初二数学试题及答案(5)
- 格式:doc
- 大小:236.50 KB
- 文档页数:8
初二数学试题答案及解析1.(本大题10分)课堂上,李老师出了这样一道题:已知,求代数式的值.小明觉得直接代入计算太繁了,请你来帮他解决,并写出具体过程.【答案】解:可以先化简后再求值:解法如下:原式=……………………………3分……………………………6分……………………………8分. ……………………………10分【解析】此题考查学生化简分式的能力。
注意不能直接代入求值。
2.某农户种植一种经济作物,总用水量(米)与种植时间(天)之间的函数图象如图所示.填空第(1)小题并解答第(2)、(3)小题(1)第天的总用水量为___ ___米.(2分)(2)当时,求与之间的函数关系式.(3分)(3)时间为多少天时,总用水量达到7000米?(3分)【答案】略【解析】略3. .如图,已知在Rt△ABC中,∠BAC=90,AB=3,BC=5,若把Rt△ABC绕直接AC旋转一周,则所得圆锥的侧面积等于( )A.6πB.9πC.12πD.15π【答案】D【解析】略4.下列各曲线中不能表示y是x的函数是()。
【答案】C【解析】略5.图①是一个边长为的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是()A.B.C.D.【答案】B【解析】略6.若甲,乙两个芭蕾舞团参加演出的女演员人数相同,平均身高相同,身高的方差分别为,,则________芭蕾舞团参加演出的女演员身高更整齐(填“甲”或“乙”).【答案】甲【解析】因为,所以甲芭蕾舞团参加演出的女演员身高更整齐.7.如图,在△ABC中,AD平分∠BAC,DE∥AC交AB于点E,M是AD的中点,延长EM交AC于F.求证:AD垂直平分线段EF.【答案】如图,连接DF.∵AD平分∠BAC,∴∠1=∠2.∵DE∥AC,∴∠2=∠3.在△AMF与△DME中,∵AM=DM,∠AMF=∠DME,∠2=∠3.∴△AMF≌△DME.∴AF=DE.又DE∥AF,∴四边形AEDF是平行四边形.∵∠1=∠2=∠3,∴AE=DE.∴四边形AEDF是菱形.∴AD垂直平分线段EF.【解析】根据题设条件,M是AD的中点,要证AD垂直平分线段EF,可连接DF,构造菱形AEDF来解决.8.(2013泰安)化简:.【答案】-6【解析】此题主要考查了二次根式的化简与混合运算,正确化简二次根式是解题关键.根据二次根式的乘法运算法则、绝对值的性质及二次根式的化简原则计算即可..9.对于任意实数a,b,定义一种运算“&”如下:a&b=a(a-b)+b(a+b),如3&2=3×(3-2)+2×(3+2)=13,那么.【答案】5【解析】.10.(2015•梅州)函数y=﹣1中,自变量x的取值范围是.【答案】x≥0.【解析】根据二次根式的意义,被开方数不能为负数,据此求解.解:根据题意,得x≥0.故答案为:x≥0.【考点】函数自变量的取值范围;二次根式有意义的条件.11.(2015秋•常熟市校级月考)国庆长假,小明从老家乘车去上海.一路上,小明记下了如下数据(注:“上海90km”表示离上海的距离为90km):观察时间10:30(t=0)10:36(t=6)10:30(t=18)假设汽车离上海的距离s(km)是行驶时间t(min)的一次函数,求s关于t的函数关系式.【答案】=﹣t+90.【解析】首先设s关于t的函数关系式为s=kt+b,再把t=6,s=80;t=18,s=60代入可得关于k、b的方程组,再解方程组可得k、b的值,进而可得一次函数解析式.解:设s关于t的函数关系式为s=kt+b,∵t=6,s=80;t=18,s=60,∴,解得:k=﹣,b=90,∴s=﹣t+90.12.如图,在等腰Rt△ABC中,∠ACB=90o,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE,连接DE、DF、EF.(1)求证:△ADF≌△CEF;(2)试证明△DFE是等腰直角三角形.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)根据在等腰直角△ABC中,∠ACB=90°,AC=BC,利用F是AB中点,∠A=∠FCE=∠ACF=45°,即可证明:△ADF≌△CEF.(2)利用△ADF≌△CEF,∠AFD+∠DFC=∠CFE+∠DFC,和∠AFC=90°即可证明△DFE是等腰直角三角形.试题解析:(1)在等腰直角△ABC中,∠ACB=90°,AC=BC,∴∠A=∠B=45°,又∵F是AB中点,∴∠ACF=∠FCB=45°,即,∠A=∠FCE=∠ACF=45°,且AF=CF,在△ADF与△CEF中,,∴△ADF≌△CEF;(2)由(1)可知△ADF≌△CEF,∴DF=FE,∴△DFE是等腰三角形,又∵∠AFD=∠CFE,∴∠AFD+∠DFC=∠CFE+∠DFC,∴∠AFC=∠DFE,∵∠AFC=90°,∴∠DFE=90°,∴△DFE是等腰直角三角形.