职高高一数学期末试卷及答案
- 格式:docx
- 大小:36.36 KB
- 文档页数:2
职业高中下学期期末考试 高一《 数学_》试题5一. 选择题:(每小题3分,共30分)1.函数()x a y 1-=在R 上是增函数,则a 的取值范围是( )A.a >1B.1<a <2C.a >2D.2<a <3 2.若n m ==5ln ,2ln ,则n m e +2的值为 ( )A .2B .5C .20D .103.函数2()log (1)f x x π=+的定义域是( ) A .(1,1)-B .(0,)+∞C .(1,)+∞D .R4.下列说法中,正确的是( )A. 第一象限角一定是锐角B.锐角一定是第一象限角 B. 小于90度的角一定是锐角 D.第一象限角一定是正角5.已知α为第二象限角,则=-•αα2cos 1sin 1. A. 1 B.-1 C.1或-1 D.以上都不是6.下列函数中,在区间⎪⎭⎫⎝⎛2,0π上是减函数的是( )A .x y sin =B .x y cos =C .x y tan =D .2x y =7.等差数列{n a }的通项公式是n a = -3n + 2 ,则公差d = ( )A. -4B. -3C. 3D. 48.在等差数列{n a }中,若=+173a a 10 ,则19S = ( )A. 65B. 75C. 85D. 959.已知等比数列{}n a 中,,32,832==a a 则=1a ( )A. 2B. 4C. 6D. 810.三个正数c b a ,,成等比数列, 是c b a lg ,lg ,lg 成等差数列的 A .充要条件 B .必要条件 C .充分条件 D .无法确定 二.填空题(每小题3分,共24分) 11.已知()[]0lg log log 37=x ;则=x .12.函数()lg(lg 2)f x x =-的定义域是 .13. =+2log 15514.与52π-终边相同的角中最小正角是 15.在三角形ABC 中,如果B A cos sin ⋅<0,则△ABC 是 三角形 16.已知2cos sin =+αα,则=⋅ααcos sin . 17.等比数列{}n a 中,若,2563=a a 则=72a a _______ 18.等比数列{}n a 中,若12632==a a ,,则S 6 =_______ 三.计算题:(每小题8分,共24分)19.已知:()()521322231,31-++-⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛=x x x x x g x f ,()x f >()x g ,求x 的取值范围.专业 班级 姓名 学籍号 考场 座号20.求值sin()tan()cos()cos(2)tan()sin()πααπαπαπαπα+-+++-.21.在等比数列{}n a 中,若,2,12413=-=-a a a a 求首项1a 和公比q .四.证明题:(每小题6分,共12分)22.已知(1,10)x ∈, 22lg ,lg ,lg(lg ),A x B x C x === 证明:C A B <<.23.1=-.五:综合题:(10分) 24.等比数列}{n a 中,公比q=2,25log log log 1022212=+•••++a a a ,求n a a a +•••++21.高一 《 数学__》试题5参考答案一.选择题:1---5 CCDBA 6----10 BBDAA 二.填空题11. 1000 12.[100,+∞ ) 13. 10 14.58π 15.钝角 16.2117.25 18.189 三.计算题:(每小题8分,共24分) 19.已知:()()521322231,31-++-⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛=x x x x x g x f ,()x f >()x g ,求x 的取值范围.20.求值sin()tan()cos()cos(2)tan()sin()πααπαπαπαπα+-+++-.解 原式=()()1sin tan cos cos tan sin -=---αααααα.21.在等比数列{}n a 中,若,2,12413=-=-a a a a 求首项1a 和公比q . 解 由等比数列的通项公式得()()⎩⎨⎧=-=-=-=-21112113121121q q a q a q a q a a q a 解得 ⎪⎩⎪⎨⎧==2311q a 所以2,311==q a 四.证明题:(每小题6分,共12分)22.已知(1,10)x ∈, 22lg ,lg ,lg(lg ),A x B x C x === 证明:C A B <<.(答案略)23.1=-.证明 左边=()()120cos 20sin 20cos 20sin 20cos 20sin 20cos 20sin 20cos 20sin 20cos 20sin 2-=---=--=--οοοοοοοοοοοο=右边所以1︒=-五:综合题:(10分) 24.等比数列}{n a 中,公比q=2,25log log log 1022212=+•••++a a a ,求na a a +•••++21.(答案略)。
