2023-2024学年八年级数学上册《第十二章 全等三角形》单元测试卷题含答案(人教版)
- 格式:docx
- 大小:178.02 KB
- 文档页数:13
人教版八年级数学上册《第十二章全等三角形》章节检测卷及答案(总分:100分 时间:90分钟)一、选择题(本题包括10小题,每小题3分,共30分。
每小题只有1个选项符合题意)1.下列判断不正确的是( )A .形状相同的图形是全等图形B .能够完全重合的两个三角形全等C .全等图形的形状和大小都相同D .全等三角形的对应角相等2.(2023陕西宝鸡·期中考题)如图,已知在ABO 和DCO 中AB BO ⊥ CD CO ⊥ AO DO =若用“HL ”判定Rt Rt ABO DCO ≌△△,则需要添加的条件是( )A .AB DC =B .A D ∠=∠C .AOB DOC ∠=∠D .OB OD =3.如图,在Rt △ABC 中,∠C =90°,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E.若AB =10 cm ,AC =6 cm ,则BE 的长度为( )A .10 cmB .6 cmC .4 cmD .2 cm4.(2024浙江·中考真题)如图,正方形ABCD 由四个全等的直角三角形(,,,)ABE BCF CDG DAH △△△△和中间一个小正方形EFGH 组成,连接DE .若4,3AE BE ==,则DE =( )A .5B .26C 17D .45.点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .PQ >5B .PQ ≥5C .PQ <5D .PQ ≤56.在△ABC 中,∠B =∠C ,与△ABC 全等的△DEF 中有一个角是100°,那么在△ABC 中与这100°角对应相等的角是( )A .∠AB .∠BC .∠CD .∠B 或∠C7.(2023西青区·二模考题)如图,在平面直角坐标系中,ABC 的顶点(3,0)A ,(0,1)B -点C 在第四象限,且AB BC =,90ABC ∠=︒则点C 的坐标是( )A .(4,1)-B .(1,4)-C .(1,4)-D .(4,)1-8.如图,BP 平分∠ABC ,D 为BP 上一点,E ,F 分别在BA ,BC 上,且满足DE =DF ,若∠BED =140°,则∠BFD 的度数是( )A .40°B .50°C .60°D .70°9.(2024四川遂宁·中考真题)如图1,ABC 与111A B C △满足1A A ∠=∠ 11AC AC = 11BC B C = 1C C ∠≠∠我们称这样的两个三角形为“伪全等三角形”如图2,在ABC 中,AB=AC ,点,D E 在线段BC 上,且BE CD =,则图中共有“伪全等三角形”( )A .1对B .2对C .3对D .4对10.(2023江汉区·月考考题)如图,在ABC 中,P 为BC 上一点PR AB ⊥,垂足为R ,PS AC ⊥垂足为S ,CAP APQ ∠=∠ PR PS =下面的结论:∠AS AR =;∠QP AR ∥;∠BRP CSP ∆≅∆.其中正确的是( )A .∠∠B .∠∠C .∠∠D .∠∠∠二、填空题(本题包括10小题,每空3分,共30分)11.(2024青海·中考真题)如图,线段AC 、BD 交于点O ,请你添加一个条件: ,使∠AOB∠∠COD .12.如图,点O 在△ABC 内,且到三边的距离相等.若∠A =60°,则∠BOC =________.13.在△ABC 中,AB =4,AC =3,AD 是△ABC 的角平分线,则△ABD 与△ACD 的面积之比是________.14.已知等腰△ABC 的周长为18 cm ,BC =8 cm ,若△ABC ≌△A ′B ′C ′,则△A ′B ′C ′的腰长等于________. 15.(2024四川成都·中考真题)如图ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒则DCE ∠的度数为 .如图,若AC 平分∠BCD ,∠B +∠D =180°,AE ⊥BC 于点E ,BC =13cm ,CD =7cm则BE = .17.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中共有________对全等三角形.18.(2024甘肃临夏·中考真题)如图,在ABC 中,点A 的坐标为(0,1),点B 的坐标为()4,1,点C 的坐标为()3,4,点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,点D 的坐标是 .19.如图,AE ⊥AB ,且AE =AB ,BC ⊥CD ,且BC =CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是________.20.如图,已知点P 到BE ,BD ,AC 的距离恰好相等,则点P 的位置:①在∠DBC 的平分线上;②在∠DAC 的平分线上;③在∠ECA 的平分线上;④恰是∠DBC ,∠DAC ,∠ECA 的平分线的交点,上述结论中,正确的有________.(填序号)三、解答题(本题包括7小题,共60分)21.(6分)如图,已知△EFG ≌△NMH ,∠F 与∠M 是对应角.(1)写出所有相等的线段与相等的角;(2)若EF =2.1 cm ,FH =1.1 cm ,HM =3.3 cm ,求MN 和HG 的长度.22.(8分)(2024四川内江·中考真题)如图,点A 、D 、B 、E 在同一条直线上,AD=BE ,AC=DF ,BC=EF(1)求证:ABC DEF ≌△△;(2)若55A ∠=︒,45E ∠=︒求F ∠的度数.23.(7分)(2024云南·中考真题)如图,在ABC 和AED △中,AB=AE BAE CAD ∠=∠ AC AD =. 求证:ABC AED ≌△△.24.(8分)(2023陕西·中考真题)如图,在△ABC 中,∠B =90°,作CD ⊥AC ,且使CD =AC ,作DE ⊥BC ,交BC 的延长线于点E .求证:CE =AB .25.(9分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于点E,点F在AC上,BD =DF.求证:(1)CF=EB;(2)AB=AF+2EB.26.(10分)如图,A,B两建筑物位于河的两岸,要测得它们之间的距离,可以从点B出发在河岸上画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E,C,A在同一直线上,则DE的长就是点A,B之间的距离,请你说明道理.27.(12分)如图(1),在△ABC 中,∠ACB 为锐角,点D 为射线BC 上一点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF ,连接CF.(1)如果AB =AC ,∠BAC =90°①当点D 在线段BC 上时(与点B 不重合),如图(2),线段CF ,BD 所在直线的位置关系为______,线段CF ,BD 的数量关系为________;②当点D 在线段BC 的延长线上时,如图(3),①中的结论是否仍然成立,并说明理由;(2)如果AB ≠AC ,∠BAC 是锐角,点D 在线段BC 上,当∠ACB 满足什么条件时,CF ⊥BC(点C 、F 不重合),并说明理由.参考答案及解析一、选择题(本题包括10小题,每小题3分,共30分。
2023-2024学年八年级数学上册12章《全等三角形》单元检测卷(满分120分)一、选择题(本大题共10小题,共30分)1.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=()A.60°B.100°C.120°D.135°2.根据下列已知条件,能作出唯一的△ABC的是()A.AB=3,BC=4,CA=8B.AB=4,BC=3,∠A=60∘C.∠A=60∘,∠B=45∘,AB=4D.∠C=90∘,∠B=30∘,∠A=60∘3.下列说法正确的是()A.两个等边三角形一定是全等图形B.两个全等图形面积一定相等C.形状相同的两个图形一定全等D.两个正方形一定是全等图形4.如图,∠C=∠D,∠ABC=∠BAD,可证明△ABC≌△BAD,可使用全等三角形的判定定理()A.SSSB.SASC.AASD.HL5.如图,AC=DC,BC=EC,添加一个条件,不能保证△ABC≌△DEC的是()A.AB=DEB.∠ACB=∠DCEC.∠ACD=∠BCED.∠B=∠E6.如图,一个三角形玻璃被摔成三小块,现要到玻璃店再配一块同样大小的玻璃,最省事的方法是()A.带①去B.带②去C.带③去D.带①②去7.到三角形三边的距离相等的是()A.三条中线交点B.三条角平分线的交点C.三条高的交点D.三条中垂线的交点8.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ 的平分线.此角平分仪的画图原理是()A.SSSB.SASC.ASAD.AAS9.如图,用直尺和圆规作一个角等于已知角,能得出△COD≌△C′O′D′的依据是()A.SASB.AASC.ASAD.SSS10.如图,BN为∠MBC的平分线,P为BN上一点,且PD⊥BC于点D,∠APC+∠ABC=180°,给出下列结论:①∠MAP=∠BCP;②PA=PC;③AB+BC=2BD;④四边形BAPC的面积是△PBD 面积的2倍,其中结论正确的个数有()A.4个B.3个C.2个D.1个二、填空题(本大题共5小题,共15分)11.如图,△ABC≌△ADE,∠B=30∘,∠C=95∘,则∠EAD的度数为.12.如图,在△ABC中,∠C=90°,AB=10cm,AD平分∠BAC,若CD=3cm,则△ABD的面积为cm2.13.如图所示的方格中,∠1+∠2+∠3=度.14.如图,D、C、F、B四点在同一条直线上,BC=DF,AC⊥BD于点C,EF⊥BD于点F,如果要添加一个条件,使△ABC≌△EDF,你添加的条件是(注:只需写出一个条件即可).15.如图,MB//NC,∠MBC和∠NCB的平分线相交于点P,过点P作MB的垂线,交MB于点A,交NC于点D.若AD=10,则点P到BC的距离为,∠BPC=°.三、解答题(本大题共8小题,共75分)16.(8分)如图,点C,E,B,F在同一条直线上,AB=DE,AC=DF,BF=CE.说明AC//DF.17.(8分)如图,AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,BD=CD.求证:EB=FC.18.