七年级秋季班-第17讲:图形的平移与旋转(教师版)
- 格式:docx
- 大小:1.06 MB
- 文档页数:20
《平移与旋转》教案(通用5篇)作为一位兢兢业业的人民教师,就有可能用到教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。
教案应该怎么写才好呢?下面是小编收集整理的《平移与旋转》教案(通用5篇),欢迎阅读,希望大家能够喜欢。
《平移与旋转》教案1一、能够把数学知识与生活现象密切联系起来。
数学源于生活,又用于生活。
这节课中一个突出的特色就是以学生已有的生活经验为背景,将数学知识与生动形象的现实生活密切联系起来,使学生在一种很真实,自然的状态下感受、体验、理解数学知识形成的过程。
姚老师收集一些图片,比如银行的自动门、电梯、汽车行驶、风扇、风车等许多真实的生活事例,让学生从这些活生生的现象中感受平移和旋转,体会到原来数学是这么地贴近我们的日常生活,它就在我们的身边。
二、能够充分发挥学生主题作用,让学生积极主动地参与。
在课堂上,姚老师始终将学生放在主体地位,创设情境与活动,给予足够的时间,使他们在自主观察、思考、操作中逐步感知,理解平移和旋转。
比如在数学移图时,姚老师先让学生整个图平移,接着引导学生找出对应点的方法,让学生一步步的掌握移图的方法。
而且整个环节都重视学生的真实感受,重视知识的形成过程,使学生在获得知识的同时,思维能力得到进一步的锻炼与提高。
三、通过实践操作,丰富学生对空间图形的认识和感受,发展空间观念。
整堂课中,姚老师十分重视实践活动,比如在上课一开始,就让学生用手势比划出自动门、电梯、风扇、风车是怎样运动的,在画移图时,让学生通过动手画一画的实践中,感受平移和旋转的奇妙,在动手、动脑、动口的过程中“做数学”。
培养学生的空间观念,发展学生的数学思维。
《平移与旋转》教案2一、引导学生从身边的事物出发,感受生活中的数学现象。
在教学中姚老师提供大量感性材料,通过让学生用眼观察、动手操作、自身体验,化抽象的概念为看得到摸得着的现象,因而学生都能举出生活中有关平移、旋转的现象。
老师出示汽车、电风扇、风车、时针等。
图形的平移与旋转内容分析本讲内容需要理解平移与旋转的基本概念.理解对应点、对应角、对应线段、旋转中心、旋转角的意义.掌握图形平移后图形的形状、大小保持不变,图形在旋转运动过程中的不变性.重点是能够画出平移、旋转后得图形.难点是掌握旋转对称图形与中心对称图形的区别与联系.知识结构模块一:图形的平移知识精讲1、平移将图形上的所有点都按照某个方向作相同距离的位置移动,叫做平移.2、平移的特征图形平移后,对应点之间的距离、对应线段的长度、对应角的大小都相等,图形平移后,图形的形状、大小都不变.3、平移距离平移后各对应点之间的距离叫做图形平移的距离.例题解析【例1】下列运动形式是平移的是()A.时钟计时B.汽车转弯C.风扇旋转D.飞机起飞【难度】★【答案】D【解析】A.时钟计时(旋转);B.汽车转弯(旋转);C.风扇旋转(旋转).【总结】考查图形旋转、平移的概念.【例2】观察图案,在A、B、C、D四幅图案中,能通过图案的平移得到的是( )A B C D【难度】★【答案】C【解析】A、D通过旋转得到,B通过翻折得到.【总结】考查图形旋转、平移、翻折的概念.【例3】在下面的六幅图中,(1)(2)(3)(4)(5)(6)中的图案_________可以通过平移图案(1)得到的.【难度】★【答案】(4).【解析】(2)翻折;(3)旋转180 ;(5)形状发生改变;(6)形状发生改变.【总结】考查图形旋转、平移、翻折的概念.FECBA【例4】 图形经过平移后,图形的性质:①线段的长度;②两条线段或直线的相对位置关系;③角度的大小;④图形的面积.中不变的有( ) A .1个 B .2个 C .3个 D .4个【难度】★ 【答案】D【解析】平移的特征:图形平移后,对应点之间的距离、对应线段的长度、对应角的大小都相等,图形平移后,图形的形状、大小都不变.【总结】考查平移的特征.【例5】 经过平移,△ABC 的边AB 移到了EF ,作出平移后的三角形.【难度】★★ 【答案】略【解析】分别过点E 、F 做////ED AC FD BC ,交于点D ,即EFD 如图即为所求.【总结】根据平移的定义:将图形上的所有点都按照某个方向作相同距离的位置移动,叫做平移.即可画出图形.【例6】 作线段AB 和CD ,且AB ⊥CD ,交点为O ,AB = 2CD .分别取OA 、OB 、OC 、OD的中点A ’、B ’、C ’、D ’,连接A ’、C ’、B ’、D ’,得到一个四边形,将四边形沿水平方向向右平移两个单位,画出平移后的图形. 【难度】★★ 【答案】略 【解析】【总结】考察学生的画图能力.虚线图形为所求OE DCBAC'B'CBA【例7】 平行四边形ABCD 中,4AB =,6BC =.O 是对角线交点,将OAB ∆平移至EDC∆位置.(1)说出平移的方向与距离.(2)四边形OCED 是什么四边形,为什么?(3)若平行四边形ABCD 的面积是20,求五边形ABCED 面积. 【难度】★★【答案】(1)沿BC 方向平移6个单位; (2)四边形OCED 是平行四边形,////AO DE BO CE ,;(3)五边形ABCED 面积为25.【解析】根据题意,易证得:14S CDE S ABCD =,25ABCED S ∴=.【总结】主要考察平行四边形的性质以及图形运动的综合应用.【例8】 如图所示,P 为平行四边形ABCD 内一点,求证:以AP 、BP 、CP 、DP 为边可以构成一个四边形,并且所构成的四边形的对角线的长度恰好分别等于AB 和BC . 【难度】★★ 【答案】略【解析】分别过点B 、C 作AP 、DP 的平行线BM ,CM , 相较于点M ,联结PM ,交BC 于点N ,则可证明四边形BPCM 为满足条件的四边形.【总结】主要考察平行四边形的性质以及图形运动的综合应用.【例9】 如图,三角形ABC 的底边BC 长3厘米,BC 边上的高是2厘米,将该三角形以每秒3厘米的速度沿高的方向向上平形移动2秒,求这时该三角形扫过的面积(阴影部分). 【难度】★★★ 【答案】218cm .【解析】将'''A B C 填补到ABC ,∴阴影部分的面积S =矩形2'''32318()BCC B BC BB cm =⋅=⨯⨯=.【总结】本题主要考查与图形运动相结合的综合应用.DPCBAMDCBA【例10】 如图所示,长方形ABCD 中,AB = 12cm ,BC = 8cm ,试问将长方形沿着AB 方向平移多少才能使平移后的长方形与原来的长方形ABCD 重叠部分的面积为224cm .【难度】★★★ 【答案】9cm .【解析】解:设平移距离为xcm , 重叠部分的面积()812968x x =⋅-=-, 96824x ∴-=,9x ∴=【总结】考查动点问题与图形运动相结合的综合应用.1、旋转的定义在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转过的角称为旋转角.从以下几点理解定义:① 旋转中心在旋转过程中保持不变;② 图形的旋转是由旋转中心,旋转角度和旋转方向决定的;③ 旋转角度一般小于360°.2、旋转的特征(1)旋转后图形上每一点都绕着旋转中心旋转了同样的角度; (2)旋转后的图形与原图形对应线段相等、对应角相等; (3)对应点到旋转中心的距离相等;(4)旋转后的图形与原来的图形的形状和大小都没有发生变化. 3、旋转对称图形的定义把一个图形绕着一个顶点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形.这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角0360α<<).如电风扇、五角星、圆等都是旋转对称图形,对旋转对称图形可从以下几个方面理解:模块二:图形的旋转知识精讲(1)旋转中心在旋转的图形上;(2)旋转的角度小于360°.4、图形的旋转与旋转对称图形的区别和联系(1)图形的旋转是指一个图形从一个位置旋转到另一个位置,即同一个图形在位置上的变化;旋转对称图形,是指一个图形所具有的特性,即旋转一定角度后位置没有变化,仍与自身重合;(2)图形的旋转随着旋转角度的不同从一个位置旋转到不同位置;旋转对称图形旋转一定角度后仍在原处与自身重合.图形的旋转与旋转对称图形都是绕旋转中心旋转.例题解析【例11】一个图形进行旋转运动,可以作为旋转中心的点是()A.有且仅有一个B.有且仅有两个C.有有限多个D.