一、选择题(每题4分,共20分)1. 下列各数中,无理数是()A. √4B. √9C. √16D. √25答案:D2. 若方程x² - 3x + 2 = 0 的解为 x₁和 x₂,则 x₁ + x₂的值为()A. 1B. 2C. 3D. 4答案:C3. 函数 y = 2x + 3 在 x = 2 时的函数值为()A. 5B. 7C. 9D. 11答案:B4. 在直角坐标系中,点 P(2, 3) 关于 y 轴的对称点坐标是()A. (2, -3)B. (-2, 3)C. (2, 3)D. (-2, -3)答案:B5. 若a² = b²,则下列说法正确的是()A. a = bB. a = -bC. a = ±bD. a 和 b 同号答案:C二、填空题(每题5分,共25分)6. 二项式(x + 1)³ 展开后,x² 的系数为______。
答案:37. 等差数列 {an} 的前10项和为100,第5项为10,则首项 a₁ = ______。
答案:48. 函数 y = -2x² + 4x - 3 的对称轴方程为______。
答案:x = 19. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C = ______。
答案:75°10. 圆的方程x² + y² - 4x - 6y + 12 = 0 表示的圆的半径为______。
答案:2三、解答题(共55分)11. (10分)解方程组:\[\begin{cases}2x + 3y = 8 \\x - y = 1\end{cases}\]解答:\[\begin{cases}x = 3 \\y = 2\end{cases}\]12. (15分)计算:\(\frac{(2x + 3y)² - (x - y)²}{2x + 3y + x - y}\)解答:\[\frac{(2x + 3y)² - (x - y)²}{2x + 3y + x - y} = \frac{4x² + 12xy + 9y² - (x² - 2xy + y²)}{3x + 4y} = \frac{3x² + 14xy + 8y²}{3x + 4y}\]13. (20分)已知函数y = ax² + bx + c(a ≠ 0),且满足以下条件:(1)函数图象的对称轴为 x = -1;(2)函数在 x = 2 时的函数值为 3。
密密 封 线 内 不 得 答 题高一上学期15计1班数学考试试卷一.单选题(每题2分,共40分)1.设集合M={1,2,3,4},集合N={1,3},则M N 的真子集个数是( )A 、16B 、15C 、7D 、8 2.2a =a 是a>0 ( )A .充分必要条件 B. 充分且不必要条件 C.必要且不充分条件 D.既不充分也不必要条件3.下列各命题正确的( )A 、}0{⊂φB 、}0{=φC 、}0{∈φD 、}0{0⊆4.设集合M={x ︱x ≤2},a=3,则( )A. a ⊂MB. a ∈MC. {a} ∈MD.{a}=M 5.设集合M={}1,0,5- N={}0则( )A.M ∈NB.N ⊂MC.N 为空集D.M ⊂N6.已知集合M={(x ,y )2=+y x },N={(x, y) 4=-y x },那么M N=( ) A. {(3,-1)} B. {3,-1} C. 3,-1 D. {(-1, 3)}7. 设函数f(x)=k x +b(k ≠0),若f(1)=1,f(-1)=5,则f(2)=( ) A.1 B.2 C.-1 D.-28.函数y=2x -+6x+8的单调增区间是( )A. (-∞, 3] B. [3, +∞) C.(-∞,-3] D.[-3, +∞)9.已知关于x 的不等式2x - ax+ a>0的解集为实数集,则a 的取值范围是( ) A .(0,2) B.[2,+∞) C.(0,4) D.(- ∞,0)∪(4,+∞) 10.下列函数中,在(0,+∞)是减函数的是( )A. y=-x 1B. y=xC. y=-2xD. y =2x11.不等式51-x >2的解集是( ) A.(11,+∞) B.(-∞,-9) C.(9, 11) D.(-∞,-9)∪(11,+∞) 12.下列各函数中,表示同一函数的是( )A. y=x 与x x y 2=B. xxy =与y=1密密 封 线 内 不 得 答 题C. y=()2x 与y=2x D. y=x 与33x y =13.