(9分)如图,在△ABC中,AB=AC,∠BAC=90∘,分别过点B,C向过点A的直线作垂线,垂足分别为点E,F.(1)如图 ①,过点A的直线与斜边BC不相交时,求证: ①△ABE≌△CAF; ②EF=BE+CF.(2)如图 ②,其他条件不变,过点A的直线与斜边BC相交时,若BE=10,CF=3,试求EF的长.19.(9分)下面是小明设计的“作角的平分线”的尺规作图的过程.已知:如图1,∠AOB.求作:射线OP,使它平分∠AOB.作法:如图2,①以点O 为圆心,任意长为半径作弧,交OA 于点M ,交OB 于点N ;②分别以点M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在∠AOB 内交于点P ;③作射线OP .射线OP 就是∠AOB 的平分线.根据小明设计的尺规作图的过程,(1)使用直尺和圆规,在图2中补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接MP ,NP .在△OMP 和△ONP 中,因为OP =OP OM =ON (ㅤㅤ)=(ㅤㅤ)所以△OMP≌△ONP ______(填推理的依据).所以______(全等三角形的______相等).即射线OP 平分∠AOB(角平分线定义).20.(10分)如图,在Rt △ABC 中,∠BAC =90∘,AC =2AB ,D 是AC 的中点.将一块锐角为45∘的直角三角板如图放置,使三角板斜边的两个端点分别与A ,D 重合,连接BE ,EC.试猜想线段BE 和EC 的数量及位置关系,并说明理由.21.(10分)如图,BD=CE,BE⊥AC于点E,CD⊥AB于点D,BE、CD交于点F.求证:点F在∠BAC的平分线上.22.(10分)如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,试说明:PM=PN.23.(11分)(1)特例探究:如图①,正方形ABCD中,E、F分别为BC、CD上两点,∠EAF=45°,探究BE、EF、DF之间的数量关系.小明是这么思考的:延长FD,截取DG=BE.连接AG,易证△ADG≌△ABE,从而得到AG=AE,再由SAS证明△AGF≌△AEF,从而得出结论:________________________;(2)一般探究:如图②,四边形ABCD中,AD=AB,∠B与∠D互补,E、F分别是BC、CD上两点,且满足∠EAF=12∠BAD,探究BE、EF、DF之间的数量关系;(3)实际应用:如图③,四边形ABCD中,AB=AD,AC=6,∠DAB=∠DCB=90°,直接写出四边形ABCD的面积为________.答案1.【答案】C解:∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∵∠A=36°,∴∠B=180°−∠A−∠C=180°−36°−24°=120°.故选:C.2.【答案】C3.【答案】B4.【答案】C解:在△ABC和△BAD中,∠C=∠D∠ABC=∠BADAB=BA,∴△ABC≌△BAD(AAS).故选:C.5.【答案】D解:A.AB=DE,AC=DC,BC=EC,符合全等三角形的判定定理SSS,能推出△ABC≌△DEC,故本选项不符合题意;B.AC=DC,∠ACB=∠DCE,BC=EC,符合全等三角形的判定定理SAS,能推出△ABC≌△DEC,故本选项不符合题意;C.∵∠ACD=∠BCE,∴∠ACD+∠DCB=∠BCE+∠DCB,即∠ACB=∠DCE,AC=DC,∠ACB=∠DCE,BC=EC,符合全等三角形的判定定理SAS,能推出△ABC≌△DEC,故本选项不符合题意;D.AC=DC,BC=EC,∠B=∠E,不符合全等三角形的判定定理,不能推出△ABC≌△DEC,故本选项符合题意;故选:D.6.【答案】C7.【答案】B解:在三角形内部,到三角形三边距离相等的点是三角形三条角平分线的交点,故选:B .8.【答案】A9.【答案】D10.【答案】A解:过点P 作PK ⊥AB ,垂足为点K .∵PK⊥AB ,PD ⊥BC ,∠ABP =∠CBP ,∴PK =PD ,在Rt △BPK 和Rt △BPD 中,BP =BP PK=PD ,∴Rt △BPK≌Rt △BPD(HL),∴BK =BD ,∵∠APC +∠ABC =180°,且∠ABC +∠KPD =180°,∴∠KPD=∠APC ,∴∠APK =∠CPD ,又∵三角形内角和为180°,∴∠MAP =∠BCP ,故①正确,在△PAK 和△PCD 中,∠AKP=∠CDP PK =PD ∠APK =∠CPD ,∴△PAK≌△PCD(ASA),∴AK =CD ,PA =PC ,故②正确,∴BK −AB =BC −BD ,∴BD −AB =BC −BD ,∴AB +BC =2BD ,故③正确,∵Rt△BPK≌Rt△BPD,△PAK≌△PCD,∴S△BPK=S△BPD,S△APK=S△PDC,∴S四边形ABCP=S四边形KBDP=2S△PBD.故④正确.故选A.11.【答案】55∘12.【答案】15解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=3,∴△ABD的面积=12AB⋅DE=12×10×3=15.故答案为:15.13.【答案】135解:如图,在△ABC和△EDA中,AB=DE,BC=AD,AC=AE,∴△ABC≌△EDA(SSS),∴∠1=∠DAE,则∠1+∠3=∠DAE+∠3=90°,∵△ADF是等腰直角三角形,∴∠2=45°,则∠1+∠2+∠3=90°+45°=135°,故答案为135.14.【答案】AB=ED或∠B=∠D或DE//AB或∠A=∠E(答案不唯一)解:∵AC⊥BD于点C,EF⊥BD于点F,∴∠ACB=∠EFD=90°,∵BC=DF,∴根据HL,可以添加AB=ED,使得△ABC≌△EDF,根据ASA,可以添加∠B=∠D或DE//AB,使得△ABC≌△EDF,根据AAS,可以添加∠A=∠E,使得△ABC≌△EDF,故答案为:AB=ED或∠B=∠D或DE//AB或∠A=∠E.(答案不唯一) 15.【答案】59016.【答案】证明:∵CE=BF,∴CE+BE=BF+BE,即BC=EF,又∵AB=DE,AC=DF,∴△ABC≌△DEF(SSS),∴∠ACB=∠DFE,∴AC//DF.17.【答案】证明:∵AD是∠BAC的角平分线,∴∠BAD=∠CAD,又∵DE⊥AB,DF⊥AC,∴DE=DF,又∵DE⊥AB,DF⊥AC,BD=CD,在Rt△BDE与Rt△CDF中,BD=CDDE=DF,∴Rt△BDE≌Rt△CDF(HL),∴EB=FC.18.【答案】(1)证明: ①∵BE⊥EF,CF⊥EF,∴∠AEB=∠CFA=90∘.∴∠EAB+∠EBA=90∘.∵∠BAC=90∘,∴∠EAB+∠FAC=90∘.∴∠EBA=∠FAC.在△ABE和△CAF中,∠AEB=∠CFA,∠EBA=∠FAC,AB=CA,∴△ABE≌△CAF(AAS). ②由 ①知△ABE≌△CAF,∴AE=CF,BE=AF.∴EF =AF +AE =BE +CF .(2)解:∵BE ⊥AF ,CF ⊥AF ,∴∠AEB =∠CFA =90∘.∴∠EAB +∠EBA =90∘.∵∠BAC =90∘,∴∠EAB +∠FAC =90∘.∴∠EBA =∠FAC .在△ABE 和△CAF 中,{∠AEB =∠CFA,∠EBA =∠FAC,AB =AC,∴△ABE ≌△CAF(AAS).∴AE =CF ,BE =AF .∴EF =AF −AE =BE −CF =10−3=7.19.【答案】SSS ∠POM =∠PON 对应角解:(1)补全的图形如图所示;(2)证明:连接MP ,NP .在△OMP 和△ONP 中,OP =OP OM =OM MP=NP ,∴△OMP≌△ONP(SSS),故答案为:SSS ,∠POM =∠PON ,对应角.20.【答案】数量关系是BE =EC ,位置关系是BE ⊥EC .理由:由题意可知∠AED =90∘,∠EAD =∠EDA =45∘,AE =DE ,所以∠EAB =∠EAD +∠BAC =45∘+90∘=135∘,∠EDC =180∘−∠EDA =180∘−45∘=135∘,所以∠EAB =∠EDC .因为D 是AC 的中点,所以AD =CD =12AC ,又因为AC =2AB ,所以AB =AD =DC .在△EAB 和△EDC 中,{AE=DE,∠EAB =∠EDC,AB =DC,所以△EAB ≌△EDC(SAS).所以BE =EC ,∠AEB =∠DEC .因为∠AED =∠AEB +∠BED =90∘,所以∠DEC +∠BED =90∘.所以BE ⊥EC .21.【答案】证明:∵CD ⊥AB 于点D ,BE ⊥AC 于点E ,∴∠FDB =∠FEC =90°,在△BDF 和△CEF 中,∠FDB =∠FEC =90°,∠BFD =∠CFE ,BD =CE ,∴△BDF≌△CEF(AAS),∴FD =FE .∴AF 平分∠BAC .点F 在∠BAC 的平分线上.22.【答案】因为BD 为∠ABC 的平分线,所以∠ABD =∠CBD .在△ABD 和△CBD 中,AB =BC,∠ABD =∠CBD,BD =BD,所以△ABD ≌△CBD(SAS).所以∠ADB =∠CDB .又因为点P 在BD 上,PM ⊥AD ,PN ⊥CD ,所以PM =PN .23.【答案】解:(1)EF =BE +DF .(2)如图②,延长CB 至G ,使BG =DF ,连接AG .∵∠ABC+∠D =180°,∠ABC +∠ABG =180°,∴∠ABG =∠D .又∵BG =DF ,AD =AB ,∴△ADF≌△ABG(SAS).∴∠DAF =∠BAG ,AF =AG .∴∠FAG =∠DAB .又∵∠EAF=12∠DAB,∴∠EAF=12∠FAG.∴∠EAF=∠EAG.又∵AG=AF,AE=AE,∴△GAE≌△FAE(SAS).∴GE=EF,即BE+DF=EF.(3)18.ACD≌△AEB,得到S四边形ABCD=S△ACE=18.【解答】解:(1)结论:EF=BE+DF⋅理由如下:延长FD到点G使DG=BE,连接AG,如图①中,在正方形ABCD中,AB=AD,∠BAD=∠ADC=∠B=90∘,在△ABE和△ADG中,AB=AD∠ABE=∠ADG,BE=DG∴△ABE≌△ADG(SAS),∴∠BAE=∠GAD,AE=AG,∴∠GAD+∠DAF=∠BAE+∠DAF=90∘−45∘=45∘,在△AEF和△AGF中GA=EA∠GAF=∠EAF,AF=AF∴△AEF≌△AGF(SAS),∴EF=GF;∴EF=GD+DF=BE+EF;(2)见答案.(3)如图③,延长CB,截取BE=CD,连接AE,∵∠DAB=∠DCB=90°,∴∠ADC+∠ABC=180°,∵∠ABE+∠ABC=180°,∴∠ADC=∠ABE,在△ADC和△ABE中{AD=AB∠ADC=∠ABE,DC=BE∴△ACD≌△AEB,∴AC=AE=6,∠DAC=∠BAE,∴∠DAB=∠CAE=90°,∴S四边形ABCD=S△ACD+S△ABC=S△ABE+S△ABC=S△ACE=18.。
