC = =。 又因为∠AMC =BAC ,所以△AMC ∽△EAC ,得 AE AD AE AC MA MC = =。 所以 AE AD CD CF = ,又∠BAD =∠BCD =120°,知△CFD ∽ △ADE 。所以∠ADE =∠DFB 。因为AD ∥BC ,所以∠ADF =∠DFB =∠ADE ,于是F , E ,D 三点共线。 例3 四边形ABCD 内接于圆,其边AB 与DC 的延长线交于点P ,AD 与BC 的延长线交于点Q 。由Q 作该圆的两条 切线QE 和QF ,切 点分别为E ,F 。求证:P ,E ,F 三点共线。 证 如图。 连接PQ ,并在PQ 上取一点M ,使得 B , C ,M ,P 四点共圆,连CM ,PF 。设PF 与圆的另一交点为E ’, C E (E ')A B D F P M Q G

(完整word版)高中数学例题:利用平面向量基本定理证明三点共线问题

高中数学例题:利用平面向量基本定理证明三点共线问题 例3.设OA u u u r 、OB uuu r 、OP uuu r 是三个有共同起点的不共线向量,求证: 它们的终点A 、B 、P 共线,当且仅当存在实数m 、n 使m+n=1且OP mOA nOB ==u u u r u u u r u u u r . 【思路点拨】本题包含两个问题:(1)A 、B 、P 共线?m+n=1,且OP mOA nOB ==u u u r u u u r u u u r 成立;(2)上述条件成立?A 、B 、P 三点共线. 【证明】(1)由三点共线?m 、n 满足的条件. 若A 、B 、P 三点共线,则AP u u u r 与AB u u u r 共线,由向量共线的条件知存 在实数λ使AP AB λ=u u u r u u u r ,即()OP OA OB OA λ-=-u u u r u u u r u u u r u u u r ,∴(1)OP OA OB λλ=-+u u u r u u u r u u u r . 令1m λ=-,n=λ,则OP mOA nOB =+u u u r u u u r u u u r 且m+n=1. (2)由m 、n 满足m+n=1?A 、B 、P 三点共线. 若OP mOA nOB =+u u u r u u u r u u u r 且m+n=1,则(1)OP mOA m OB =+-u u u r u u u r u u u r . 则()OP OB m OA OB -=-u u u r u u u r u u u r u u u r ,即BP mBA =u u u r u u u r . ∴BP u u u r 与BA u u u r 共线,∴A 、B 、P 三点共线. 由(1)(2)可知,原命题是成立的. 【总结升华】 本例题的结论在做选择题和填空题时,可作为定理使用,这也是证明三点共线的方法之一. 举一反三: 【变式1】设e 1,e 2是平面内的一组基底,如果124AB e e =-u u u r , 12BC e e =+u u u r ,1269CD e e =-u u u r ,求证:A ,C ,D 三点共线. 【解析】 因为1212121(4)()233AC AB BC e e e e e e CD =+=-++=-=u u u r u u u r u u u r u u u r ,所以AC u u u r 与CD uuu r 共线.

再议平面向量中三点共线定理

再议平面向量中三点共线定定理 三点共线向量定理:已知平面内一组基底OA ,OB 及任一向量OP ,OB OA OP 21λλ+=, ()12,R R λλ∈∈,则A,B,P 三点共线,当且仅当121=+λλ.如图(1)所示. 提出问题:当121≠ +λλ时,点P 应在什么位置呢? 预备知识:点P 的位置是随着1λ,2λ的变化而变化的.如图(2)所示,点P 在直线AB 上, 等价于,AP AB R λλ=∈u u u r u u u r ,所以,OP OA OB OA λλ-=-u u u r u u u r u u u r u u u r ,所以()1OP OA OB λλ∴=-+u u u r u u u r u u u r 所以11=λ12=1,λλλλ∴-=, (1)当 0<λ,即12=11,0λλλλ->=<时点P 在线段AB 的反向延长线上; (2)当 0=λ,即12=1=1,=0λλλλ-=时点P 与点A 重合; (3)当 10<<λ,即()()12=10,1,0,1λλλλ-∈=∈时点P 在线段AB 的内部; (4)当 1=λ,即12=1=0,=1λλλλ-=时点P 与点B 重合; (5)当 1>λ,即12=10,1λλλλ-<=>时点P 在线段AB 的延长线上. 问题分析 (1)当OP 在直线AB 的同侧且AB OP //时,如图(3)所示,OP AB OB OA λλλ==-u u u r u u u r u u u r u u u r , 此时,1212=,+=0λλλλλλ-=,.

(2)当OP 在直线AB 的同侧且0P AB OP =I 时,如图(4)所示 () 01212OP OP OA OB OA OB λλμμλμλμ==+=+u u u r u u u r u u u r u u u r u u u r u u u r ,121+=1λμμ<,且 此时,()11221212=,+=+=1λλμλλμλλλμμλ=< ,. 过点O 直线OE//AB ①当点P 位于直线OE 与直线AB 之间时,如图(5)所示, () 01212OP OP OA OB OA OB λλμμλμλμ==+=+u u u r u u u r u u u r u u u r u u u r u u u r ,1201+=1λμμ<<,且, 此时,()()11221212=,+=+=0,1λλμλλμλλλμμλ=∈ ,. ②当点P 位于直线OE 上方时,如图(6)所示, () 01212OP OP OA OB OA OB λλμμλμλμ==+=+u u u r u u u r u u u r u u u r u u u r u u u r ,120+=1λμμ<,且, 此时,()11221212=,+=+=0λλμλλμλλλμμλ=< ,. (3)当OP 在直线AB 的两侧且0P AB OP =I 时,如图(7)所示 () 01212OP OP OA OB OA OB λλμμλμλμ==+=+u u u r u u u r u u u r u u u r u u u r u u u r ,121+=1λμμ>,且, 此时,()11221212=,+=+=1λλμλλμλλλμμλ=> , 综上讨论可知,已知平面内一组基底,及任一向量,21λλ+=,

相关主题
文本预览
相关文档 最新文档