抛物线7)5(92-+-=x y 的顶点坐标、对称轴分别是( )A .(5,7),x=5 B.(-5,-7),x=-7 C.(5,7),x=7 D.(-5,-7),x=-5 14.如果a<b,那么正确的是( )A. a 2c >b 2cB.a-c <b-cC.c b c a >D.ba<115.若221)(xx x f +=,则下列等式成立的是( )A .f (-a)=f (a) B. )()1(a f af = C .f(0)=0 D. f(1)=016.分式不等式xx-2≤0的解集是( )A.(0, 2]B. [0, 2)C.(-∞,0]∪(2,+∞)D.(-∞,0) ∪ [2,+∞)17.下列函数图像关于原点对称的是 ( )A .y=3x B. y=x+3 C. y=()21+x D. y=x218.若果一次函数y=ax+12-a 图像经过第一、三、四象限,则a 的取值范围是( ) A. a>0 B.0<a<1 C.-1<a<0 D.-1<a<1且a ≠0 19.已知f (2x)=2x -2x+3,则f(4)=( ) A.-1 B.0 C.3 D.-43 20.若函数()⎪⎩⎪⎨⎧≤≤<+=3,2,31,1,12 x x x x x x x f 则f(a)= ( )A.a+1B. 2aC.2a D .以上结论均不对二、填空题(每题4分,,共20分)21.若11)(+-=x x x f ,则)11(+-x x f = . 22.函数y=112--x x 的定义域是 (用区间表示)。
B C D16改写成对数形式为 ( ) 16 B.log 24=16 =2 D.log 416=2。
是第一象限角,那么α/2是. ( ). B.第二象限角 D.第一或第三象限角。
α为 象限角。
( )B 、第二象限角C 、第 三象限角D 、第四象限角 )内,使sinx>cosx,成立的x 的取值范围是. ( ))45,(ππY B.),4(ππ C.)45,4(ππ D.)23,45(),4(ππππYy=lg(2x-1)定义域为. ( )B.(1,2)C.(1,1.5)D.(0.5,+∞)。
,是数列{n(n+1)}中一项的是 ( ) B 、32 C 、39 D 、380}{n a 中,已知5a =2,10a =10,则15a 等于( ) B 、50 C 、75 D 、100。
2,5,9,14,20,x,…中,x 的值应该是. ( ) 、25 C 、26 D 、27。
α·cos α>0,且cos α·tan α<0,则角α所在的象限是…( ) B 、第二象限 C 、第三象限 D 、第四象限 8小题,40分) 91log .81log 53(6分)2、化简:)cos()cos()tan()2tan()tan()sin(πααπαπααπα++-+++-+--+-(6分)3、成等差数列的三个数的和等于12,若这三个数分别减去1、2、2、就成等比数列,求这三个数 (6分)4、求值 )619(tan 23)423tan(38cos 2πππ-+--.(7分)5、解不等式.0)1(log 21≥-x (7分)6、在等比数列}{n a 中1031=+a a ,4564=+a a ,求4a 和5S (8分)高一数学答案一1,27 2,-0.5 3,(0,1)4,0.7781 5,-450+4*3600 6,2,1,-1 7,+-42 8,<> 9,3 500 10,-5/13二11,c12,d 13,d14,c15,d 16,d 17,d 18,b19,d20,c 三1 ,-3002,-cosa3,3,4,5或者6,4,24,15,X<=1.56,1 15.5。
职业中专期末试卷(一到四章 )一、选择题( 2 分× 18=36 分,选择题答案请写上面表格中,谢谢配合!)1. 若 A∪B=A, 则 A∩ B 为()A. AB. BC.?D. A或 B2. 不等式 |3x-12|≤9 的整数解的个数是()A. 7B. 6C. 5D. 43.(-a 2) 3的运算结果是()A. a 5B.-a5C.a6D.-a6)4. 如果全集 U=R,A={x|2 < x≤ 4},B={3,4},则 A∩ ( CB)等于(UA.(2,3)∪(3,4 )B.(2,4)C.(2,3)∪(3,4]D. ( 2,4]5.已知集合 A={x|x >2} ,B={x|x > a}, 若 A B ,则 a 的范围为()A.a =2B.a≤2C.a≥ 2D.a≠26.函数 y=2x2-8x+9的最小值是()A. 0B. 1C. 7D. 97.若 x∈[3,5 ),那么式子 3-x 的值一定是()A. 正数B.负数C.非负数D.非正数8.某商品零售价 2006 年比 2005 年上涨 25%,欲控制 2007 年比 2005年只上涨10%,则 2007 年应比 2006 年降价()A.15%B.12%C.10%D.50%9. 