2023-2024学年度第一学期人教版八年级数学第十二章全等三角形单元检测试卷(解答卷)一、选择题(本大题共有10个小题,每小题3分,共30分)1.【答案】B2.【答案】B3,【答案】C4.【答案】A5.【答案】C6. 【答案】B7.【答案】C8.【答案】B9.【答案】D10 .【答案】B二、填空题(本大题共有6个小题,每小题3分,共18分)11.【答案】 SSS12 .【答案】3.13.【答案】△BAD SAS14.【答案】3cm15.【答案】62cm16.【答案】50三、解答题(本大题共有6个小题,共52分)17.证明:∵DC ∥AB ,∴∠D =∠B ,在△COD 与△AOB 中,D B DOC BOA OC OA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△COD ≌△AOB (AAS ),∴DC =AB .18 .解://AB DE 理由如下:∵//BC EF ∴ACB DFE ∠=∠∵AF DC =∴AF CF DC CF +=+即AC DF =又∵BC EF =∴ABC DEF ≌△△∴A D ∠=∠∴//AB DE19.解:(1)∵AD=CF ,∴AD+CD=CD+CF ,即AC=DF ,在ABC 和DEF 中,AB=DE BC=EF AC=DF ⎧⎪⎨⎪⎩∴ABC ≌DEF (SSS );(2)由(1)可得ABC ≌DEF ,∴∠F=∠ACB ,根据三角形内角和180°,∠A=60°,∠B=80°, ∴∠ACB=180°-60°-80°=40°,∴∠F=40°.20.(1)求证:ABC DEF ∆≅∆.(2)求证://BC EF .证明:(1)//,AB DE A D ∴∠=∠AF DC =AC DF =∴又AB DE =()ABC DEF SAS ∴∆≅∆;(2)ABC DEF ∆≅∆BCA EFD ∴∠=∠//BC EF ∴.21. (1)求证:ABC DEF ≌△△;(2)若10BE =,3BF =,求FC 的长度.解:(1)证明:∵AB DE ∥,∴ABC DEF ∠=∠,在ABC 和DEF 中,A D AB DEABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ABC DEF ≌△△;(2)解:由(1)知()ASA ABC DEF ≌△△, ∴BC EF =,∴BF FC CE FC +=+,∴3BF CE ==,∵10BE =,∴10334FC BE BF CE =--=--=, ∴FC 的长度是4.22 .解:(1)证明:∵∠BAC =∠DAE , ∴∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE ,在△BAD 与△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE (SAS );(2)由(1)知,△BAD≌△CAE,∴∠ABD=∠ACE,BD=CE,∵∠BAC=90°,∴∠CBF+∠BCF=∠ABC+∠ACB=90°,∴∠BFC=90°,∴CE⊥DB.。
2023-2024学年八年级数学上册《第十二章全等三角形》单元测试卷带答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列说法正确的是()A.两个等边三角形一定全等B.面积相等的两个三角形全等C.形状相同的两个三角形全等D.全等三角形的面积一定相等2.下列各项中,两个图形属于全等图形的是()A.B.C.D.3.如图,点,在上,添加一个条件,不一定能证明的是()A.B.C.D.4.如图,在Rt△ABC中,∠ACB=90°,BC=5cm,在AC上取一点E使EC=BC,过点E作EF⊥AC,连接CF,使CF=AB,若EF=12cm,则AE的长为()A.5cm B.6cm C.7cm D.8cm5.如图为某单摆装置示意图,摆线长,当摆线位于位置时,过点作于点,测得,当摆线位于位置时,与恰好垂直,则此时摆球到的水平距离的长为()A.B.C.D.6.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么D点到直线AB的距离是()A.8cm B.3cm C.13cm D.5cm7.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°8.如图,在长方形的中,已知,点以的速度由点向点运动,同时点以的速度由点向点运动,若以,B,P为顶点的三角形和以P,C,Q为顶点的三角形全等,则的值为( )A.B.C.或D.或二、填空题:(本题共5小题,每小题3分,共15分.)9.如图,已知△ABD≌△CDB,且∠ABD=40°,∠CBD=20°,则∠A的度数为.10.如图,在△ABC中,BH⊥AC交AC于点H,CD平分∠ACB交BH于点D,DH=3,△BCD的面积为18,则BC的长为.11.如图所示,在中,点E是边上一点,且,点D在上,连接BD,DE,若,和,则的度数为°.12.如图,D是延长线上一点,交于点E,AD||FC,AE=CE.若AB=5,CF=8,则的长是.13.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是三、解答题:(本题共5题,共45分)14.如图, F , C 是上两点,且;点 E , F , G 在同一直线上,∠B= ∠AGF ,BC=EF求证:≌ .15.如图,四边形中,∠D=90°, AB=AC ,于点, AE=AD .求证:平分.16.如图,四边形中,为上一点,且,求证:.17.如图,在中,D为上一点,E为中点,连接DE并延长至点F,使得,连接.(1)求证:;(2)若,连接平分平分,求的度数.18.如图,在Rt△ABC中,∠BAC=90°,∠ABC=60°,AD,CE分别平分∠BAC,∠ACB.(1)求∠AOE得度数;(2)求证:AC=AE+CD.参考答案:1.D 2.C 3.D 4.C 5.B 6.B 7.B 8.D9.120°10.1211.4012.313.114.证明:∵∠B=∠AGF,∴BC∥EG,∴∠BCA=∠EFD.∵AF=CD,∴AC=DF.在△ABD和△DEF中,∵AC=DF,∠BCA=∠EFD,BC=EF,∴△ABD≌△DEF(SAS)15.证明:在与中∴AC平分.16.证明:∵∴∵∴∴在和中∵∴∴.17.(1)证明:∵E为中点∴在和中∴∴∴;(2)解:由(1)得:∵平分∴∴∵∴18.(1)解:∵∴∵平分,平分∴∵是的外角∴;(2)证明:在上截取,连接∵平分∴在和中∴∴∵∴∴∴∵平分∴在和中,∴∴∵∴。
2023-2024学年人教版八年级数学上册《第十二章 全等三角形》单元测试卷附有答案学校:___________班级:___________姓名:___________考号:___________一、单选题(共10小题 满分40分) 1.如图 已知//AB CF E 为DF 的中点 若11AB cm = 5CF cm =则BD =( )A .11cmB .6cmC .5cmD .3cm2.如图 已知AD 是ABC 的角平分线 过点D 作DE AB ⊥于点,E ABC 的面积为28 8,:4:3AB BD DC ==则AC 的长为( )A .2B .6C .4D .53.如图 △ABC△△EFD 则下列说法错误的是( )A .FC BD =B .EF 平行且等于ABC .AC 平行且等于DED .CD ED =4.如图所示 点O 是ABC 内一点 BO 平分,ABC OD BC ∠⊥于点D 连接OA 若5OD = 20AB =则AOB 的面积是( )A .20B .30C .50D .1005.已知:如图 点D 、E 分别在AB 、AC 边上 △ABE △△ACD AC =15 BD =9 则线段AD 的长是()A .6B .9C .12D .15ACE BCE ACD S S S -=.其中确结论的个数( )A .1个B .2个C .3个D .4个7.如图 BE DF = AB DC ∥ 要使ABF CDE △△≌ 应添加的条件是( )A .BF DE =B .AF CE =C .AB DC =D .ABD CDB ∠=∠ 8.如图 在ABC 中 P 、Q 分别是BC 、AC 上的点 作PR AB ⊥ PS AC ⊥ 垂足分别为R 、S 若AQ PQ = PR PS = 则下列四个结论:△PA 平分BAC ∠;△AS AR =;△QP AR ∥;△BRP CSP △≌△ 其中结论正确的的个数为( ).A .4B .3C .2D .19.下列结论不正确的是( )A .两个锐角对应相等的两个直角三角形全等B .一锐角和斜边对应相等的两个直角三角形全等C .一直角边和一锐角对应相等的两个直角三角形全等D .两条直角边对应相等的两个直角三角形全等10.如图 在平面直角坐标系中 以O 为圆心 适当长为半径画弧 交x 轴于点M 交y 轴于点N 再分别以点M 、N 为圆心 大于MN 的长为半径画弧 两弧在第二象限交于点P .若点P 的坐标为()2,1a b + 则a 与b 的数量关系为( ).A .21a b -=B .21a b +=-C .21a b -=-D .21a b +=二、填空题(共8小题 满分32分)11.如图 在ABC 中 90C ∠=︒ ABC ∠的平分线BD 交AC 于点D .若10BD =厘米 8BC =厘米 6DC =厘米 则点D 到直线AB 的距离是 厘米.12.如图 在△ABC 与△ABD 中 AD 与BC 相交于点O △1=△2 请你添加一个条件(不再添加其他线段 不再标注或使用其他字母) 使AC =BD .你添加的条件是 .13.如图 公园里有一座假山 要测量假山两端A 、B 的距离 先在平地上取一个可以直接到达A 、B 的点C 分别延长AC 、BC 到D 、E 使CE CB = CA CD = 连接DE 这样就可以利用三角形全等 通过测量DE 的长得到假山两端A 、B 的距离 则这两个三角形全等的依据是 .14.如图:OP 平分△AOB PE △OA PE =5 F 为OB 上一动点 则PF 的最小值为 .15.如图 在ABC ∆中 AEB AEC ∠=∠ BE CE = 直接使用“SAS ”可判定 .16.