有无限多个【难度】★【答案】D【解析】由旋转定义可知:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转过的角称为旋转角.【总结】考察旋转的定义.【例12】下列图不是中心对称图形的是()①②③④A.①③B.②④C.②③D.①④【难度】★【答案】D【解析】旋转180 后能与自身完全重合的图形是中心对称图形.【总结】考察中心对称图形的定义.【例13】 在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有( )A .2个B .3个C .4个D .5个【难度】★ 【答案】B【解析】H 、I 、N 是中心对称图形;E 、A 是轴对称图形. 【总结】考察中心对称图形的定义.【例14】 图中的“笑脸”是图(1)逆时针旋转90 形成的是( )【难度】★ 【答案】C【解析】由旋转定义可得. 【总结】考察旋转定义.AH I NE(1)ABC DC 'B 'A 'OBAC【例15】 下列图形中,绕某个点旋转180︒能与自身重合的有( )① 正方形 ②长方形 ③等边三角形 ④线段 ⑤角 A .5个B .2个C .3个D .4个【难度】★★ 【答案】C【解析】①,②,④.【总结】考察中心对称图形的定义.【例16】 请在下列网格图中画出所给图形绕点O 顺时针依次旋转900︒、1800︒、2700︒后所成的图形.(注意:有阴影部分图形旋转后的对应图形要涂上阴影.不要求写画法)【难度】★★ 【答案】详见解析【解析】将旋转角度除以180︒,所得偶数与原图重合,所得奇数与原图形成中心对称.【总结】考察学生运用规律寻找最小旋转角及画图能力.【例17】 如图,画出ABC ∆绕点O 顺时针旋转100︒所得到的图形. 【难度】★★ 【答案】详见解析. 【解析】【总结】考察学生的画图能力,注意看清楚旋转方向.D'D CBADB'A'CBA【例18】 如图,已知ABC ∆绕某一点逆时针转动一个角度.得到旋转后的'''A B C ∆,其中A 、B 、C 的对应点分别是'A 、'B 、'C .试确定旋转中心O .【难度】★★【答案】联结任意两对对称点,连线的垂直平分线的交点即旋转中心O . 【解析】【总结】考察学生的画图能力以及对旋转中心的理解.【例19】 D 是等腰Rt ABC ∆内一点,BC 是斜边,如果将ABD ∆绕点A 逆时针方向旋转到'ACD ∆的度数是( ).A .30︒B .45︒C .60︒D .90︒【难度】★★ 【答案】D【解析】根据旋转角相等可得'90D AD CAB ∠=∠=︒. 【总结】考察旋转角的概念及性质.【例20】 如图,把ABC ∆绕点C 顺时针旋转35︒,得到'''A B C ∆,''A B 交AC 于点D ,若'90A DC ∠=︒,则A ∠度数为( ). A .45︒ B .55︒ C .90︒ D .75︒【难度】★★ 【答案】B【解析】'35'90'55ACA A DC A A ∠=︒∠=︒∴∠=∠=︒,,. 【总结】图形经过旋转之后,对应角不发生改变.CBAC‘B’A‘OF AP'CB PA【例21】 矩形的对角线相交于点O ,过点O 的直线交AD ,BC 于点E ,F ,2AB =,3BC =,则图中阴影部分的面积为_____.【难度】★★ 【答案】3. 【解析】BOF DOE SS=,S 阴12S =矩形12332=⨯⨯= 【总结】根据图形特征寻找到面积相等的部分,考察学生的观察力.【例22】 自行车的两个轮胎的外径(直径)是66.0米.如果自行车每分钟行66米,那么自行车的车轮每分钟转多少圈?【难度】★★【答案】100π圈.【解析】661000.66ππ=(圈). 【总结】考察学生对圆周长的运用.【例23】 将一图形绕着点O 顺时针方向旋转70°后,再绕着点O 逆时针方向旋转120°,这时如果要使图形回到原来的位置,需要将图形绕着点O 如何旋转( ).A .顺时针方向50°B .逆时针方向50°C .顺时针方向190°D .逆时针方向190°【难度】★★ 【答案】A【解析】根据旋转特征,第二次旋转后相当于图形逆时针旋转了50°,因此只要顺时针旋转50°即可回到原来的位置.【总结】考察图形的旋转特征.【例24】 如图,P 是正三角形ABC 内的一点,且6PA =,8PB =,10PC =.若将PAC ∆绕点A 逆时针旋转后,得到'P AB ∆,则点P 与点'P 之间的距离为______________,APB ∠=___________.【难度】★★★【答案】'6PP =,150APB ∠=︒.【解析】''60PAC P AB P AP ∠=∠∴∠=︒,,''6AP AP PP ∴===, 8'10BP CP BP ===,,'90BPP ∴∠=︒, ''9060150APB BPP P PA ∴∠=∠+∠=︒+︒=︒.【总结】考察学生对旋转图形性质的综合应用.【例25】 如图,将边长为2的两个互相重合的正方形纸片按住其中一个不动,另一个绕点B【难度】★★★ 【答案】30︒. 【解析】 解:联结BH易证'RT BA H ≌RT BCH30HBC ∴∠=︒,'60A BC ∴∠=︒,'30CBC ∴∠=︒.【总结】考察图形旋转性质的应用,本题综合性较强,教师可选择性讲解.【例26】 (1)如图1,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同 侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求AEB ∠的大小.(2)如图2,OAB ∆固定不动,保持COD ∆的形状和大小不变,将COD ∆绕着点O 逆时针旋转15︒,求AEB ∠的大小.【难度】★★★【答案】(1)60︒;(2)60︒.【解析】(1)易证AOC ≌BOD ,OAC OBD ∴∠=∠,AOB AEB ∴∠=∠,60AEB ∴∠=︒; (2)同理60AEB ∠=︒.【总结】考察图形运动及几何图形性质的综合应用,本题综合性较强,教师可选择性讲解.图1ABCDEO 图2ABCDEOAE DCBA【例27】 如图,在△ABC 中,90BAC ∠=,AB AC =,90EAD ∠=,AE AD =. (1)试问△ADC 可以通过何种运动可以得到△AEB ? (2)联结ED ,△AED 是什么三角形?(3)若2AD =,4AC =,求AED ABC SS .【难度】★★★【答案】(1)ADC 绕点A 顺时针旋转90︒得到AEB ; (2)AED 是等腰直角三角形;(3)14AED ABC S S =.【解析】(1)略; (2)易证ADC ≌AEB ,可得:AD AE =,DAC EAB ∠=∠,90BAC EAD ∴∠=∠=︒,AED ∴是等腰直角三角形;(3)14482S ABC =⨯⨯=,12222S ADE =⨯⨯=,14AED ABC S S ∴=.【总结】考察图形运动及几何图形性质的综合应用.【习题1】以下现象:①电梯的升降运动;②飞机在地面沿直线滑行;③风车的转动;④ 汽车轮胎的转动.其中属于平移的是( )A .②③B .②④C .①②D .①④【难度】★ 【答案】C【解析】根据图形运动特征,①②是平移运动,③④是旋转运动 【总结】考察学生图形运动的特征.随堂检测【习题2】下列说法正确的是().A.平移就是将一个图形的某些线段平行移动B.平移后的图形与原图形大小相同,形状不同C.平移后的图形与原图形大小不同,形状相同D.平移后的图形与原图形大小、形状都相同【难度】★【答案】D【解析】根据平移运动的特征可知选D.【总结】考察平移运动的特征.【习题3】等边三角形是旋转对称图形,它的最小旋转角是_____度.【难度】★【答案】120︒.【解析】由等边三角形的特征可知,最小旋转角是120︒.【总结】考察最小旋转角的计算.【习题4】如图,是中心对称图形的是()【难度】★【答案】A【解析】A是中心对称图形,B、C、D是轴对称图形.【总结】考察中心对称图形和轴对称图形的特征.【习题5】如图,在平行四边形ABCD 中,AE 垂直于BC ,垂足为E .试画出将ABE ∆平移 后的图形,使其平移的方向为点A 到点D 的方向,平移的距离为线段AD 的长. 【难度】★★ 【答案】详见解析. 【解析】△DCF 就是ABE ∆平移后的图形. 【总结】考察图形平移的画法.【习题6】正方形网格中,ABC ∆为格点三角形(顶点都是格点),将ABC ∆绕点A 按逆时针方向旋转90︒得到11AB C ∆.(1)在正方形网格中,作出11AB C ∆;(不要求写作法)(2)设网格小正方形的边长为1cm ,用阴影表示出旋转过程中线段BC 所扫过的图形,然后求出它的面积.(结果保留π) 【难度】★★【答案】94π.