已知 a< b<0, 那么一定有()b a b112A.a >b B.0<a<1 C.a<b D.ab< b110. 函数 y=x+x-2 (x >2) 的最小值为()A.4B.3C.2D.12-x11.函数 y= lgx的定义域是()A.[-2,2]B.(0,2)C.(0,2]D.(0,1)∪ (0,2]12.函数 y=lg(x 2-2x-3)的单调递增区间为()A.(3,+∞ )B.(-∞,-1)C.(1,+∞)D.(-∞,1)13.集合 A B 是 A B=A的( )A. 充分但非必要条件B.必要但非充分条件C. 充分必要条件D.既非充分又非必要条件14.已知关于 x 的方程 x2+ ax-a=0 有两个不等的实数根,则()A.a < -4 或 a>0B.a ≥ 0C.-4<a<0D. a>-415.若f2则 f ()的值为()(x+1)=x+3x+5,0A. 3B. 5C.2D.-116.已知 f (x)=x2+ bx+ c 的对称轴为直线 x= 2,则 f(1),f(2),f(4)的大小关系是()A. f(2)< f(1)< f(4)B. f(1)< f(2)< f(4)C. f(2)< f(4)< f(1)D. f(4)< f(2)< f(1)17.下列具有特征 f(x 1· x2)=f(x 1) +f(x 2) 的函数是()A.f(x)=2xB.f(x)=2xC.f(x)=2+xD.f(x)=log x218.设 f(x) 是( - ∞, +∞)上的奇函数, f(x+2)=-f(x),当 0≤x≤1 时,f(x)=x, 则 f(7.5)=()A. -1.5B. -0.5C.0.5D.1.5二、填空题( 3 分× 8=24 分)19.满足条件 {1,2,3}M {1,2,3,4,5,6}的集合的个数是20. 比较大小: 2x 2+5x-3_______ x 2+5x-4. 21. 已知 f (1)=3, f (n+1)=2 f (n)+n, nN +,则 f (4)=_______.22. 函数 f (x)=lg(x 2-kx+k) 无论 x 取何值均有意义,则 k 的取值范围为 _______________.23. 已知 f(x) 是奇函数,且 f(2)=3, 则 f(-2)=________.24. 二次函数 y=ax2+ bx +c (a <0) 与 x 轴的两个交点为( -2,0 ),( 2,0 ) , 则 不 等 式 ax 2 + bx + c > 0 的 解 集 是_____________________. 25. 已知 f (x +1)=x2+ 1,则 f (x )=_____________________.xx 226.求值log 2 1 ( 2 1 ) =_________________. 三、解答题(本题共 8 小题,共 60 分)27. ( 6 分)写出集合 P={1,2,3} 的所有子集。
一、选择题(每题4分,共40分)1. 下列各数中,属于无理数的是()A. √4B. 0.1010010001...C. 2/3D. -π2. 已知函数f(x) = 2x + 3,则f(-1)的值为()A. 1B. 2C. 3D. 43. 下列各对数中,正确的是()A. log2 4 = 2B. log3 9 = 2C. log5 25 = 1D. log10 100 = 24. 已知等差数列{an}的第三项a3 = 10,公差d = 2,则第一项a1为()A. 6B. 8C. 10D. 125. 若等比数列{bn}的第一项b1 = 3,公比q = 2,则第n项bn为()A. 3×2^(n-1)B. 3×2^nC. 6×2^(n-1)D. 6×2^n6. 已知函数y = ax^2 + bx + c(a ≠ 0),若a > 0,则该函数的图像()A. 在y轴左侧单调递减,在y轴右侧单调递增B. 在y轴左侧单调递增,在y轴右侧单调递减C. 在整个实数域上单调递增D. 在整个实数域上单调递减7. 下列各三角形中,是直角三角形的是()A. 边长分别为3,4,5的三角形B. 边长分别为5,12,13的三角形C. 边长分别为6,8,10的三角形D. 边长分别为7,24,25的三角形8. 已知圆的半径为r,则该圆的面积S为()A. πr^2B. 2πrC. πr^2 + 2πrD. πr^2 + 2r9. 下列各等式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^210. 若直线y = kx + b与直线y = 2x - 3平行,则k的值为()A. 2B. 3C. -2D. -3二、填空题(每题5分,共50分)1. 若x^2 - 5x + 6 = 0,则x的值为______。