如图 四边形ABCD 中 AC 与BD 相交于点P △ABC +△ADC =180° BD 平分△ABC AD =CD 过D 作DE △BC 于E 若AB =5 BC =12 则CE = .17.如图 CD 是ABC 的角平分线 AE CD ⊥于E 6,4BC AC == ABC 的面积是9 则AEC △的面积是 .18.在ABC 中给定下面几组条件:△BC=4cm AC=5cm △ACB=30°;△BC=4cm AC=3cm △ABC=30°;△BC=4cm AC=5cm △ABC=90°;△BC=4cm AC=5cm △ABC=120°.若根据每组条件画图 则ABC 能够唯一确定的是 (填序号).三、解答题(共6小题 每题8分 满分48分)19.如图 Rt ABC △中 9015C AC ∠=︒=, 面积为150的平分线交AB于点D;(不要求写作法保留作图痕迹)(1)尺规作图:作C(2)在(1)的条件下求出点D到两条直角边的距离.、、三点在同一条直线上ABC和CDE为等边三角形连接20.如图所示B C DAD BE.请在图中找出与ACD全等的三角形并说明理由.,21.已知:△ABC△△EDC.(1)若DE△BC(如图1)判断△ABC的形状并说明理由.(2)连结BE 交AC于F 点H是CE上的点且CH=CF 连结DH交BE于K(如图2).求证:△DKF=△ACB22.如图所示 AC BC = DC EC = 90ACB ECD ∠=∠=︒ 且42EBD ∠=︒(1)求证:DBC EAC ∠=∠;(2)求AEB ∠的度数.23.如图所示 已知△ABC 中 AB =AC =10cm BC =8cm 点D 为AB 的中点.如果点P 在线段BC 上由B 出发向C 点运动 同时点Q 在线段CA 上由C 点出发向A 点运动.设运动时间为t 秒.(1)若点P 的速度为3cm/s 用含t 的式子表示第t 秒时 BP = cm CP = cm .(2)在(1)的条件下 若点Q 运动速度与点P 的运动速度相等 经过几秒钟△BPD 与△CQP 全等 说明理由;(3)若点Q 的运动速度与点P 的运动速度不相等 且点P 的速度比点Q 的速度慢1cm/s 时 点Q 的运动速度为多少时?能够使△BPD 与△CQP 全等?24.如图1 点A 、B 分别在射线OM 、ON 上运动(不与点O 重合) AC 、BC 分别是△BAO 和△ABO 的角平分线 BC 延长线交OM 于点G .(1)若△MON=60° 则△ACG=;(直接写出答案)(2)若△MON=n° 求出△ACG的度数;(用含n的代数式表示)(3)如图2 若△MON=x° 过点C作CF△OA交AB于点F求△BGO-△ACF的度数.(用含x的代数式表示)参考答案:19.(1)略 (2)60720.△ACD△△BCE .21.(1)△ABC 是等腰三角形;(2)11;22.(1)略(2)132︒23.(1)3t 8﹣3t ;(2)经过1秒钟△BPD 与△CQP 全等;(3)Q 的速度是5cm/s 时 △BPD△△CQP24.(1)60︒;(2)1902ACG n ;(3)1902BGO ACF x .。
2023-2024学年八年级数学上册《第十二章三角形全等的判定》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,AB=AE,∠1=∠2添加下列一个条件后,不能使△ABC≌△AED的是()A.∠C=∠D B.BC=ED C.∠B=∠E D.AC=AD2.如图,要测量中心湖两岸相对两点A,B的距离,可以在AB的垂线BF上取两点C,D,使CD=BC,再在BF的垂线DG上取点E,使点A,C,E在一条直线上,可得△ABC≌△EDC.判定全等的依据是()A.SSS B.SAS C.ASA D.HL3.如图,在△ABC中,AB=AC,AD⊥BC于点D,则下列结论,一定成立的是()A.BD=AD B.∠B=∠CC.AD=CD D.∠BAD=∠ACD4.如图,AC=BD,AO=BO,CO=DO,∠D=30°,∠A=95°,则∠AOC等于()A.60°B.55°C.50°D.45°5.等腰Rt△ABC中∠BAC=90°,D是AC的中点,EC⊥BD于E,交BA的延长线于F,若BF=12,则△FBC的面积为()A.40 B.46 C.48 D.506.如图,在3×3的正方形方格中,每个小正方形方格的边长都为1,则∠1和∠2的关系是()A.∠1=∠2 B.∠2=2∠1C.∠2=90°+∠1 D.∠1+∠2=180°7.如图,AD,BE是△ABC的高线,AD与BE相交于点F.若AD=BD=6,且△ACD的面积为12,则AF的长度为()A.4 B.3 C.2 D.1.58.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=5,BD=1,则CF的长度为()A.2 B.2.5 C.4 D.5二、填空题9.如图,点A,B,D,E在同一条直线上AC∥DF,BC∥EF,请添加一个条件,使△ACB≌△DFE(填一个即可).10.已知,如图AD=AE,BD=CE那么图中△ADC≌.11.如图,有一个池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接达到点A和B,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,量出DE =8,则AB=.12.如图所示,ΔABC中AB=AC,∠BAC=90°直线l经过点A,过点B作BE⊥l于点E,过点C作CF⊥l于点F.若BE=2,CF=5,则EF= .13.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=28°,∠2=30°,则∠3=.三、解答题14.如图,已知AC=BC,AC⊥OA,CB⊥OB求证:△ACO≌△BCO.15.如图,B,E,C,F在一条直线上AB=DE,AC=DF,BE=CF,求证:∠A=∠D.16.如图所示,已知CD=BD,点E、F分别是CD、BD的中点,∠CAF=∠BAE,∠B=∠C.求证:AE=AF.17.如图,在△ABC中,延长BC至点D,使CD=AB,过点D作DE∥AB,且DE=BC,连接CE,AE.(1)求证:∠BAC=∠DCE;(2)若∠B=32°,∠ACD=58°求∠CEA的度数.18.如图,在△ABC中∠ACB=90°,且AC=BC,D是AB的中点,E是AB延长线上一点,AF⊥EC交EC的延长线于F,AF的延长线交DC的延长线于点G,连接GE.(1)求证:①∠ACG=∠CBE;②△ACG≌△CBE;(2)若∠GAE=60°,求∠CEG的度数.参考答案1.B2.C3.B4.B5.C6.D7.C8.C9.AB=DE(答案不唯一)10.△AEB11.812.713.58°14.证明:∵AC⊥OA,CB⊥OB,AC=BC ∴在Rt△ACO与Rt△BCO中有:{AC=BCOC=OC∴△ACO≌△BCO(HL)15.证明:∵BE=CF∴BE+EC=CF+EC∴BC=EF在△ABC和△DEF中{BC=EF AB=DE AC=DF∴△ABC≌△DEF(SSS)∴∠A=∠D.16.证明:∵CD=BD,点E、F分别是CD、BD的中点∴CE=BF∵∠CAF=∠BAE∴∠CAF﹣∠EAF=∠BAE﹣∠EAF ∴∠CAE=∠BAF在△ACE和△ABF中.{∠C=∠B∠CAE=∠BAFCE=BF∴△ACE≌△ABF(AAS)∴AE=AF.17.(1)证明:∵DE∥AB∴∠B=∠D在△ABC和△CDE中{AB=CD ∠B=∠D BC=DE∴△ABC≌△CDE(SAS)∴∠BAC=∠DCE.(2)解:∵∠B=32°,∠ACD=58°∴∠DCE=∠BAC=∠ACD−∠B=58°−32°=26°∴∠ACE=∠ACD+∠DCE=58°+26°=84°∵△ABC≌△CDE∴AC=CE∴∠CEA=∠CAE=12(180°−∠ACE)=12(180°−84°)=48°.18.(1)证明:①∵AC=BC,∠ACB=90°,D是AB的中点∴∠ACD=∠BCD=12∠ACB=45°,∠CAB=∠CBA=45°∵∠ACG+∠ACD=180°=∠CBE+∠CBA∴∠ACG=∠CBE;②∵EF⊥AG∴∠FCA+∠FAC=90°∵∠FCA+∠BCE=90°∴∠CAG=∠BCE又∵CA=BC∴△ACG≌△CBE(ASA)(2)解:∵EF⊥AG,∠GAE=60°∴∠AEF=30°∵△ACG≌△CBE∴∠AGC=∠CEB又∵∠ADG=∠CDE=90°,AD=CD(等腰直角三角形的性质)∴△ADG≌△CDE(AAS)∴CD=DE∴∠DEG=45°∴∠CEG=∠DEG−∠AEF=15°.。
2023-2024学年八年级数学上册第十二章单元测试卷全等三角形(满分100分)一、选择题(本大题共有10个小题,每小题3分,共30分)1.如图,BC BE =,CD ED =,则BCD BED ≌△△,其依据是()A.SAS B.AAS C.SSS D.ASA2.如图,用BDA CDA ∠=∠,12∠=∠,直接判定ABD ACD △≌△的理由是()A.AAS B.SSS C.ASA D.SAS3.如图,某同学把一块三角形的玻璃打碎成3块,现要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是______,这么做的依据是______.()A.带①去,SAS B.带②去,SASC.带③去,ASA D.①②③都带去,SSS4.如图,已知△ABC 三条边、三个角,则甲、乙两个三角形中,与△ABC 全等的图形是()A.甲B.乙C.甲和乙D.都不是5.如图,已知B C ∠=∠,AE AF =,则ABE ACF ∆≅∆的根据是()A.SAS B.AAS C.ASA D.SSS6.如图,要测池塘两端A ,B 的距离,小明先在地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到D ,使CD CA =;连接BC 并延长到E ,使CE CB =,连接DE 并测量出它的长度,DE 的长度就是A ,B 间的距离.那么判定ABC 和DEC 全等的依据是()A.SSS B.SAS C.ASA D.AAS7.在测量一个小口圆柱形容器的内径时,小明用“X 型转动钳”按如图所示的方法进行测量,其中OA OD =,OB OC =,则可判定AOB DOC △≌△的依据是()A.SAS B.AAS C.ASA D.SSS8.如图,BE CF =,AB DE ∥,添加下列哪个条件不能推证ABC DEF ≌△△()A.AC DF =B.AC DF ∥C.AB DE =D.A D∠=∠9.