【解析】(1)如图所示;(2)S 阴影=S 扇1C AC +11S ABC S AB C S --扇1B AB =S 扇1C AC S -扇1B AB221144AC AB ππ=-()11925169444πππ=-=⋅=.【总结】考察图形运动的综合应用.EDCBAFAB CB 1C 1ABCB'C'A BCD EF【习题7】如图,将ABC ∆绕点A 逆时针旋转80︒得到AB C ''∆.若50BAC ∠=︒,则CAB '∠的度数为( ) A .30︒ B .40︒ C .50︒ D .80︒【难度】★★ 【答案】A【解析】将ABC ∆绕点A 逆时针旋转80︒得到AB C ''∆ '8050'30BAB BAC CAB ∴∠=︒∠=︒∴∠=︒,,. 【总结】考察图形的旋转运动,注意旋转过程中旋转角始终相等.【习题8】钟表的分针绕其轴心转动,分针经过15分钟后,转过的角度是______度,分针从 12出发,转过150°后,则它指的数字是_______. 【难度】★★ 【答案】90︒,5.【解析】表盘一圈360︒,共分成12个格,所以每一个30︒,15分钟转过3格,因此90︒;150︒是5格,从12走5格后是数字5.【总结】考察钟表的运动特征,主要是利用旋转的思想去解题.【习题9】如图,三个圆是同心圆,则图中阴影部分的面积为 . 【难度】★★【答案】14π.【解析】通过旋转可将阴影部分拼成14圆,21144S r ππ==. 【总结】考察学生观察力及圆的面积公式.【习题10】如图,四边形ABCD 是正方形,F 是BA 延长线上的点,ADF ∆旋转一定角度后 得到ABE ∆,如果4AF =,7AB =. (1)指出旋转中心和旋转角度;(2)求DE 的长度. 【难度】★★【答案】(1)旋转中心是点A ;旋转角为90︒;(2)3DE =. 【解析】由旋转可得ADF ≌ABE ,47AF AE AB AD ∴====,,743DE AD AE ∴=-=-=.【总结】考察图形旋转的性质的应用.PAC DA'B'【习题11】如图所示,ABC ∆是直角三角形,BC 是斜边,将ABP ∆绕点A 逆时针旋转后, 能与'ACP ∆重合,如果2AP =,那么'PP =______. 【难度】★★ 【答案】22.【解析】由旋转可得'PAP 是等腰直角三角形,2AP =,'22PP ∴=.【总结】考察图形旋转的性质的应用.【习题12】如图所示,在直角ABC ∆中,90C ∠=︒,4BC =,4AC =,现将ABC ∆沿CB 方向平移到A B C '''∆的位置.(1)若平移的距离为3,求ABC ∆与A B C '''∆重叠部分的面积;(2)若平移的距离为(04)a a ≤≤,求ABC ∆与A B C '''∆重叠部分的面积S 的取值范围. 【难度】★★★【答案】(1)12;(2)21482S a a =-+,(04)a ≤≤.【解析】S 阴()()22221111''4482222C B BC CC a a a ==-=-=-+.【总结】考察平移的特征及三角形的面积公式的运用.【习题13】如图,王虎使一长为4cm ,宽为3cm 的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A 位置变化为12A A A →→,其中第二次翻滚被桌面上一小木 块挡住,使木板与桌面成30︒角,求点A 翻滚到2A 位置时共走过的路径长. 【难度】★★★【答案】72π.【解析】两次运动是分别以B 、C 为圆心,5cm 、3cm 为半径,圆心角为90°、60°的两段弧长,故走过的路径长为:9060575318018022l πππππ=⋅+⋅=+=.【总结】考察图形的运动,主要发现点的运动路程就所经过的弧长.AA 1A 2B'A'CBA 虚线图形为所求CBA【作业1】如图,作出ABC ∆绕旋转中心A ,逆时针旋转75︒,得到的图形. 【难度】★ 【答案】【解析】以A 为圆心,将线段AB 、AC 分别逆时针旋转75︒,即可得到旋转后图形. 【总结】考察学生的画图能力.【作业2】如图,图形旋转一定角度后能与自身重合,则旋转的角度可能是().A .30°B .60°C .90°D .120° 【难度】★ 【答案】C【解析】由旋转性质可得. 【总结】考察旋转性质的运用.【作业3】ABC ∆中,108ACB ∠=︒,将它绕着C 逆时针旋转30︒后得到''A B C ∆,则'ACB ∠的度数是多少? 【难度】★ 【答案】138︒.【解析】''10830138ACB ACB BCB ∠=∠+∠=︒+︒=︒. 【总结】考察旋转性质的运用.课后作业P'DCBAP 'PCB A【作业4】在下图的网格中按要求画出图象,并回答问题.(1)先画出ABC ∆向下平移5格后的111A B C ∆,再画出ABC ∆以O 点为旋转中心,沿顺时针方向旋转90︒后的222A B C ∆;(2)在与同学交流时,你打算如何描述⑴中所画的222A B C ∆的位置. 【难度】★★ 【答案】略【解析】根据图形旋转特征画出图形. 【总结】考查图形运动中的图形旋转的画法.【作业5】正方形ABCD 中的ABP ∆绕点B 顺时针旋转能与'CBP ∆重合,若4BP =,求点P 所走过的路径长. 【难度】★★ 【答案】2π.【解析】点P 所走过的路径是以B 为圆心,4BP =为半径的14圆的弧, 根据弧长公式9042180180n r l πππ⋅=== 【总结】在图形旋转的过程中,图形上任意一点经过的路程都是一段弧长.【作业6】如图,P 是正ABC ∆内的一点,若将PBC ∆绕点B 旋转到PBA'∆,则PBP '∠的度 数是( ) A .45︒ B .60︒ C .90︒ D .120︒【难度】★★ 【答案】B【解析】'60P BP ABC ∠=∠=︒.【总结】图形旋转的过程中,旋转角处处相等.A'C'B'C BA【作业7】如果一个旋转对称图形的最小旋转角为︒n,那么n满足怎样的条件时,这个图形一定是中心对称图形?【难度】★★【答案】n是180°的因数.【解析】图形旋转180︒后能与自身完全重合的图形是中心对称图形.【总结】考查中心对称图形与旋转对称图形的关系.【作业8】线段AB =4厘米,将线段AB绕着AB的中点O旋转180°,它所扫过的平面部分是_________形,面积等于________平方厘米.【难度】★★【答案】圆、4π.【解析】线段AB绕着AB的中点O旋转180°扫过的图形是以O为圆心,2厘米为半径的圆,再根据圆的面积公式求出圆的面积.【总结】考查对图形运动的特征的理解及运用.【作业9】如右图所示,Rt ABC∆沿AC边所在的直线向上平移2cm,若4cmBC=,求Rt ABC∆扫过的面积.【难度】★★★【答案】28cm.【解析】平移的距离是2cm,则'2AA cm=,又4cmBC =,则平行四边形''ABB A的高为4cm,S∴=底⨯高=()2248cm⨯=.【总结】平移所扫过的图形为平行四边形,根据面积公式可以算出面积28cm.【作业10】小明和小红玩一种游戏,他们要将甲图和乙图中的三角形通过水平或竖直平移的方法得到图丙,平移的过程中,每次水平或竖直平移一格,先拼完的为胜,小明选择了图甲,小红选择了图乙,那么谁先获胜?【难度】★★★【答案】小明.【解析】小明需要4312<,所以小明获胜.⨯=步,1216⨯=步,小红需要4416【总结】本题主要考查图形平移的特征.。
初中七年级数学课教案:图形的平移、旋转与翻转一、引言数学是一门抽象而又实用的学科,对学生的思维能力和逻辑思维能力的培养具有重要作用。
在初中七年级数学课程中,图形的平移、旋转与翻转是一门基础课程,对学生建立坐标系和运用几何知识具有重要意义。
本文将以初中七年级数学课教学大纲的要求为基础,设计一节关于图形的平移、旋转与翻转的教案。
通过引入有趣的教学方法和实践活动,激发学生的兴趣,提高他们的学习效果。
二、教学目标1. 知识目标了解图形的平移、旋转与翻转的概念;掌握图形沿坐标轴的平移、旋转和翻转的方法;能够应用所学方法解决与图形平移、旋转和翻转相关的问题。
2. 能力目标培养学生的观察力和空间想象能力;培养学生的逻辑思维和分析问题的能力;提高学生运用所学知识解决实际问题的能力。
3. 情感目标激发学生对数学的兴趣和热爱;培养学生合作学习和分享的意识;培养学生解决问题的耐心和恒心。
三、教学过程1. 导入使用一个生动的例子引入平移、旋转和翻转的概念,例如:小明将一张纸上的图形放在地上,然后将图形移到其他位置,这就是图形的平移。
接着,让学生观察一下自己的左右手,了解左右手是一个翻转的关系,这就是图形的翻转。
最后,让学生围成一个圈,然后旋转一下,这就是图形的旋转。