高一职高期末数学试题Ⅰ卷一、选择题( 15 小题,每题 3 分,共 45分)1、以下说法中,正确的选项是()A、第一象限的角必定是锐角B、锐角必定是第一象限角C、小于900的角必定是锐角D、第一象限的角必定是正角2、与3300角终边同样的角是()A、60 0B、 3900C、3900D、4503、已知角的终边经过一点P ( 1 , 3),则sin的值为()2 2A、3B、1C、3D、1 2224、若sin0 ,且 tan0 ,则是()A、第一象限的角B、第三象限的角C、第一或第三象限的角D、以上答案都不对5 、设是第三象限角,则点p(cos , tan )在()A、第一象限B、第二象限C、第三象限D、第四象限6、y sin是()A、奇函数B、偶函数C、非奇非偶函数D、既是奇函数又是偶函数7、要获得y sin x 的图像,只需把函数y cosx 的图像()A、向左平移个单位B、向右平移22个单位C、向左平移个单位D、向右平移个单位8、若,则以下各式正确的选项是()A 、cos cosB 、sin sin C、tantan D、sin cos9、设,则下边的关系中建立4的是()A 、sin cosB 、sin cosC 、sin cosD、不可以确立10、y3sin1x 的递加区间是()2A、[ 2k,2k], (k Z )B、[ 2k2,2k2], (k Z)C、[ 2k,2k], (k Z )D、[ 4k,4k], ( k Z )-根源网络,仅供个人学习参照高一教课职高第二学期期末数学习题11、函数 y 2 sin x 的最大 及获得最A 、1B 、 122 大 x 的 是()C 、 2D 、 -2Ⅱ卷A 、 y3, xB 、 y 1, x2k(k Z ) 二、填空 (共 10 ,每 3 分,共22C 、y 3, x 2k(k Z ) D 、30 分)2y 3, x2k( k Z ) 16、 半径 2, 心角所 的弧212、以下函数中,是等差数列的是() 5, =_______________A 、0,1,0,1,0,1,⋯B 、17、7 ______ ,tan(3 ) ________ ,cos6 40.3,0.33,0.333,0.3333,⋯sin( 9 ) ______ 。
职业高中下学期期末考试高一《数学》试题一、选择题.(每小题3分,共30分)1.若a 3log <1,则a 的取值范围为( )A .a >3B . a <3C . 1<a <3D . 0<a <32.函数x x a a y --=且(0>a 且R a a ∈≠,1) 是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数3.”y x lg lg =”是“y x =”的( )A.充分条件B. 必要条件C.充要条件D.既不是充分条件又不是必要条件4.化简式子cos()sin(2)tan(2)sin()απαππαπα-⋅-⋅--得 ( )A .sin αB .cos αC .sin α-D .cos α-5.函数sin y x =与cos y x = 都是单调递增的区间是( )A . ⎥⎦⎤⎢⎣⎡+22,2πππk kB . ⎪⎭⎫⎝⎛++ππππk k 2,22C . ⎪⎭⎫ ⎝⎛++232,2ππππk kD . ⎪⎭⎫⎝⎛++ππππ22,232k k 6.函数()()1ln 2-=x x f 的定义域是( )A .()1,1-B .()()+∞-∞-,11,C .()+∞-,1D .R7.若4.06.0a a <,则a 的取值范围是( )A .1>aB .10<<aC .0>aD .无法确定 8.在等比数列{}n a 中,若9,473-=-=a a ,则=5a ( ) A .6±B . 6-C . 213-D .69. 函数x y 28-=的定义域是( ) A . (]3,∞-B .[]3,0C .[]3,3-D .(]0,∞-10. 若54cos ,53sin -==αα且,则角α终边在( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题(每小题3分,共24分)11.已知等差数列{}n a 中,53=a ,则=+412a a .12. 已知等比数列{}n a 中,若120,304321=+=+a a a a ,则=+65a a .13. 已知()ππαα,,21cos -∈-=,则=α_________.14. ()()=---+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-02322381π .15. 若a =2log 3,则=-6log 28log 33 .16. c b a ,,成等比数列, 是c b a lg ,lg ,lg 成等差数列的_____________. 17.已知α为第二象限角,则=-•αα2cos 1sin 1_____ . 18. 若αtan 与cos α同号,则α属于第_______象限角。