如图,已知∠AOB ,用直尺和圆规按照以下步骤作图:①以点O 为圆心,任意长为半径画弧,分别交OA 、OB 于点C 、D ;②画射线O ′A ',以点O '为圆心,OC 长为半径画弧,交O ′A '于点C ';③以点C ′为圆心,CD 长为半径画弧,与第②步中所画的弧相交于点D ';④过点D ′画射线O ′B ';根据以上操作,可以判定△OCD ≌△O 'C 'D ',其判定的依据是()A.SSS B.SAS C.ASA D.HL10.如图,在ABC 中,P 在BC 上,PR AB ⊥于R PS AC ⊥,于S ,CAP APQ ∠=∠,PR PS =,下面的结论:①AS AR =;②QP AR ∥;③BRP CSP ∆≅∆.其中正确的是()A.①②B.②③C.①③D.①②③二、填空题(本大题共有6个小题,每小题3分,共18分)1.如图,在ABD △与ACD 中,已知CAD BAD ∠=∠,在不添加任何辅助线的前提下,依据“AAS ”证明ABD ACD △≌△,需再添加一个条件是_____.12.如图,要测量河岸相对的A ,B 两点之间的距离,先在BC 的延长线上取一点D ,使CD BC =,再过点D 作垂线DE ,使A ,C ,E 在一条直线上,则EDC ABC ≅ 的依据是.13.如图,BC =EC ,∠1=∠2,要使△ABC ≌△DEC ,则应添加的一个条件为(只需填一个)14.如图,AC 与BD 相交于O,∠1=∠4,∠2=∠3,△ABC 的周长为25cm,△AOD 的周长为17cm,则AB =_______15.如图,已知CD AB ⊥于点D ,现有四个条件:①AD ED =;②A BED ∠=∠;③C B ∠=∠;④CD BD =,那么不能得出ADC EDB ≌△△的条件是_______16.如图,在Rt ABC △中,90BAC ∠=︒,AB AC =,分别过点B 、C 作经过点A 的直线的垂线段BD 、CE ,若5BD =厘米,8CE =厘米,则DE 的长为.三、解答题(本大题共有6个小题,共52分)17.如图,已知点A、E、F、C 在同一直线上,∠1=∠2,AE=CF,AD=CB.请你判断BE 和DF 的关系...并证明你的结论18.如图,已知在四边形ABCD 中,E 是AC 上一点,∠1=∠2,∠3=∠4,求证:∠5=∠6.19.如图,已知//AB CD ,AB CD =,BF CE =.求证:AE DF =且//AE DF .20.已知△ABN 和△ACM 位置如图所示,AB =AC ,AD =AE ,∠1=∠2.(1)求证:BD =CE ;(2)求证:∠M=∠N.21.如图:在△ABC 中,AC=BC,D 是AB 上的一点,AE⊥CD 于点E,BF⊥CD 于点F,若CE=BF,AE=EF+BF.试判断AC 与BC的位置关系,并说明理由.22.已知AB=AC ,D ,E 是BC 边上的点,将△ABD 绕点A 旋转,得到△ACD',连接D'E(1)如图1,当∠BAC=120°,∠DAE=60°时,求证DE=D'E,(2)如图2,当DE=D'E 时,∠DAE 与∠BAC 有怎样的数量关系?请写出,并说明理由.解答一、1.C2.C.3.C4.C5.B.6.B.7.A8.A9.A.10.A三、填空题(本大题共有6个小题,每小题3分,共18分)11.为:B C ∠=∠.12.ASA13.AC =DC (答案不唯一)14.8cm15.②③16.13厘米三、解答题(本大题共有6个小题,共52分)17.解:BE //DF.理由:∵AE=CF,∴AF=CE,在△ADF 与△CBE 中,12AF CEAD CB=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△CBE(SAS),∴∠DFA=∠BEC,BE=DF∴BE //DF(内错角相等,两直线平行).18.证明:∵12{34AC CA ∠=∠=∠=∠,∴△ADC≌△ABC(ASA).∴DC=BC.又∵{34DC BCEC CE=∠=∠=,∴△CED≌△CEB(SAS).∴∠5=∠6.19.证明:BF CE = ,BF EF CE EF ∴+=+,即BE CF =,//AB CD Q ,B C ∴∠=∠,在ABE 与CDF 中,AB CDB C BE CF=⎧⎪∠=∠⎨⎪=⎩,()ABE CDF SAS ∴△≌△,AEB DFC ∴∠=∠,AE DF=//AE DF ∴.20.解:(1)证明:在△ABD 和△ACE 中,12AB ACAD AE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴BD =CE ;(2)证明:∵∠1=∠2,∴∠1+∠DAE =∠2+∠DAE ,即∠BAN =∠CAM ,由(1)知:△ABD ≌△ACE ,∴∠B =∠C ,在△ACM 和△ABN 中,C BAC AB CAM BAN∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACM ≌△ABN (ASA ),∴∠M =∠N .21.解:AC⊥BC;理由:∵AE⊥CD,BF⊥CD,∴∠AEC=∠BFC=90°,∴∠CAE+∠ACE=90°,∵CF=CE+EF,CE=BF,∴CF=EF+BF,∵AE=EF+BF,∴AE=CF,在Rt△ACE 和Rt△CBF 中,AC CBAE CF CE BF =⎧⎪=⎨⎪=⎩∴Rt△ACE≌Rt△CBF,∴∠BCF=∠CAE,∴∠ACB=∠BCF+∠ACE=∠CAE+∠ACE=90°,∴AC⊥BC.22.解:(1)证明:如图,∵△ABD 旋转得到△ACD',∴∠DAD'=∠BAC=120°,AD=AD'.∵∠DAE=60°,∴∠EAD'=∠DAD'-∠DAE=120°-60°=60°.∴∠DAE=∠D'AE ,又∵AE=AE ,AD=AD',∴△DAE ≌△D'AE (SAS).∴DE=D'E.(2)解:∠DAE=12∠BAC.理由:如图,∵△ABD 旋转得到△ACD',∴∠DAD'=∠BAC ,AD=AD'.∵DE=D'E ,AE=AE ,∴△DAE ≌△D'AE (SSS).∴∠DAE=D'AE=12∠DAD'.∴∠DAE=12∠BAC.。
2024-2025学年人教新版八年级上册数学《第12章全等三角形》单元测试卷一.选择题(共8小题,满分24分)1.根据下列条件,能画出唯一确定的三角形的是( )A.AB=2,BC=5,AC=2B.AB=6,∠B=30°,AC=4C.AB=4,∠B=60°,∠C=75°D.BC=8,∠C=90°2.下列各组图形、是全等图形的是( )A.B.C.D.3.在△ABC中,∠A=50°,∠B=60°,若△ABC≌△DEF,则∠E与∠F的关系为( )A.∠E<∠F B.∠E=∠F C.∠E>∠F D.无法确定4.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O.如果AB=AC,那么图中全等的直角三角形的对数是( )A.1B.2C.3D.45.如图,已知点A、D、C、F在同一条直线上,∠B=90°,AB=DE,AD=CF,BC=EF,则∠E=( )A.90°B.45°C.50°D.40°6.如图是雨伞在开合过程中某时刻的截面图,伞骨AB=AC,点D,E分别是AB,AC的中点,DM,EM 是连接弹簧和伞骨的支架,且DM=EM,已知弹簧M在向上滑动的过程中,总有△ADM≌△AEM,其判定依据是( )A.ASA B.AAS C.SSS D.HL7.下列作图属于尺规作图的是( )A.用量角器画出∠AOB,使∠AOB=60°B.借助没有刻度的直尺和圆规作∠AOB,使∠AOB=2∠αC.用三角尺画MN=1.5cmD.用三角尺过点P作AB的垂线8.两把相同的长方形直尺按如图所示方式摆放,记两把直尺的接触点为P,其中一把直尺边缘和射线OA 重合,另把直尺的下边缘与射线OB重合,连,接OP并延长.若∠BOP=25°,则∠AOP的度数为( )A.12.5°B.25°C.37.5°D.50°二.填空题(共8小题,满分24分)9.长方体的直观图有很多种画法,通常我们采用 画法.10.如图,AB=AC,点D,E分别在AB与AC上,CD与BE相交于点F.只填一个条件使得△ABE≌△ACD,添加的条件是: .11.如图,在△ABC中,AD平分∠BAC,DE⊥AB,若AC=9,DE=4,则S△ACD= .12.某中学计划在一块长16m,宽6m的矩形空地上修建三块全等的矩形草坪,如图所示,余下空地修建成同样宽为a的小路.(1)若a=1.5m,则草坪总面积为 平方米.(2)若草坪总面积恰好等于小路总面积,那么,此时的路宽a是 米.13.如图所示,点A、B、C、D均在正方形网格格点上,则∠ABC+∠ADC= .14.如图,小红要测量池塘A、B两端的距离,他设计了一个测量方案,先在平地上取可以直接到达A点和B点的C,D两点,AC与BD相交于点O,且测得AC=BD=55m,OA=OD=17m,△COD的周长为103m,则A,B两端的距离为 m.15.如图,点E,C在BF上,BE=CF,∠A=∠D=90°,请添加一个条件 ,使Rt △ABC≌Rt△DFE.16.我们把一条对角线是另一条对角线2倍的四边形叫“奇异四边形”.现有两个全等的直角三角形,一条直角边长是1,如果它们可以拼成对角线互相垂直的“奇异四边形”,那么直角三角形另一条直角边长是 .三.解答题(共6小题,满分52分)17.如图,AD与BC相交于点O,连接AC、BD,AC=BD,∠C=∠D,求证:△OAC≌△OBD.18.如图,在△ABC中,点E是BC边上的一点.连接AE,BD垂直平分AE,垂足为F,交AC于点D.连接DE.(1)若△ABC的周长为19,AB为6,求△DEC的周长;(2)若∠ABC=35°,∠C=50°,求∠CDE的度数.19.在下列3个6×6的网格中,画有正方形ABCD,沿网格线把正方形分ABCD分割成两个全等图形,请用三种不同的方法分割,画出分割线.20.如图,△ABC≌△DEF,点B,F,C,E在同一条直线上,BC=5,FC=4.(1)猜想AB与DE之间的位置关系,并说明理由.(2)求BE的长.21.如图,在△ABC中,∠B=90°,点O是∠CAB、∠ACB平分线的交点.(1)连接BO,求证:BO平分∠ABC;(不能利用“三角形三条角平分线相交于一点”直接来证明)(2)若BC=4cm,AC=5cm,求点O到边AB的距离.22.如图,若两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等.试说明两个滑梯的倾斜角∠ABC和∠DFE互余.参考答案与试题解析一.选择题(共8小题,满分24分)1.C2.D3.A4.C5.A6.C7.B8.B二.填空题(共8小题,满分24分)9.斜二侧.10.∠B=∠C(答案不唯一).11.18.12.(1)30;(2)1.13.45°.14.48.15.DE=AC(答案不唯一).16.2+或2﹣.三.解答题(共6小题,满分52分)17.证明见解析.18.(1)7.(2)45°.19.20.(1)AB∥DE(2)6.21.(1)证明见解析;(2)1.(1)证明:过O作OD⊥BC于D,OE⊥AB于E,OF⊥AC于F,∵点O是∠CAB、∠ACB平分线的交点,∴OD=OF,OE=OF,∴OE=OD,∵OD⊥BC,OE⊥AB,∴BO平分∠ABC;(2)解:∵BC=4cm,AC=5cm,∠ABC=90°,∴AB==3,∵△ABC的面积=△OBC的面积+△AOB的面积+△AOC的面积,∴BC•AB=BC•OD+AB•OE+AC•OF,∴3×4=(3+4+5)×OE,∴OE=1,∴点O到边AB的距离是1.22.见解析.解:∵两个滑梯长度相同,∴BC=EF,∵AC=DF,∠CAB=∠FDE=90°,在Rt△CAB和Rt△FDE中,,∴Rt△CAB≌Rt△FDE(HL),∴∠ABC=∠DEF,∵∠DFE+∠DEF=90°,∴∠DFE+∠ABC=90°,即:两个滑梯的倾斜角∠ABC和∠DFE互余.。