2. 概念讲解介绍图形的平移、旋转和翻转的定义和性质,通过示意图和实际物体的演示让学生更好地理解。
3. 基础练习让学生用直尺、铅笔和纸练习图形的平移、旋转和翻转操作。
教师可以提供一些简单的图形,让学生按照要求进行操作,并且让学生给出操作过程中的心得体会。
4. 深化训练设计一些有趣的问题,让学生进行探究。
例如:给定一个图形进行平移,如果改变平移的方向和距离,图形会发生什么变化?给定一个图形进行旋转,如果改变旋转的角度,图形会发生什么变化?这些问题可以激发学生的兴趣和思考,培养他们的逻辑思维能力。
5. 实践活动安排一次团队合作的活动,设计一个迷宫游戏。
学生需要根据给定的图形和平移、旋转和翻转的操作规则,通过迷宫找到出口。
《图形的平移与旋转》主题单元教学设计主题单元图形的平移与旋转标题适用年级八年级所需时间课内6课时,课外1课时主题单元学习概述《图形的平移与旋转》包括相关现象和概念、探究性质、简单作图和实际应用四部分内容。
打破了教材先学习平移现象和概念、性质、作图,后旋转现象和概念、性质、作图的体系,更多地考虑知识间的关联。
《图形的平移和旋转》是在学生掌握三角形等基本图形,学习轴对称变换的基础上,认识现实生活中的平移和旋转现象,探索平移和旋转的性质,利用其性质进行简单作图,并学以致用解决现实生活中的数学问题,是对已学知识的巩固应用。
同时也为八年级上册第四章《四边形性质的探索》、第五章《位置的确定》、八年级下册第四章《相似图形》和九年级下册第三章《圆》等有关知识的学习打下铺垫。
所以,《图形的平移和旋转》在整个初中课程的学习中起到承上启下的作用。
《图形的平移和旋转》包括生活中的平移和生活中的旋转两部分内容。
学习的重点是:通过具体实例认识平移和旋转,理解平移和旋转的基本性质,并能作出简单平面图形平移和旋转后的图形。
难点是:理解平移和旋转的基本性质。
《图形的平移和旋转》划分为专题一相关现象和概念、专题二探究性质、专题三简单作图和专题四实际应用。
四个专题从认识现象——归纳概念——探究性质——数学应用——解释实际问题,符合知识的生成规律和学生的认知特点,更有利于学生知识的学习和能力的提高,也有利于学生知识体系和网络的建立和优化。
《图形的平移和旋转》主要采用多媒体教学、小组合作学习和社会实践活动等方式。
既体现信息技术与数学学科的整合,又体现知识学习和实践活动相结合。
努力使学生对生活中的图形变换有新的清晰的认识,能够理解图形变换的性质,并能够利用性质进行简单作图和解释实际问题。
主题单元规划思维导图第一课时平移和旋转的现象和概念活动一、说说生活中的平移和旋转现象由于学生已经接触了轴对称和三角形等有关知识,对生活中的平移和旋转有初步认识,先让学生说说你说知道的平移和旋转现象,形成初步认识;活动二、欣赏生活中的平移和旋转现象教师播放生活中平移和旋转现象,学生在欣赏美丽图片和精彩视频的同时加深对平移和旋转的认识。
第15课时图形的平移和旋转教学目标1.认识图形的平移和旋转运动,理解图形平移、旋转的概念.2.掌握图形平移后、旋转后的性质.3.会根据条件画出图形平移、旋转后得到的新图形.知识精要1. 平移的意义与基本要素(1)意义:在平面内,将一个图形沿某个方向移动一定的单位距离,这样的图形运动称为平移.(2)两个要素:平移的方向和平移的距离2. 平移的基本性质(1)平移前后图形的大小、形状都不变.(2)平移前后对应点之间的距离、对应线段的长度、对应角的大小相等.(3)平移前后的两个图形能够互相重合.(4)平移前后的两个图形对应点所连线段平行(或在同一条直线上)且相等. 3. 图形平移的作图(1)确定原图形中的关键点;(2)将这些关键点沿指定的方向移动指定的单位距离;(3)联结这些对应点,得到平移后的图形.4. 图形的旋转(1)在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转. 这个定点叫做旋转中心.(2)三个要素:旋转中心、旋转方向、旋转角度5. 旋转的基本性质(1)旋转前后图形的形状和大小都不变;(2)旋转前后对应点到旋转中心的距离、对应线段的长度、对应角的大小相等;(3)图形绕任意一点旋转360°都与初始图形重合.6. 图形旋转的作图(1)旋转画图的依据:图形旋转的基本性质(2)旋转画图的步骤:第一步:确定旋转中心及旋转方向、旋转的角度;第二步:确定图形中的关键点第三步:图形的关键点与旋转中心联结起来,然后按旋转方向分别将它们旋转指定的角度,得到此关键点的对应点;第四步:按原图形顺序联结这些对应点,所得到的图形就是旋转后的图形.7. 旋转对称图形把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(︒0α).︒360<<8. 中心对称图形如果把一个图形绕着一个定点旋转180度后,与初始图形重合,那么这个图形叫做中心对称图形.这个点叫做对称中心.注:旋转对称图形不一定是中心对称图形,但中心对称图形一定是旋转对称图形9. 两个图形成中心对称(1)把一个图形绕一定点旋转180°后,和另一个图形重合,那么叫做这两个图形关于这点对称,也叫做中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.(2)在成中心对称的两个图形中,联结对称点的线段都经过对称中心,并且被对称中心平分.(3)“两个图形成中心对称”与“中心对称图形”的区别和联系区别:①中心对称是指两个图形的关系,中心对称图形是指具有某种性质的一个图形.②成中心对称的两个图形的对称点分别在两个图形上,中心对称图形的对称点在一个图形上.联系:若把中心对称图形的两部分分别看作两个图形,则它们成中心对称;若把中心对称的两个图形看成一个整体,则成为中心对称图形.热身练习一、填空题1.平移是由 平移的方向和平移的距离两个要素所决定.2. 如图,四边形ABCD 沿着'AA 方向,平移到四边形''''D C B A ,则点A 的对应点是点'A ,点B 的对应点是'B ,线段AB 的对应线段是线段''B A .的DAB ∠对应角是'''D A B ∠,四边形''''C D A ADD 沿着平移到''BCC B ,四边形''A ABB 沿着AD 方向平移到''DCC D .3.如图,=∠︒=∠∠∠DEF ,ABC ,ABC DEF 则经过平移得到的是33 33°.4.如图,DEF ABC ∆∆是经过平移得到的,若AD=4cm ,则BE= 4cm , CF= 4cm ,若=MN ,DE ,N AB M 则中点为中点为 4cm .5.如图,平移方向是经过平移到ABC ,C B A ABC ∆∆∆''''AA 或是'BB ,或是'CC . 二、选择题.1. 将一个图形沿着某个方向移动一定的距离,这样的图形运动称为( D ) A 、旋转 B 、旋转对称 C 、中心对称 D 、平移3题图2题图 D 'C 'B ' A'DCBAABCEF 'DEDC B A2.'''C B A ABC ∆∆和关于点O 对称,下列结论不正确的是 ( C )A 、O A OA '=B 、AB ∥''B AC 、BO CO =D 、∠BAC=∠'''C A B 3.下列图形中,绕某个点旋转︒180能与自身重合的有( D ) ①正方形 ②长方形 ③等边三角形 ④线段 ⑤角 ⑥平行四边形 A 、 5个 B 、2个 C 、3个 D 、4个 三、作图题1. 将字母A 按箭头所指的方向,平移3㎝,作出平移后的图形.2. 经过平移,EF ,AB ABC 平移到了的边∆作出平移后的三角形.3. 如图,ABC BDE ∆∆是由等边绕着B 点按逆时针方向旋转30º得到的,按图回答: (1)A 、B 、C 的对应点是什么?(2)线段AB 、AC 、BC 的对应线段是什么? (3)∠A 、∠C 和∠ABC 的对应角是什么? 解:(1)点A 与点D ,点B 与点B ,点E 与点C(2)线段AB 与线段DB ,线段AC 与线段DE ,线段BC 与线段BE ,(3)∠A 与∠D ,∠C 与∠E ,∠ABC 与∠DBE精解名题1.与三角形全等相关的图形运动(1)如图,△ABC 和△DCE 都是等边三角形,点B 、C 、D 在同一条直线上.在此图中,△ACD 绕着 C 点沿 逆时针 方向旋转 60 度可得到三角形△BCE .EDCBAGFEDBA(2)如图,正方形ABCD 和正方形ECGF ,点B 、C 、G 在同一条直线上,在此图中,△BCE 绕着 C 点沿 顺时针 方向旋转 90 度可得到三角形 △DCG . 2.如图,以O 点为旋转中心,将△ABC 顺时针方向旋转60°,画出图形. 