高一下学期期末试题一、选择题:(每题3分,共45分) 1、下列各式正确的是( )。
A 、2lg 3lg 3log 2=B 、24log 8log 22= C 、6lg 69lg 4lg = D 、9)1251(log 35-=2、下列对数函数在区间(0,+∞)内为减函数的是( )。
A 、x y ln = B 、x y πlog = C 、x y 5.0log = D 、x y lg =3、)4log 43log 6(log log 2log 22225+-的值是( )。
A 、0B 、18log 5C 、2D 、14、当10<<a 时,函数x y a log =和x a y )1(-=的图像只可能是( )。
5、下列各组函数中,表示同一函数的是( )。
A 、x y x y ==与B 、x y y x ==与2log 2C 、x y x y lg 2lg 2==与D 、10==y x y 与 6、下列式子中正确的是( )。
A 、53sin 54sin ππ> B 、)5sin(6sin ππ-> C 、710sin 75sin ππ> D 、 60sin 390sin > 7、函数1cos +=x y 的定义域是( )。
A 、RB 、⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ2,232,0 C 、φ D 、⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡+πππππππk k k k 22,22322,28、已知函数 ,则[]=-)6(f f ( )。
A 、21B 、23 C 、23- D 、21-9、下列说法正确的个数是( )。
(1)正切函数在其定义域上是增函数。
(2)余弦函数在第一、二象限是减函数。
(3)正切函数的最小正周期是π2。
(4)正切函数的定义域是R ,值域是R 。
A 、0 B 、1 C 、2 D 、310、已知512tan =α,且23παπ<<,则=αsin ( )。
子洲县职教中心2019--2020第二学期 高一期末质量检测(数学)试卷满分120分,考试时间120分钟.一、选择题(每小题5分,共60分)1.下图是由哪个平面图形旋转得到的( )A B C D2.有一个几何体的三视图如下图所示,这个几何体应是一个( )A .棱台B .棱锥C .棱柱D .都不对3.如图所示为一平面图形的直观图,则此平面图形可能是( )4.给出下列命题:①垂直于同一直线的两条直线互相平行; ②若直线a ,b ,c 满足a ∥b ,b ⊥c ,则a ⊥c ;③若直线l 1,l 2是异面直线,则与l 1,l 2都相交的两条直线是异面直线. 其中假命题的个数是( )A .1B .2C .3D .45.下面四个条件中,能确定一个平面的条件是( )A. 空间任意三点B.空间两条直线C.空间两条平行直线D.一条直线和一个点6.已知m ,n 是两条不同的直线,,,αβγ是三个不同的平面,下列命题中正确的是:A .若,αγβγ⊥⊥,则α∥βB .若,m n αα⊥⊥,则m ∥nC .若m ∥α,n ∥α,则m ∥nD .若m ∥α,m ∥β,则α∥β 7.在四面体ABC P -的四个面中,是直角三角形的面至多有( ) A.0 个 B.1个 C. 3个 D .4个 8.如图所示正方体1AC ,下面结论错误的是( )A. 11//D CB BD 平面B. BD AC ⊥1C. 111D CB AC 平面⊥D. 异面直线1CB AD 与角为︒609.棱长都是1的三棱锥的表面积为( )A . 3B . 23C . 33D . 4310.把正方形ABCD 沿对角线BD 折成直二面角后,下列命题正确的是( ) A. BC AB ⊥ B. BD AC ⊥ C. ABC CD 平面⊥ D. ACD ABC 平面平面⊥ 11.空间几何体的三视图如图所示,该几何体的表面积为( ) A .96 B .136 C .152 D .19212.某几何体的三视图如图所示,则该几何体的体积为( )3560.A3580.B 200.C 240.D班级: 姓名: 学号: ………………………密…………………………封…………………………线…………………………………主视图 左视图 俯视图 DA 1B 1BAC 1CD 1O BPA E F二、填空题(每小题4分,共16分)13.一个棱柱至少有 _____ 个面,面数最少的一个棱锥有 ________个顶点, 14.Rt ABC ∆中,3,4,5AB BC AC ===,将三角形绕直角边AB 旋转一周所成的几何体的体积为____________。