第十二章全等三角形考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法中,正确的有( )①形状相同的两个图形是全等形;②面积相等的两个图形是全等形;③全等三角形的周长相等,面积相等;④若△ABC≌△DEF,则∠A=∠D.A.1个B.2个C.3个D.4个2.下列各组图形中,是全等形的是()A.B.C.D.3.如图,点B在线段AD上,△ABC≌△EBD,AB=2cm,BD=5cm,则CE的长度为()A.2cm B.2.5cm C.3cm D.5cm4.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,CD⊥BC,BO=OC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,可作为证明△ABO≌△DCO的依据的是( )A.SSS B.ASA C.SAS D.HL5.如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是()A.BC=DE B.AE=DB C.∠A=∠DEF D.∠ABC=∠D6.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中全等三角形有()A.1对B.2对C.3对D.4对7.现要在一块三角形形状的草坪上安装一个洒水龙头,要使洒水龙头到草坪三条边的距离相等,洒水龙头的位置应选在()处A.三角形三边的垂直平分线的交点B.三角形的三条角平分线的交点C.三角形的三条高所在直线的交点D.三角形的三条中线的交点8.如图,在△ABC中,CD平分∠ACB,DE⊥BC于点E,S△ABC=30,DE=4,BC=10,则AC 的长是( )A.5B.6C.7D.89.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列五个结论:①DE=DF;②BC=2DB;③AD⊥BC;④AB=3BF;⑤S△ADB=2S△BDF;其中正确的结论共有()A.4个B.3个C.2个D.1个10.新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为“格线三角形”.如图,a∥b∥c,相邻两条平行线间的距离为m,等腰Rt△ABC为“格线三角形”,且∠BAC=90°,则△ABC的面积为()m2B.2m2C.5m2D.4m2A.52二、填空题(本大题共6小题,每小题3分,共18分)11.如图,AD=AB,∠C=∠E,∠CDE=50°,则∠ABE=.12.如图,四边形ABCD≌四边形A′B′C′D′.若∠B=90°,∠C=60°,∠D′=105°,则∠A的大小为度.13.如图,D,E是边BC上的两点,BD=CE,∠ADB=∠AEC,现要直接用“AAS”定理来证明△ABD≌△ACE,请你再添加一个条件:.14.已知△ABC面积为24,将△ABC沿BC的方向平移到△A′B′C′的位置,使B′和C重合,连接AC′交A′C于D,则△C′DC的面积为.15.如图,△ABC中∠A=66°,点M、N是∠ABC与∠ACB三等分线的交点,则∠BMN的度数是.16.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=15cm,AC=6cm.动点E从A点出发以3cm/s的速度沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.若点E的运动时间为t秒(t>0),则当t=秒时,△DEB与△BCA全等.三、(本大题共4小题,每小题6分,共24分)17.已知:如图,AB=AE,∠1=∠2,∠C=∠D.求证:BC=ED.18.如图,已知AB∥CD,AB=CD.(1)求证:△ABC≌△CDA;(2)判断BC与AD的位置关系,并说明理由.19.如图,已知AB=CD,AD=BC,O为AC的中点,过O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.20.如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B(1)求证:△ABC≌△CDE(2)若∠A=55°,求∠BCD的度数.四、(本大题共3小题,每小题8分,共24分)21.如图,△ABC中,点D在边BC延长线上,∠ACB=106°,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且∠CEH=53°.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;(3)若AC+CD=16,AB=10,且S△ACD=24,则△ABE的面积.22.问题提出:如图1,在四边形ABCD中,∠BAD与∠BCD互补,∠B与∠D互补,AB=AD,∠BAD=x°(0<x<180),∠ACB=y°,数学兴趣小组在探究y与x的数量关系时,经历了如下过程:实验操作:(1)数学兴趣小组通过电脑软件“几何画板”进行探究,测量出部分结果如下表所示:x…304050607080β130y757065α555040θ这里α= ,β= ,θ= .猜想证明:(2)根据表格,猜想:y与x之间的关系式为;数学兴趣小组发现证明此猜想的一种方法:如图2,延长CB到E,使BE=DC,连接AE,…,请你根据其思路将证明过程补充完整,并验证(1)中结论的正确性.应用拓广:(3)如图3,若x+y=135,AC=10,求四边形ABCD的面积.23.(1)【问题解决】如图①,∠AOB=∠DFE=90°,OC平分∠AOB,点F在OC上,∠DFE的两边分别与OA,OB交于点D,E.当FE⊥OB,FD⊥OA时,则FD与FE的数量关系为;(2)【问题探究】如图②,在(1)的条件下,过点F作两条相互垂直的射线FM,FN,分别交OA,OB于点M,N,判断FM与FN的数量关系,说明理由;(3)【迁移应用】某学校有一块四边形的空地ABCD,如图③所示,∠DAB=∠DCB=90°,AC是∠DAB的平分线,AB=50m,AD=30m,直接写出该空地的面积.五、(本大题共2小题,每小题12分,共24分)24.综合探究:如题图1是一种用刻度尺画角平分线的方法,在OA、OB上分别取点C、E、D、F,使得OC=OD,OE=OF,连接CF、DE,交点为P,则射线OP为∠AOB的角平分线.【验证】(1)试说明OP平分∠AOB,且PE=PF;【应用】(2)如题图2,若C、E、D、F分别为OA、OB上的点,且OC=OD,CF⊥OA,DE⊥OB,试用(1)中的原理说明OP平分∠AOB;【猜想】(3)如题图3,P是∠AOB角平分线上一点,C、D分别为OA、OB上的点,且PC=PD,请补全图形,并直接写出∠PCO与∠PDO的数量关系.25.【模型呈现】(1)如图1,∠BAD=90°,AB=AD,BC⊥CA于点C,DE⊥AE于点E.求证:BC=AE.【模型应用】(2)如图2,EA ⊥AB 且AE =AB ,BC ⊥CD 且BC =CD ,请按照图中所标注的数据,计算图中实线所围成的图形ABCDE 的面积.【深入探究】(3)如图3,∠BAD =∠CAE =90°,AB =AD ,AC =AE ,连接BC 、DE ,且BC ⊥AF 于点F ,DE 与直线AF 交于点G .①求证DG =GE ;②若BC =21,AF =12,求△ADG 的面积.参考答案:1.B2.B3.C4.B5.B6.C7.B8.A9.A10.A11.130°12.10513.∠BAD=∠CAE14.1215.52°16.3或7或1017.证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠EAD=∠BAC,在△EAD和△BAC中,{∠C=∠D∠BAC=∠EAD,AB=AE∴△ABC≌△AED(AAS),∴BC=ED.18.(1)证明:∵AB∥CD,∴∠BAC=∠ACD,在△ABC与△CDA中,{AB=CD∠BAC=∠ACD,AC=CA∴△ABC≌△CDA(SAS);(2)解:BC∥AD,理由如下:∵△ABC≌△CDA,∴∠BCA=∠CAD,∴BC∥AD.19.(1)解:有4对全等三角形,分别为:△ABC≌△CDA,△AMO≌△CNO,△OAE≌△OCF,△AME≌△CNF,(2)证明:∵AB=CD,BC=AD=DA,AC=CA,∴△ABC≌△CDA(SSS),∴∠BAC=∠DCA,即∠MAO=∠NCO,∵O为AC的中点,∴OA=OC,又∵∠AOM=∠CON,∴△AMO≌△CNO(ASA),∴AM=CN,OM=ON,∵OA=OC,∠AOE=∠COF,OE=OF,∴△OAE≌△OCF(SAS),∴AE=CF,∵OE=OF,OM=ON,∴OE−OM=OF−ON,即ME=NF,又∵AM=CN,∴△AME≌△CNF(SSS),∴∠MAE=∠NCF.20.(1)证明∶∵AC∥DE,∴∠ACD=∠CDE,∠ACB=∠CED,∵∠ACD=∠B,∴∠B=∠CDE,∵AC=CE,∴△ABC≌△CDE (AAS).(2)解:∵ ∠A =55°,∵△ABC≌△CDE ,∴∠A =∠ECD =55°,∴ ∠BCD =180°−∠ECD =180°−55°=125°.21.(1)解:∵∠ACB =106°,∴∠ACD =180°−106°=74°,∵EH ⊥BD ,∴∠CHE =90°,∵∠CEH =53°,∴∠ECH =90°−53°=37°,∴∠ACE =∠ACD−∠ECH =74°−37°=37°.