解:(1)连续OA ,OB ,OC(2)以OA 为始边,顺时针方向作60°角,在角的终边上截取线段/OA ,使/OA OA ,得到点/A ; O· (3)同样分别可得B ,C 的对应点/B ,/C (4)联结//////,,A B B C A C3.已知图中的两个四边形是中心对称的,请确定这两个图形的对称中心.解:A ,E 是对称点,B ,F 是对称点,联结AE ,BF 相交于点O.巩固练习O第7题FEODCBA第6题NMDCBA1.将图形上所有点都按照某一方向移动一定的单位距离,叫做图形的平移.2.国旗上的五角星是 旋转对称 图形,它的旋转最小角度是 72 度.3.平移不改变图形的 大小 和 形状 ,只改变图形的 位置 .4.三角形 是 中心对称图形,平行四边形 是 中心对称图形.(填是或否) 5在电子屏显示的0-9的数字中,是中心对称 图形有 5 个.6.如图,四边形,AD ABCD 中∥BC ,DM ∥M ,BC AB 于交DN ∥AC 交BC 延长线于N ,线段AD 沿AB 的方向平移到BM ,ABC DMN ∆∆沿着BN 的方向平移到,其平移的距离BM .7.如图,如果把钟表的指针看成四边形AOBC ,它绕着O 点旋转到四边形DOEF位置在这个旋转过程中:(1)旋转中心是 O ,旋转角是 90° ;(2)经过旋转点A 转到 D ,点C 转到 F ,点B 转到 E ;(3)线段OA 与线段 OD ,线段OB 与线段 OE ,线段BC 与线段 EF 是对应线段;(4)与A ∠ ∠D ,与B ∠ ∠E ,与C ∠ ∠F ,∠AOB 与 ∠DOE 是对应角; (5)四边形OACB 与四边形ODFE 的形状、大小 不变 .8.如图,,.590按逆时针方向的ABC cm AC ,AB BAC ABC ∆==︒=∠∆转动一个角度后成为ACD ∆,则图中:(1)点 A 是旋转中心,旋转角90 度;(2)点B与点 C 是对应点,点C与点 D 是对应点,(3)∠ACD= 45°,AD= 5cm.9.如图,E为正方形ABCD内一点,∠AEB=135º,BE=3cm,AEB∆按顺时针方向旋转一个角度后成为CFB∆,图中 B 是旋转中心,旋转90 度,点A与点 C 是对应点,点E与点 F 是对应点,BEF∆是等腰直角三角形,∠CBF=∠ EBA ,∠BFC= 135 度,∠EFC= 90 度,BF= 3cm.10.如图,△ABC、△ADE均为是顶角为42º的等腰三角形,BC和DE分别是底边,图中△ADE 可以由△AEC 旋转得到,点 A 为旋转中心,旋转角度42度.其中∠BAD=∠CAE ,CE= BD .11.如图,四边形ABCD是旋转对称图形,点O 是旋转中心,旋转180度后能与自身重合,则AD= BC ,AO= OC ,BO= OD .自我测试1.如果某图形绕它的中心旋转45°后能与自身重合,则该图形是( C )A.是中心对称图形,但不是旋转对称图形B .是旋转对称图形,但不一定是中心对称图形.C .既是中心对称图形,又是旋转对称图形D .既不是中心对称图形,也不是旋转对称图 2.平移或旋转前后的两个图形是( C )A .形状不变,但大小不等B .大小变,但形状不同C .形状不变且大小相等D .以上说法都不对 3.下列图形中,不是中心对称图形的是( C ) A .平行四边形 B .正方形 C .等边三角形 D .环形4. 如图,AC ,,AB BAC ABC =︒=∠∆90的D 、E 在BC 上,∠DAE=45º,AEC ∆按顺时针方向转动一个角后成AFB ∆. (1)图中哪一点是旋转中心? (2)旋转了多少度?(3)指出图中的对应点、对应角. (4)写出∠DAF 的度数. 解:(1)旋转中心A (2)90度(3)对应点A 和A , C 和B , E 和F对应角∠C 和∠ABF ,∠AEC 和∠F ,∠EAC 和∠FAB (4)∠DAF=45º5. 如图,正方形ABCD 中,E 在BC 上,F 在AB 上且∠FDE=45º,DEC ∆按顺时针方向转动一个角度后成DGA ∆. (1)图中哪一个点是旋转中心? (2)旋转了多少度?CEBFAD(3)求∠GDF 的度数.GFEDCB A4321解:(1)D (2)90° (3)∠GDF=90°-45°=45°6. 如图,四边形ABCD 的∠BAD=∠C=90º,AB=AD ,AE ⊥BC 于E ,ΔBEA 旋转后能与DFA ∆重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若AE=5㎝,求四边形AECF 的面积.FEDCBA解:(1)A (2)90° (3)252cm7.如图,ABO ∆经过平移后得到GCD ∆,G 点是B 的对应点,作出GCD ∆.8.任画一个直角∆ABC,其中∠B=90º,取ABC∆外一点P为旋转中心,按逆时针方向旋转60º,作出旋转后的三角形.9.如图,把ABC∆绕B点逆时针方向旋转30º后,画出旋转后的三角形.。
知识与技能教学目标过程与方法情感态度价值观华东师大版七年级数学下册教案图形的平移1.通过具体实例认识图形的平移变换,探索它的基本性质.2.能按要求画出简单的平面图形平移后的图形,培养学生观察问题、分析问题、解决问题的能力.通过动手操作,观察分析,学会判断图形在方格纸上沿竖直和水平方向两次平移的方向和平移的格数.通过观察、归纳、推理可以获得数学猜想,了解数学活动中充满着探索性和创造性,感受学习的乐趣,体会数学美教学重点认识图形的平移变换教学难点掌握两次连续平移的方法,正确判断平移的距离教学内容与过程一、情境导入,初步认识教法学法设计通过实际问题引入请你判断:小明跟着妈妈乘观光电梯上楼,一会儿,小明兴奋地新课,提高学生学习兴大叫起来:“妈妈!妈妈!你看我长高了!我比对面的大楼还要高!”小明说的对吗?为什么?二、思考探究,获取新知1.日常生活中经常可以看到的一些如图所示的现象:如滑雪运动员在白茫茫的平坦雪地上滑翔,火车在笔直的铁轨上飞驰而过等等.趣.2.我们还可以看到如图所示的一幅幅美丽的图案,它们可以看成是由某一基本图形沿着一定的方向移动而产生的结果.3.根据上述分析,你能说明什么样的图形运动称为平移吗?【归纳结论】在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.4.图形在平移的过程中有哪几个要素需要注意的呢?【归纳结论】平移三要素:几何图形——运动方向——运动距离.△5.当我们用直尺和三角板画平行线时,ABC沿直尺PQ平移到△A′B′C′时,就可以画出AB的平行线A′B′了.让学生自己总结平移的概念,掌握平移的三要素我们把点A与A′叫作对应点,线段AB与A′B′叫作对应线段,∠A与∠A′叫作对应角.此时:(1)点B的对应点是,(2)点C的对应点是,(3)线段AC的对应边是,(4)线段BC的对应边是,(5)∠B的对应角是,(6)∠C的对应角是,上述问题都给了我们平移的大致印象,哪位同学能说—说什么叫平移?三、运用新知,深化理解1.平移是由所决定.2.下列四组图形中,有一组中的两个图形经过平移其中一个能得到另一个,这组图形是()3.下列图形中,是由(1)仅通过平移得到的是()通过练习,进一步了解平移的概念和三要素.4.在以下现象中,①温度计中,液柱的上升或下降;②打气筒打气时,活塞的运动;③钟摆的摆动;④传送带上,瓶装饮料的移动属于平移的是()A.①,②B.①,③C.②,③D.②,④5.如图,A′B′△C′是由ABC平移得到的,写出图中的对应角、△对应线段、对应点.四、师生互动,课堂小结组织学生总结这节课所学的内容,并作适当的补充.课后作业1.布置作业:教材第113页“练习”2.完成练习册中本课时练习.教学反思本节课首先,通过创设大量的生活情境让学生形成直观上的初步认识.然后,让学生通过演示,使平移运动生动、形象地展现在学生面前,给学生更多的空间和机会.将静态的教学内容,设计成动态的过程,将传统的教学方法演变得更加生动有趣.引导学生在丰富、有趣的数学活动中,积极思考、充分探究、获取知识、发展能力.加深了学生对概念的理解,起到突破难点的作用.。
图形的平移和旋转教学目标:1. 理解平移和旋转的概念。
2. 学会用平移和旋转的方法来变换图形。
3. 能够判断图形是否发生了平移或旋转。
教学重点:1. 平移和旋转的定义。
2. 平移和旋转的方法。
3. 平移和旋转的性质。
教学难点:1. 理解平移和旋转的本质区别。
2. 学会用平移和旋转的方法来变换复杂图形。
教学准备:1. 教学PPT。
2. 图形卡片。
3. 练习题。
教学过程:第一章:平移的概念和性质1.1 引入平移的概念教师展示一些平移的实例,如滑滑梯、电梯等,引导学生感受平移的特点。