【考点】1.全等三角形的判定与性质;2.等腰直角三角形.13.进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色地完成了任务,这是记者与驻军工程指挥官的一段对话:记者:你们是怎样用9天时间完成4800米长的大坝加固任务呢?指挥官:我们在加固600米后,采用新的加固模式,这样每天加固长度是原来的2倍.通过这段对话,请你求出该地驻军原来每天加固多少米?【答案】300米【解析】设原来每天加固x米,则采用新的加固模式后每天加固2x米,前600米用了天,后面的工程用了天,然后根据用9天时间完成4800米长的大坝加固任务列方程解答即可.试题解析:设原来每天加固x米,则采用新的加固模式后每天加固2x米,由题意得:,解方程,得x=300,经检验,x=300是原方程的解,所以该地驻军原来每天加固300米。
初二数学试题及答案人教版初二数学试题及答案(人教版)一、选择题(每题2分,共20分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.333...D. √2答案:D2. 如果一个角的补角是它的余角的4倍,那么这个角的度数是多少?A. 30°B. 45°C. 60°D. 90°答案:A3. 一个数的平方根是它本身,这个数是?A. 1B. -1C. 0D. 4答案:C4. 一个三角形的内角和等于多少度?A. 180°B. 360°C. 540°D. 720°答案:A5. 以下哪个代数式是二次根式?A. √xB. √x + 1C. x√yD. √x²答案:D6. 一个数的立方根是它本身,这个数可以是?A. 1B. -1C. 0D. 所有选项答案:D7. 以下哪个是等腰三角形?A. 三边长分别为3, 4, 5的三角形B. 三边长分别为2, 2, 5的三角形C. 三边长分别为3, 3, 4的三角形D. 三边长分别为4, 4, 4的三角形答案:C8. 一个数的绝对值是它本身,这个数是?A. 正数B. 负数C. 零D. 非负数答案:D9. 一个数的倒数是它本身,这个数是?A. 1B. -1C. 0D. 2答案:A10. 下列哪个是单项式?A. 3x²B. 2x + 3C. x² - 4D. 5x²y答案:A二、填空题(每题2分,共20分)11. 一个数的相反数是-5,这个数是______。
答案:512. 如果一个数的平方等于16,那么这个数是______。
答案:±413. 一个数的立方等于-27,这个数是______。
答案:-314. 一个三角形的三个内角分别是50°,70°和60°,这个三角形是______三角形。
答案:锐角15. 如果一个角的余角是10°,那么这个角是______。
八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
初二数学试题及答案_一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.33333…B. √4C. πD. 22/7答案:C2. 一个等腰三角形的两边长分别为5和10,那么这个三角形的周长是多少?A. 15B. 20C. 25D. 30答案:C3. 以下哪个方程是一元二次方程?A. x + y = 5B. x² - 4x + 4 = 0C. 2x - 3 = 0D. x² - 2xy + y² = 0答案:B4. 函数y = 2x + 3的图象是一条直线,那么当x = 1时,y的值是多少?A. 5B. 4C. 3D. 2答案:A5. 一个数的平方根是它本身,这个数是?A. 0B. 1C. -1D. 以上都不是答案:A6. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 梯形D. 任意三角形答案:B7. 一个正数的倒数是它本身,这个数是?A. 1B. 0C. 2D. 1/2答案:A8. 一个数的相反数是它本身,这个数是?A. 0B. 1C. -1D. 以上都不是答案:A9. 以下哪个选项是单项式?A. 3x² - 2x + 1B. 5xC. x² + 3x - 2D. 2x/3答案:B10. 以下哪个选项是多项式?A. 3xB. 5x² - 2x + 1C. 2x/3D. 以上都是答案:B二、填空题(每题3分,共30分)11. 一个数的立方根是它本身,这个数是____。
答案:0或1或-112. 一个数的绝对值是它本身,这个数是非负数,即____。
答案:大于或等于013. 一个数的相反数是-3,那么这个数是____。
答案:314. 一个数的平方是16,那么这个数是____。
答案:±415. 一个数的倒数是1/2,那么这个数是____。
答案:216. 一个数的平方根是2,那么这个数是____。