(2)证明:如图:过E 点分别作EM ⊥BF 于M ,EN ⊥AC 与N ,∵BE 平分∠ABC ,∴EM =EH ,∵∠ACE =∠ECH =37°,∴CE 平分∠ACD ,∴EN =EH ,∴EM =EN ,∴AE 平分∠CAF .(3)解:∵AC +CD =16,S △ACD =24,EM =EN =EH ,∴ S △ACD =S △ACE +S △CED =12AC ⋅EN +12CD ⋅EH =12(AC +CD)⋅EM =24,即12×16⋅EM =24,解得EM =3,∵AB =10,∴ S △ABE =12AB ⋅EM =15.22.(1)观察表格发现:x每增加10,y减小5,∴α=65−5=60,β=80+2×10=100,θ=40−3×5=15.故答案为:60,100,15,x.(2)根据表格猜想:y=90−12证明:如图2,延长CB到E,使BE=DC,连接AE,则∠ABC+∠ABE=180°,又∵∠ABC+∠D=180°,∴∠ABE=∠D,又∵AB=AD,∴△ABE≌△ADE(SAS),∴AE=AC,∠EAB=∠CAD,∴∠E=∠ACB=y°,∠EAC=∠EAB+∠BAC=∠CAD+∠BAC=∠BAD=x°.在△AEC中,∠EAC+∠E+∠ACE=180°,∴x°+2y°=180°,x.y=90−12(3)如图,延长CB到E,使BE=DC,连接AE.由(2)得△ABE≌△ADE,∴S△ABE=S△ADE,∴S四边形ABCD=S△ACD+S△ABC=S△ABE+S△ABC=S△AEC,x,∵x+y=135,y=90−12∴x +90−12x =135,解得x =90,y =45,∴∠EAC =90°,∠AEC =∠ACE =45°,∴AE =AC =10,∴S △AEC =12×10×10=50,∴S 四边形ABCD =50.23.(1)解:∵OC 平分∠AOB , 点 F 在OC 上,且FE ⊥OB , FD ⊥OA ,∴FD =FE .(2)解:FD =FE ,理由如下:∵FD ⊥OA ,FE ⊥OB ,∴∠FDO =∠FEO =∠FEN =90°,∵四边形DOEF 中,∠FDO =∠FEO =∠AOB =90°,∴∠DFE =360°−∠FDO−∠FEO−∠AOB =90°,∴∠DMF +∠MFE =90°,又∵FM ⊥FN ,∴∠FMN =90°,∴∠DFM =∠EFN ,在△DFM 和△EFN 中,{∠FDM =∠FEN FD =FE ∠DFM =∠EFN,∴△DFM≌△EFN(ASA),∴FM =FN .(3)解:如图,过C 点作CE ⊥AB 于E 点,CF ⊥AD 的延长线于F 点,由(2)得△CFD≌△CEB ,∴FD =EB ,S △CFD =S △CEB ,∴S 四边形ABCD =S 四边形AECF,∵AC是∠DAB的平分线,∴∠DAC=∠CAB,又∵∠CFB=∠CEA=90°,AC=AC,∴△ACF≌△ACE(AAS),∴AF=AE,又∵AE=AB−BE,AF=AD+DF,∴AB−BE=AD+DF,∴50−BE=30+BE,解得BE=10,∴AF=AE=40,∴S四边形AECF=40×40=1600m2,∴S四边形ABCD=1600m2,答:该空地的面积为1600m2.24.解:(1)∵OC=OD,∠DOE=∠COF,OE=OF,∴CE=DF,△DOE≌△COF(SAS),∴∠PEC=∠PFD,∵∠CPE=∠DPF,CE=DF,∴△CPE≌△DPF(AAS),∴PE=PF,∵OE=OF,PE=PF,OP=OP,∴△OPE≌△OPF(SSS),∴∠POE=∠POF,即∠POA=∠POB,∴射线OP平分∠AOB;(2)∵CF⊥OA,DE⊥OB,∴∠OCF=∠ODE=90°,∴∠COF=∠DOE,OC=OD,∴△OCF≌△ODE(ASA),∴OF=OE,由(1)可得OP平分∠AOB;(3)补全图形如下,过点P 分别作PM ⊥OA 于M ,PN ⊥OB 于N ,∵OP 是∠AOB 的平分线,∴PM =PN ,∠PMC =∠PND =90°,当PC =PD 1时,在Rt △PMC 和Rt △PND 1中,{PC =PD 1PM =PN ,∴Rt △PMC≌Rt △PND 1(HL),∴∠PCO =∠PD 1O ;当PC =PD 2时,同理得Rt △PMC≌Rt △PND 2(HL),∴∠PCM =∠PD 2N ;∵∠PD 2N +∠PD 2O =180°,∴∠PCO +∠PD 2O =180°,综上所述,∠PCO 与∠PDO 的数量关系为∠PCO =∠PDO 或∠PCO +∠PDO =180°;25.解:(1)证明:∵∠BAD =90°,∴∠BAC +∠DAE =90°,∵BC ⊥CA ,DE ⊥AE ,∴∠ACB =∠DEA =90°,∴∠BAC +∠ABC =90°,∴∠ABC =∠DAE ,在△ABC 和△DAE 中,{∠ACB =∠DEA ∠ABC =∠DAE BA =AD∴△ABC≌△DAE (AAS),∴BC =AE .(2)由模型呈现可知,△AEP≌△BAG ,△CBG≌△DCH ,∴AP =BG =3,AG =EP =6,CG =DH =4,CH =BG =3,则S 实线围成的图形=12×(4+6)×(3+6+4+3)−12×3×6−12×3×6−12×3×4−12×3×4=50.(3)①过点D 作DP ⊥AG 于P ,过点E 作EQ ⊥AG 交AG 的延长线于Q .图3由【模型呈现】可知,△AFB≌△DPA ,△AFC≌△EQA ,∴DP =AF ,EQ =AF∴DP =EQ ,∵DP ⊥AG ,EQ ⊥AG∴∠DPG =∠EQG =90°,在△DPG 和△EQG 中,{∠DPG =∠EQG ∠DGP =∠EGQ DP =EQ∴△DPG≌△EQG (AAS),∴DG =GE .②由①可知,BF =AP ,FC =AQ ,∴BC =BF +FC =AP +AQ ,∵BC =21,∴AP +AQ =21,∴AP +AP +PG +GQ =21,由①△DPG≌△EQG 得∴PG =GQ ,∴AP +AP +PG +PG =21,∴AP+PG=10.5,∴AG=10.5,×10.5×12=63.∴S△ADG=12。
2023-2024学年人教版八年级数学上册《第十二章全等三角形》单元测试卷附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列说法错误的是()A.能完全重合的两个三角形是全等三角形B.全等三角形的对应角相等C.面积相等的两个三角形一定是全等三角形D.全等三角形的对应边相等2.在△ABC和△A′B′C′中,AB=A′B′,∠A=∠A′,若证△ABC≌△A′B′C′还要从下列条件中补选一个,错误的选法是()A.∠B=∠B B.∠C=∠C′C.BC=B′C′D.AC=A′C′3.如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,但绳子不够长,位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,连接AC并延长到点D,使,连接BC并延长到点E,使,连接DE并且测出DE的长即为A,B间的距离,这样实际上可以得到,理由是()A.SSS B.AAS C.ASA D.SAS4.如图,在中平分,若,则的面积为()A.6 B.18 C.24 D.325.如图,AD是△ABC角平分线,DE⊥AB,DF⊥AC,垂足分别为点E和点F,则下列结论正确的是()A.BD=CD B.AD=BD C.AD=CD D.DE=DF6.如图,O是△ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若∠BAC=70°,则∠BOC 的度数为()A.70°B.120°C.125°D.130°7.如图中,AE⊥AB且AE=AB,BC⊥CD且BC=CD,若点E,B,D到直线AC的距离分别为6、3、2,则图中实线所围成的阴影部分面积S是()A.50 B.44 C.38 D.328.如图,已知线段米,于点A,米,射线于,点从点向A运动,每秒走1米,点从点向运动,每秒走3米,P、同时从出发,则出发秒后,在线段上有一点,使与全等,则的值为()A.20 B.20或10 C.10 D.6或10二、填空题:(本题共5小题,每小题3分,共15分.)9.△ABC和△A′B′C′中,已知∠A=∠B′,AB=B′C′,增加条件可使△ABC≌△B′C′A′(ASA).10.如图,OC平分∠AOB,点P在OC上,PD⊥OA于D,PE⊥OB于E,若∠1=20°,则∠3= °;若PD=1cm,则PE= cm.11.如图,AD=BD,AD⊥BC,垂足为D,BF⊥AC,垂足为F,BC=6cm,DC=2cm,则AE= cm.12.小明沿一段笔直的人行道行走,边走边欣赏风景,在由走到的过程中,通过隔离带的空隙,刚好浏览完对面人行道宣传墙上的一条标语,具体信息如下:如图,相邻两平行线间的距离相等,AC,相交于,垂足为已知米请根据上述信息求标语的长度.13.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为.三、解答题:(本题共5题,共45分)14.如图,点E在△ABC外部,点D在边BC上,DE交AC于点F.若∠1=∠2=∠3,AC=AE,求证△ABC ≌△ADE.15.如图,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD,试证明BD平分EF.16.如图,AB=AC,∠BAC=90°,BD⊥AE于D,CE⊥AE于E,且BD>CE.求证:BD=EC+ED.17.如图,在中,D是边上一点,E是边的中点,作交的延长线于点F.(1)证明:;(2)若,CE=6,CF=8,求的长.18.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.参考答案:1.C 2.C 3.D 4.C 5.D 6.C 7.D 8.C9.∠B=∠C′10.70;111.212.米13.5.514.证明:由三角形的内角和定理△AEF与△DCF中,∵∠2=∠3,∠AFE=∠CFD,∴∠C=∠E;∵∠1=∠2,∠BAC=∠1+∠DAC,∠DAE=∠2+∠DAC ∴∠BAC=∠DAE 又∵AC=AE,∴△ABC≌△ADE(ASA) 15.证明∵DE⊥AC,BF⊥AC,∴∠DEG=∠BFE=90°.∵AE=CF,AE+EF=CF+EF.即AF=CE.在Rt△ABF和Rt△CDE中,AB=CD,AF=CF,∴Rt△ABF≌Rt△CDE(HL),∴BF=DE.在△BFG和△DEG 中∠BFG=∠DEG,∠BGF=∠DGE,BF=DE∴△BFG≌△DEG(AAS),∴FG=EG,即BD平分EF16.证明:∵∠BAC=90°,CE⊥AE,BD⊥AE∴∠ABD+∠BAD=90°,∠BAD+∠DAC=90°,∠ADB=∠AEC=90°.∴∠ABD=∠DAC.∵在△ABD和△CAE中∴△ABD≌△CAE(AAS).∴BD=AE,EC=AD.∵AE=AD+DE∴BD=EC+ED.17.(1)证明:∵点E是边的中点∴又∵∴,在和中∴;(2)解:∵,CF=8∴∵,点E是边的中点,CE=6∴∴∴.18.(1)证明:∵BE⊥AC,CF⊥AB∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE∴∠ABD=∠ACG在△ABD和△GCA中∴△ABD≌△GCA(SAS)∴AD=GA(全等三角形的对应边相等)(2)位置关系是AD⊥GA理由为:∵△ABD≌△GCA∴∠ADB=∠GAC又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE ∴∠AED=∠GAD=90°∴AD⊥GA.。