1.2 学习平移的性质学生通过观察和操作,发现平移不改变图形的形状和大小,只改变图形的位置。
1.3 练习平移学生分组合作,用图形卡片进行平移操作,体会平移的方法。
第二章:旋转的概念和性质2.1 引入旋转的概念教师展示一些旋转的实例,如旋转门、风车等,引导学生感受旋转的特点。
2.2 学习旋转的性质学生通过观察和操作,发现旋转不改变图形的大小,只改变图形的位置和方向。
2.3 练习旋转学生分组合作,用图形卡片进行旋转操作,体会旋转的方法。
第三章:平移和旋转的判定3.1 学习平移的判定方法学生通过观察和操作,学会判断图形是否发生了平移。
3.2 学习旋转的判定方法学生通过观察和操作,学会判断图形是否发生了旋转。
3.3 练习判断学生独立完成判断题目,巩固平移和旋转的判定方法。
第四章:平移和旋转的应用4.1 学习用平移和旋转的方法来变换图形学生通过观察和操作,学会用平移和旋转的方法来变换图形。
4.2 练习变换学生独立完成变换题目,巩固平移和旋转的变换方法。
第五章:总结与拓展5.1 总结平移和旋转的概念、性质和判定方法学生通过回顾本节课的内容,总结平移和旋转的概念、性质和判定方法。
5.2 拓展平移和旋转的应用学生分组合作,用平移和旋转的方法来创作有趣的图形图案。
教学评价:1. 通过课堂观察,评价学生对平移和旋转概念的理解程度。
2. 通过练习题,评价学生对平移和旋转性质的掌握程度。
平移与旋转教学教案平移与旋转教学教案(精选13篇)平移与旋转教学教案篇1(一)、教学目标:1、知识与技能:通过生活事例,使学生初步认识物体或图形的平移和旋转,能正确判断简单图形在方格纸上平移的方向和距离,初步建立图形的位置关系及其变化的表象。
2、过程与方法:通过观察、操作等活动,使学生能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
3、情感、态度与价值观:使学生体会到生活中处处有数学,运用数学知识可以解决生活中的简单数学问题。
教学重点:能判断方格纸上图形平移的方向和格数。
教学难点:学生在方格纸上正确画出平移后的简单图形。
(二)内容分析:《平移与旋转》是人教版实验教科书小学数学第四册P41-42页的教学内容,这部分内容是在学生会辨认锐角、钝角,建立了有关几何图形概念的基础上进行教学的,为今后的几何学习打下基础。
图形的平移和旋转在学生的生活中并不陌生,而作为新课程新的教学内容则是学生第一次接触。
因此教材从生活实例入手,在大量感知的基础上,让学生体会和发现平移与旋转的运动规律,并通过动手操作进一步理解和掌握平移的方法以及学会分辨平移和旋转。
(三)、课时安排:一课时(四)、教学方法:1、运用情境教学法,让学生通过观察、比较、体验、归纳出什么是平移,什么是旋转的现象。
2、合作探究学习法。
(五)、教学手段:本节课先让学生欣赏生活中会动的图片,引出平移和旋转的现象。
再通过“说一说、动一动、找一找、移一移“填一填” 等几个数学活动,让学生发现和体会:观察一个图形的平移过程,只需观察该图形上任意一点的平移过程、通过学习进一步让学生体会到平移和旋转现象在生活中随处可以看到,数学就在我们身边!(六)、教学过程。
一、创设情境,引入课题。
孩子们可真乖,老师想送大家一首歌,会唱的孩子跟着唱。
孩子们的歌声真美,让老师仿佛看到了那吱吱转地大风车,其实,在我们身边有很多的物体都在运动,老师就拍到一些物体运动的录像,你想看看吗?请你仔细的观察,一边观察一边用手比划出物体的运动方式。
图形的平移与旋转内容分析本讲内容需要理解平移与旋转的基本概念.理解对应点、对应角、对应线段、旋转中心、旋转角的意义.掌握图形平移后图形的形状、大小保持不变,图形在旋转运动过程中的不变性.重点是能够画出平移、旋转后得图形.难点是掌握旋转对称图形与中心对称图形的区别与联系.知识结构模块一:图形的平移知识精讲1、平移将图形上的所有点都按照某个方向作相同距离的位置移动,叫做平移.2、平移的特征图形平移后,对应点之间的距离、对应线段的长度、对应角的大小都相等,图形平移后,图形的形状、大小都不变.3、平移距离平移后各对应点之间的距离叫做图形平移的距离.例题解析【例1】下列运动形式是平移的是()A.时钟计时B.汽车转弯C.风扇旋转D.飞机起飞【难度】★【答案】D【解析】A.时钟计时(旋转);B.汽车转弯(旋转);C.风扇旋转(旋转).【总结】考查图形旋转、平移的概念.【例2】观察图案,在A、B、C、D四幅图案中,能通过图案的平移得到的是( )A B C D【难度】★【答案】C【解析】A、D通过旋转得到,B通过翻折得到.【总结】考查图形旋转、平移、翻折的概念.【例3】在下面的六幅图中,(1)(2)(3)(4)(5)(6)中的图案_________可以通过平移图案(1)得到的.【难度】★【答案】(4).【解析】(2)翻折;(3)旋转180 ;(5)形状发生改变;(6)形状发生改变.【总结】考查图形旋转、平移、翻折的概念.FECBA【例4】 图形经过平移后,图形的性质:①线段的长度;②两条线段或直线的相对位置关系;③角度的大小;④图形的面积.中不变的有( ) A .1个 B .2个 C .3个 D .4个【难度】★ 【答案】D【解析】平移的特征:图形平移后,对应点之间的距离、对应线段的长度、对应角的大小都相等,图形平移后,图形的形状、大小都不变.【总结】考查平移的特征.【例5】 经过平移,△ABC 的边AB 移到了EF ,作出平移后的三角形.【难度】★★ 【答案】略【解析】分别过点E 、F 做////ED AC FD BC ,交于点D ,即EFD 如图即为所求.【总结】根据平移的定义:将图形上的所有点都按照某个方向作相同距离的位置移动,叫做平移.即可画出图形.【例6】 作线段AB 和CD ,且AB ⊥CD ,交点为O ,AB = 2CD .分别取OA 、OB 、OC 、OD的中点A ’、B ’、C ’、D ’,连接A ’、C ’、B ’、D ’,得到一个四边形,将四边形沿水平方向向右平移两个单位,画出平移后的图形. 【难度】★★ 【答案】略 【解析】【总结】考察学生的画图能力.虚线图形为所求OEDCBAC'B'CB【例7】 平行四边形ABCD 中,4AB =,6BC =.O 是对角线交点,将OAB ∆平移至EDC∆位置.(1)说出平移的方向与距离.(2)四边形OCED 是什么四边形,为什么?(3)若平行四边形ABCD 的面积是20,求五边形ABCED 面积. 【难度】★★【答案】(1)沿BC 方向平移6个单位; (2)四边形OCED 是平行四边形,////AO DE BO CE ,;(3)五边形ABCED 面积为25.【解析】根据题意,易证得:14S CDE S ABCD =,25ABCED S ∴=.【总结】主要考察平行四边形的性质以及图形运动的综合应用.【例8】 如图所示,P 为平行四边形ABCD 内一点,求证:以AP 、BP 、CP 、DP 为边可以构成一个四边形,并且所构成的四边形的对角线的长度恰好分别等于AB 和BC . 【难度】★★ 【答案】略【解析】分别过点B 、C 作AP 、DP 的平行线BM ,CM , 相较于点M ,联结PM ,交BC 于点N ,则可证明四边形BPCM 为满足条件的四边形.【总结】主要考察平行四边形的性质以及图形运动的综合应用.【例9】 如图,三角形ABC 的底边BC 长3厘米,BC 边上的高是2厘米,将该三角形以每秒3厘米的速度沿高的方向向上平形移动2秒,求这时该三角形扫过的面积(阴影部分). 【难度】★★★ 【答案】218cm .【解析】将'''A B C 填补到ABC ,∴阴影部分的面积S =矩形2'''32318()BCC B BC BB cm =⋅=⨯⨯=.【总结】本题主要考查与图形运动相结合的综合应用.DPCBAMDCBA【例10】 如图所示,长方形ABCD 中,AB = 12cm ,BC = 8cm ,试问将长方形沿着AB 方向平移多少才能使平移后的长方形与原来的长方形ABCD 重叠部分的面积为224cm .【难度】★★★ 【答案】9cm .【解析】解:设平移距离为xcm , 重叠部分的面积()812968x x =⋅-=-, 96824x ∴-=,9x ∴=【总结】考查动点问题与图形运动相结合的综合应用.1、旋转的定义在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转过的角称为旋转角.从以下几点理解定义:① 旋转中心在旋转过程中保持不变;② 图形的旋转是由旋转中心,旋转角度和旋转方向决定的;③ 旋转角度一般小于360°.2、旋转的特征(1)旋转后图形上每一点都绕着旋转中心旋转了同样的角度; (2)旋转后的图形与原图形对应线段相等、对应角相等; (3)对应点到旋转中心的距离相等;(4)旋转后的图形与原来的图形的形状和大小都没有发生变化. 3、旋转对称图形的定义把一个图形绕着一个顶点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形.这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角0360α<<).如电风扇、五角星、圆等都是旋转对称图形,对旋转对称图形可从以下几个方面理解:模块二:图形的旋转知识精讲(1)旋转中心在旋转的图形上; (2)旋转的角度小于360°.4、图形的旋转与旋转对称图形的区别和联系(1)图形的旋转是指一个图形从一个位置旋转到另一个位置,即同一个图形在位置上的变化;旋转对称图形,是指一个图形所具有的特性,即旋转一定角度后位置没有变化,仍与自身重合;(2)图形的旋转随着旋转角度的不同从一个位置旋转到不同位置;旋转对称图形旋转一定角度后仍在原处与自身重合.图形的旋转与旋转对称图形都是绕旋转中心旋转.【例11】 一个图形进行旋转运动,可以作为旋转中心的点是()A .有且仅有一个B .有且仅有两个C .有有限多个D .有无限多个【难度】★ 【答案】D【解析】由旋转定义可知:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转过的角称为旋转角.【总结】考察旋转的定义.【例12】 下列图不是中心对称图形的是 ()A .①③B .②④C .②③D .①④【难度】★ 【答案】D【解析】旋转180 后能与自身完全重合的图形是中心对称图形. 【总结】考察中心对称图形的定义.①②③④例题解析【例13】 在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有( )A .2个B .3个C .4个D .5个【难度】★ 【答案】B【解析】H 、I 、N 是中心对称图形;E 、A 是轴对称图形. 【总结】考察中心对称图形的定义.【例14】 图中的“笑脸”是图(1)逆时针旋转90 形成的是( )【难度】★ 【答案】C【解析】由旋转定义可得. 【总结】考察旋转定义.AH I NE(1)ABC DC 'B 'A 'OBAC【例15】 下列图形中,绕某个点旋转180︒能与自身重合的有( )① 正方形 ②长方形 ③等边三角形 ④线段 ⑤角 A .5个B .2个C .3个D .4个【难度】★★ 【答案】C【解析】①,②,④.【总结】考察中心对称图形的定义.【例16】 请在下列网格图中画出所给图形绕点O 顺时针依次旋转900︒、1800︒、2700︒后所成的图形.(注意:有阴影部分图形旋转后的对应图形要涂上阴影.不要求写画法)【难度】★★ 【答案】详见解析【解析】将旋转角度除以180︒,所得偶数与原图重合,所得奇数与原图形成中心对称.【总结】考察学生运用规律寻找最小旋转角及画图能力.【例17】 如图,画出ABC ∆绕点O 顺时针旋转100︒所得到的图形. 【难度】★★ 【答案】详见解析. 【解析】【总结】考察学生的画图能力,注意看清楚旋转方向.D'D CBADB'A'CBA【例18】 如图,已知ABC ∆绕某一点逆时针转动一个角度.得到旋转后的'''A B C ∆,其中A 、B 、C 的对应点分别是'A 、'B 、'C .试确定旋转中心O .【难度】★★【答案】联结任意两对对称点,连线的垂直平分线的交点即旋转中心O . 【解析】【总结】考察学生的画图能力以及对旋转中心的理解.【例19】 D 是等腰Rt ABC ∆内一点,BC 是斜边,如果将ABD ∆绕点A 逆时针方向旋转到'ACD ∆的度数是( ).A .30︒B .45︒C .60︒D .90︒【难度】★★ 【答案】D【解析】根据旋转角相等可得'90D AD CAB ∠=∠=︒. 【总结】考察旋转角的概念及性质.【例20】 如图,把ABC ∆绕点C 顺时针旋转35︒,得到'''A B C ∆,''A B 交AC 于点D ,若'90A DC ∠=︒,则A ∠度数为( ). A .45︒ B .55︒ C .90︒ D .75︒【难度】★★ 【答案】B【解析】'35'90'55ACA A DC A A ∠=︒∠=︒∴∠=∠=︒,,. 【总结】图形经过旋转之后,对应角不发生改变.CBAC‘B’A‘OF AP'CB PA【例21】 矩形的对角线相交于点O ,过点O 的直线交AD ,BC 于点E ,F ,2AB =,3BC =,则图中阴影部分的面积为_____.【难度】★★ 【答案】3. 【解析】BOFDOESS=,S 阴12S =矩形12332=⨯⨯=【总结】根据图形特征寻找到面积相等的部分,考察学生的观察力.【例22】 自行车的两个轮胎的外径(直径)是66.0米.如果自行车每分钟行66米,那么自行车的车轮每分钟转多少圈?【难度】★★【答案】100π圈.【解析】661000.66ππ=(圈). 【总结】考察学生对圆周长的运用.【例23】 将一图形绕着点O 顺时针方向旋转70°后,再绕着点O 逆时针方向旋转120°,这时如果要使图形回到原来的位置,需要将图形绕着点O 如何旋转( ).A .顺时针方向50°B .逆时针方向50°C .顺时针方向190°D .逆时针方向190°【难度】★★ 【答案】A【解析】根据旋转特征,第二次旋转后相当于图形逆时针旋转了50°,因此只要顺时针旋转50°即可回到原来的位置.【总结】考察图形的旋转特征.【例24】 如图,P 是正三角形ABC 内的一点,且6PA =,8PB =,10PC =.若将PAC ∆绕点A 逆时针旋转后,得到'P AB ∆,则点P 与点'P 之间的距离为______________,APB ∠=___________.【难度】★★★【答案】'6PP =,150APB ∠=︒.【解析】''60PAC P AB P AP ∠=∠∴∠=︒,,''6AP AP PP ∴===,8'10BP CP BP ===,,'90BPP ∴∠=︒, ''9060150APB BPP P PA ∴∠=∠+∠=︒+︒=︒.【总结】考察学生对旋转图形性质的综合应用.【例25】 如图,将边长为2的两个互相重合的正方形纸片按住其中一个不动,另一个绕点B【难度】★★★ 【答案】30︒. 【解析】 解:联结BH易证'RT BA H ≌RT BCH30HBC ∴∠=︒,'60A BC ∴∠=︒,'30CBC ∴∠=︒.【总结】考察图形旋转性质的应用,本题综合性较强,教师可选择性讲解.【例26】 (1)如图1,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同 侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求AEB ∠的大小.(2)如图2,OAB ∆固定不动,保持COD ∆的形状和大小不变,将COD ∆绕着点O 逆时针旋转15︒,求AEB ∠的大小.【难度】★★★【答案】(1)60︒;(2)60︒.【解析】(1)易证AOC ≌BOD ,OAC OBD ∴∠=∠,AOB AEB ∴∠=∠,60AEB ∴∠=︒; (2)同理60AEB ∠=︒.【总结】考察图形运动及几何图形性质的综合应用,本题综合性较强,教师可选择性讲解.图1ABCDEO 图2ABCDEOAE DCBA【例27】 如图,在△ABC 中,90BAC ∠=,AB AC =,90EAD ∠=,AE AD =. (1)试问△ADC 可以通过何种运动可以得到△AEB ? (2)联结ED ,△AED 是什么三角形?(3)若2AD =,4AC =,求AED ABC SS .【难度】★★★【答案】(1)ADC 绕点A 顺时针旋转90︒得到AEB ; (2)AED 是等腰直角三角形;(3)14AED ABC S S =.【解析】(1)略; (2)易证ADC ≌AEB ,可得:AD AE =,DAC EAB ∠=∠,90BAC EAD ∴∠=∠=︒,AED ∴是等腰直角三角形;(3)14482S ABC =⨯⨯=,12222S ADE =⨯⨯=,14AED ABC S S ∴=.【总结】考察图形运动及几何图形性质的综合应用.【习题1】以下现象:①电梯的升降运动;②飞机在地面沿直线滑行;③风车的转动;④ 汽车轮胎的转动.其中属于平移的是( )A .②③B .②④C .①②D .①④【难度】★ 【答案】C【解析】根据图形运动特征,①②是平移运动,③④是旋转运动 【总结】考察学生图形运动的特征.随堂检测【习题2】下列说法正确的是().A.平移就是将一个图形的某些线段平行移动B.平移后的图形与原图形大小相同,形状不同C.