2023-2024学年八年级数学上册《第十二章全等三角形》单元测试卷题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,已知AB=AC,AD=AE,∠BAC=∠DAE.下列结论不正确的有( )A.∠BAD=∠CAEB.△ABD≌△ACEC.AB=BCD.BD=CE2.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SASB.ASAC.AASD.SSS3.如图,下面4个正方形的边长都相等,其中阴影部分的面积相等的图形有( )A.0个B.2个C.3个D.4个4.如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在C'处,折痕为EF.若AB=1,BC=2,则△ABE和△BC'F的周长之和为( )A.3B.4C.6D.85.如图,在Rt△ABC的斜边BC上截取CD=CA,过点D作DE⊥BC交AB于点E,则有( )A.DE=DBB.DE=AEC.AE=BED.AE=BD6.如图,已知点P到AE、AD、BC的距离相等,下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的是( )A.①②③④B.①②③C.④D.②③7.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于( )A.180°B.210°C.360°D.270°8.如图,在△ABC中,AB=AC,点E,F是中线AD上两点,则图中可证明为全等三角形的有( )A.3对B.4对C.5对D.6对9.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS.下面三个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP.其中正确的是( )A.①③B.②③C.①②D.①②③10.如图,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是( )A.1B.2C.3D.411.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有( ) 个.A.1B.2C.3D.412.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=( )A. 6B. 3C. 2D. 1.5二、填空题13.已知△DEF≌△ABC,AB=AC,且△ABC的周长为22cm,BC=4cm,则DE= cm.14.小明将一块三角形的玻璃棒摔碎成如图所示的四块(即图中标有1,2,3,4的四块),若只带一块配成原来一样大小的三角形,则应该带第_______块.15.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l和直线l外一点P.求作:直线l的平行直线,使它经过点P.作法:如图2.(1)过点P作直线m与直线l交于点O;(2)在直线m上取一点A(OA<OP),以点O为圆心,OA长为半径画弧,与直线l交于点B;(3)以点P为圆心,OA长为半径画弧,交直线m于点C,以点C为圆心,AB长为半径画弧,两弧交于点D;(4)作直线PD.所以直线PD就是所求作的平行线.请回答:该作图的依据是.16.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.17.如图,旗杆AC与旗杆BD相距12 m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3 m,该人的运动速度为1 m/s,则这个人运动到点M所用时间是 s.18.如图,DE⊥AB于E,DF⊥A于F,若BD=CD,BE=CF.则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AB+AC=2AE中正确的是 .三、解答题19.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.20.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.21.如图,点O是线段AB的中点,OD∥BC且OD=BC.(1)求证:△AOD≌△OBC;(2)若∠ADO=35°,求∠DOC的度数.22.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC.(1)证明:BC=DE;(2)若AC=12,CE经过点D,求四边形ABCD的面积.23.如图,在等腰Rt△ACB中,∠ACB是直角,AC=BC,把一个45°角的顶点放在C处,两边分别与AB交于E,F两点.(1)将所得△ACE以C为中心,按逆时针方向旋转到△BCG,试求证:△EFC≌△GFC;(2)若AB=10,AE∶BF=3∶4,求EF的长.24.如图,在△ABC中,∠ABC=60゜,AD、CE分别平分∠BAC、∠ACB,AD、CE交于O.(1)求∠AOC的度数;(2)求证:AC=AE+CD.25.已知点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M,N分别是射线AE,AF 上的点,且PM=PN.(1)如图1,当点M在线段AB上,点N在线段AC的延长线上时,求证:BM=CN;(2)在(1)的条件下,直接写出线段AM,AN与AC之间的数量关系________;(3)如图2,当点M在线段AB的延长线上,点N在线段AC上时,若AC:PC=2:1,且PC=4,求四边形ANPM的面积.答案1.C2.D3.C4.C5.B6.A7.B8.D.9.C.10.D11.C12.D.13.答案为:9.14.答案为:2.15.答案为:三边分别相等的两个三角形全等;全等三角形的对应角相等;同位角相等,两直线平行.16.答案为:4.17.答案为:3.18.答案为:①②④;19.解:(1)河的宽度是5m;(2)证明:由作法知,BC=DC,∠ABC=∠EDC=90°在Rt△ABC和Rt△EDC中∴Rt△ABC≌Rt△EDC(ASA)∴AB=ED即他们的做法是正确的.20.证明:(1)∵CF∥AB∴∠B=∠FCD,∠BED=∠F∵AD是BC边上的中线∴BD=CD∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF∴BE=CF=2∴AB=AE+BE=1+2=3∵AD⊥BC,BD=CD∴AC=AB=3.21.证明:(1)∵点O是线段AB的中点∴AO=BO∵OD∥BC∴∠AOD=∠OBC在△AOD与△OBC中∴△AOD≌△OBC(SAS);(2)解:∵△AOD≌△OBC∴∠ADO=∠OCB=35°∵OD∥BC∴∠DOC=∠OCB=35°.22.解:(1)∵∠BAD=∠CAE=90°∴∠BAC+∠CAD=∠EAD+∠CAD∴∠BAC=∠EAD.在△ABC和△ADE中∴△ABC≌△ADE(SAS).∴BC=DE(2)∵△ABC≌△ADE∴S△ABC =S△ADE∴S 四边形ABCD =S △ABC +S △ACD =S △ADE +S △ACD =S △ACE =12×122=72.23.解:(1)由旋转知:△BCG ≌△ACE.∴CG =CE ,∠BCG =∠ACE.∵∠ACE +∠BCF =45°∴∠BCG +∠BCF =45°即∠GCF =∠ECF =45°而CF 为公共边∴△EFC ≌△GFC(SAS);(2)连接FG.由△BCG ≌△ACE 知:∠CBG =∠A =45°∴∠GBF =∠CBG +∠CBF =90°由△EFC ≌△GFC 知:EF =GF.设BG =AE =3x ,BF =4x则在Rt △GBF 中,GF =5x∴EF =GF =5x∴AB =3x +5x +4x =10∴AB =56∴EF =5x =256. 24.解:如图,在AC 上截取AF =AE ,连接OF∵AD 平分∠BAC∴∠BAD =∠CAD在△AOE和△AOF中∴△AOE≌△AOF(SAS)∴∠AOE=∠AOF∵∠ABC=60°,AD、CE分别平分∠BAC,∠ACB∴∠AOC=120°;(2)∵∠AOC=120°∴∠AOE=60°∴∠AOF=∠COD=60°=∠COF在△COF和△COD中∴△COF≌△COD(ASA)∴CF=CD∴AC=AF+CF=AE+CD.25.解:(1)如图1∵点P为∠EAF平分线上一点,PB⊥AE,PC⊥AF∴PB=PC,∠PBM=∠PCN=90°∵在Rt△PBM和Rt△PCN中,PBM=∠PCN=90°,PM=PN,PB=PC∴Rt△PBM≌Rt△PCN(HL)∴BM=CN(2)AM+AN=2AC(3)解:如图2,∵点P为∠EAF平分线上一点,PB⊥AE,PC⊥AF ∴PB=PC,∠PBM=∠PCN=90°∵在Rt △PBM 和Rt △PCN 中,PBM=∠PCN=90°,PM=PN,PB=PC ∴Rt △PBM ≌Rt △PCN (HL )∴BM=CN∴S △PBM =S △PCN∵AC :PC=2:1,PC=4∴AC=8∴由(2)可得,AB=AC=8,PB=PC=4∴S 四边形ANPM =S △APN +S △APB +S △PBM =S △APN +S △APB +S △PCN =S △APC +S △APB = 0.5AC •PC+ 0.5AB •PB= 0.5×8×4+ 0.5×8×4=32。