平移后的图形与原图形大小不同,形状相同D.平移后的图形与原图形大小、形状都相同【难度】★【答案】D【解析】根据平移运动的特征可知选D.【总结】考察平移运动的特征.【习题3】等边三角形是旋转对称图形,它的最小旋转角是_____度.【难度】★【答案】120︒.【解析】由等边三角形的特征可知,最小旋转角是120︒.【总结】考察最小旋转角的计算.【习题4】如图,是中心对称图形的是()【难度】★【答案】A【解析】A是中心对称图形,B、C、D是轴对称图形.【总结】考察中心对称图形和轴对称图形的特征.【习题5】如图,在平行四边形ABCD 中,AE 垂直于BC ,垂足为E .试画出将ABE ∆平移 后的图形,使其平移的方向为点A 到点D 的方向,平移的距离为线段AD 的长. 【难度】★★ 【答案】详见解析. 【解析】△DCF 就是ABE ∆平移后的图形. 【总结】考察图形平移的画法.【习题6】正方形网格中,ABC ∆为格点三角形(顶点都是格点),将ABC ∆绕点A 按逆时针方向旋转90︒得到11AB C ∆.(1)在正方形网格中,作出11AB C ∆;(不要求写作法)(2)设网格小正方形的边长为1cm ,用阴影表示出旋转过程中线段BC 所扫过的图形,然后求出它的面积.(结果保留π) 【难度】★★【答案】94π.【解析】(1)如图所示;(2)S 阴影=S 扇1C AC +11S ABC S AB C S --扇1B AB =S 扇1C AC S -扇1B AB 221144AC AB ππ=-()11925169444πππ=-=⋅=.【总结】考察图形运动的综合应用.EDCBAFABCB'C'A BCD EF【习题7】如图,将ABC ∆绕点A 逆时针旋转80︒得到AB C ''∆.若50BAC ∠=︒,则CAB '∠的度数为( ) A .30︒ B .40︒ C .50︒ D .80︒【难度】★★ 【答案】A【解析】将ABC ∆绕点A 逆时针旋转80︒得到AB C ''∆ '8050'30B A B B A C C A B ∴∠=︒∠=︒∴∠=︒,,. 【总结】考察图形的旋转运动,注意旋转过程中旋转角始终相等.【习题8】钟表的分针绕其轴心转动,分针经过15分钟后,转过的角度是______度,分针从 12出发,转过150°后,则它指的数字是_______. 【难度】★★ 【答案】90︒,5.【解析】表盘一圈360︒,共分成12个格,所以每一个30︒,15分钟转过3格,因此90︒;150︒是5格,从12走5格后是数字5.【总结】考察钟表的运动特征,主要是利用旋转的思想去解题.【习题9】如图,三个圆是同心圆,则图中阴影部分的面积为 . 【难度】★★【答案】14π.【解析】通过旋转可将阴影部分拼成14圆,21144S r ππ==. 【总结】考察学生观察力及圆的面积公式.【习题10】如图,四边形ABCD 是正方形,F 是BA 延长线上的点,ADF ∆旋转一定角度后 得到ABE ∆,如果4AF =,7AB =. (1)指出旋转中心和旋转角度;(2)求DE 的长度. 【难度】★★【答案】(1)旋转中心是点A ;旋转角为90︒;(2)3DE =. 【解析】由旋转可得ADF ≌ABE ,47AF AE AB AD ∴====,,743DE AD AE ∴=-=-=.【总结】考察图形旋转的性质的应用.C B'【习题11】如图所示,ABC ∆是直角三角形,BC 是斜边,将ABP ∆绕点A 逆时针旋转后, 能与'ACP ∆重合,如果2AP =,那么'PP =______. 【难度】★★【答案】【解析】由旋转可得'PAP 是等腰直角三角形,2AP =,'PP ∴=.【总结】考察图形旋转的性质的应用.【习题12】如图所示,在直角ABC ∆中,90C ∠=︒,4BC =,4AC =,现将ABC ∆沿CB 方向平移到A B C '''∆的位置.(1)若平移的距离为3,求ABC ∆与A B C '''∆重叠部分的面积;(2)若平移的距离为(04)a a ≤≤,求ABC ∆与A B C '''∆重叠部分的面积S 的取值范围. 【难度】★★★【答案】(1)12;(2)21482S a a =-+,(04)a ≤≤.【解析】S 阴()()22221111''4482222C B BC CC a a a ==-=-=-+.【总结】考察平移的特征及三角形的面积公式的运用.【习题13】如图,王虎使一长为4cm ,宽为3cm 的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A 位置变化为12A A A →→,其中第二次翻滚被桌面上一小木 块挡住,使木板与桌面成30︒角,求点A 翻滚到2A 位置时共走过的路径长. 【难度】★★★【答案】72π.【解析】两次运动是分别以B 、C 为圆心,5cm 、3cm 为半径,圆心角为90°、60°的两段弧长,故走过的路径长为:9060575318018022l πππππ=⋅+⋅=+=.【总结】考察图形的运动,主要发现点的运动路程就所经过的弧长.B'A'CBA 虚线图形为所求CBA【作业1】如图,作出ABC ∆绕旋转中心A ,逆时针旋转75︒,得到的图形. 【难度】★ 【答案】【解析】以A 为圆心,将线段AB 、AC 分别逆时针旋转75︒,即可得到旋转后图形. 【总结】考察学生的画图能力.【作业2】如图,图形旋转一定角度后能与自身重合,则旋转的角度可能是().A .30°B .60°C .90°D .120° 【难度】★ 【答案】C【解析】由旋转性质可得. 【总结】考察旋转性质的运用.【作业3】ABC ∆中,108ACB ∠=︒,将它绕着C 逆时针旋转30︒后得到''A B C ∆,则'ACB ∠的度数是多少? 【难度】★ 【答案】138︒.【解析】''10830138ACB ACB BCB ∠=∠+∠=︒+︒=︒. 【总结】考察旋转性质的运用.课后作业P'DCBAP 'PCBA【作业4】在下图的网格中按要求画出图象,并回答问题.(1)先画出ABC ∆向下平移5格后的111A B C ∆,再画出ABC ∆以O 点为旋转中心,沿顺时针方向旋转90︒后的222A B C ∆;(2)在与同学交流时,你打算如何描述⑴中所画的222A B C ∆的位置. 【难度】★★ 【答案】略【解析】根据图形旋转特征画出图形. 【总结】考查图形运动中的图形旋转的画法.【作业5】正方形ABCD 中的ABP ∆绕点B 顺时针旋转能与'CBP ∆重合,若4BP =,求点P 所走过的路径长. 【难度】★★ 【答案】2π.【解析】点P 所走过的路径是以B 为圆心,4BP =为半径的14圆的弧, 根据弧长公式9042180180n r l πππ⋅=== 【总结】在图形旋转的过程中,图形上任意一点经过的路程都是一段弧长.【作业6】如图,P 是正ABC ∆内的一点,若将PBC ∆绕点B 旋转到P BA '∆,则PBP '∠的度数是( ) A .45︒ B .60︒ C .90︒ D .120︒【难度】★★ 【答案】B【解析】'60P BP ABC ∠=∠=︒.【总结】图形旋转的过程中,旋转角处处相等.A'C'B'C BA【作业7】如果一个旋转对称图形的最小旋转角为︒n,那么n满足怎样的条件时,这个图形一定是中心对称图形?【难度】★★【答案】n是180°的因数.【解析】图形旋转180︒后能与自身完全重合的图形是中心对称图形.【总结】考查中心对称图形与旋转对称图形的关系.【作业8】线段AB =4厘米,将线段AB绕着AB的中点O旋转180°,它所扫过的平面部分是_________形,面积等于________平方厘米.【难度】★★【答案】圆、4π.【解析】线段AB绕着AB的中点O旋转180°扫过的图形是以O为圆心,2厘米为半径的圆,再根据圆的面积公式求出圆的面积.【总结】考查对图形运动的特征的理解及运用.【作业9】如右图所示,Rt ABC∆沿AC边所在的直线向上平移2cm,若4cmBC=,求Rt ABC∆扫过的面积.【难度】★★★【答案】28cm.【解析】平移的距离是2cm,则'2AA cm=,又4cmBC =,则平行四边形''ABB A的高为4cm,S∴=底⨯高=()2248cm⨯=.【总结】平移所扫过的图形为平行四边形,根据面积公式可以算出面积28cm.【作业10】小明和小红玩一种游戏,他们要将甲图和乙图中的三角形通过水平或竖直平移的方法得到图丙,平移的过程中,每次水平或竖直平移一格,先拼完的为胜,小明选择了图甲,小红选择了图乙,那么谁先获胜?【难度】★★★【答案】小明.【解析】小明需要4312<,所以小明获胜.⨯=步,1216⨯=步,小红需要4416【总结】本题主要考查图形平移的特征.。