答案:417. 一个数的立方是-8,那么这个数是____。
初二数学试题答案及解析1.已知正方形的面积是9x2+6xy+y2(x>0,y>0),利用分解因式,写出表示该正方形边长的代数式____________________.【答案】3x+y【解析】9x2+6xy+y2=(3x+y)2.故该正方形的边长为3x+y.2.关于x的方程的解是正数,则a的取值范围是__________.【答案】a<-1且a≠-2【解析】略3.先化简,再求值:,其中满足方程【答案】由x2-2x-1=0得2x=x2-1=(x+1)(x-1)【解析】略4.点P(3,-5)关于y轴对称的点的坐标是()A.(-3,-5)B.(5,3)C.(﹣3,5)D.(3,5)【答案】 A【解析】略5.某校对初中毕业生按综合素质成绩、考试成绩、体育测试成绩三项成绩给学生评定毕业成绩,其权的比为4︰4︰2,毕业成绩达到80分以上(含80分)为优秀毕业生,小明、小亮的三项成绩如下表所示(单位:分):(2)升人高中后,请你对他们今后的发展给每人一条建议.【答案】(1)两位同学都是优秀毕业生,小亮的成绩更好些(2)建议小明加强体育锻炼和提高综合素质,建议小亮要更加努力学习.【解析】(1)根据加权平均数公式计算出平均成绩;(2)开放性问题,答案不唯一,合理即可.(1)由权的比4︰4︰2得权分别为40%,40%,20%.小明的成绩为72×40%+98×40%+60×20%=80(分),小亮的成绩为90×40%+75×40%+95×20%=85(分).故两位同学都是优秀毕业生,小亮的成绩更好些.(2)建议小明加强体育锻炼和提高综合素质,建议小亮要更加努力学习.6.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对角线互相平分C.一组对边平行另一组对边相等D.对角线相等【答案】D【解析】矩形的对角线相等,而平行四边形的对角线不一定相等.7.已知:正比例函数y=(m﹣1)的图象在第二、四象限,求m的值.【答案】【解析】根据正比例函数的定义得,解方程得,又因为正比函数过二、四象限,所以m<0,所以m=-2.试题解析:由题意得, 解得.当时,,图象在第一、三象限,不合题意,当时,,图象在第二、四象限,符合题意.综上,.【考点】正比例函数的定义性质8.计算:①(-a)2•(-a)3= ;②(-3x2)3= .【答案】-a5;-27x6.【解析】试题解析:①原式=-a5;②原式=-27x6.【考点】1.幂的乘方与积的乘方;2.同底数幂的乘法.9.(2015秋•灌云县校级月考)如图,△ABC中,∠C=90°,BC=9,AD平分∠BAC,过点D 作DE⊥AB于E,测得BE=3,则△BDE的周长是()A.15B.12C.9D.6【答案】B【解析】由△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,根据角平分线的性质,即可得DE=CD,继而可求得△BDE的周长是:BE+BC,则可求得答案.解:∵△ABC中,∠C=90°,∴AC⊥CD,∵AD平分∠BAC,DE⊥AB,∴DE=CD,∵BC=9,BE=3,∴△BDE的周长是:BE+BD+DE=BE+BD+CD=BE+BC=3+9=12.故选B.【考点】角平分线的性质.10.反比例函数的图象经过点P(-1,3),则此反比例函数的解析式为.【答案】.【解析】设反比例函数的解析式为,因为函数经过点,则反比例函数的解析式为【考点】待定系数法求反比例函数解析式.11.在﹣2,0,3,这四个数中,最大的数是()A.﹣2B.0C.3D.【答案】C【解析】正数大于零大于负数,-2<0<<3.【考点】实数的大小比较.12.若实数a、b满足,则= .【答案】1.【解析】试题解析:根据题意得:,解得:,则原式==1.【考点】1.非负数的性质:算术平方根;2.非负数的性质:绝对值.13.随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成):时速数据段频数频率(1)请你把表中的数据填写完整;(2)补全频数分布直方图;(3)如果汽车时速超过60千米即为违章,则这次检测到的违章车辆共有辆.【答案】(1)、18%,78,56,28%;(2)、答案见解析;(3)、76.【解析】(1)、根据频数之和等于200,频率之和等于1分别进行计算;(2)、根据表格画出图形;(3)、根据表格得出大于60的车辆数量.试题解析:(1)、36÷200×100%=18%,200×0.39=78,200-10-36-78-20=56,56÷200×100%=28%(2)、(3)、20+56=76【考点】(1)、频数的计算;(2)、频率的计算.14.如图,在矩形纸片中,="2" cm,点在上,且.若将纸片沿折叠,点恰好与上的点重合,则= cm.【答案】4.【解析】试题解析:∵AB=2cm,AB=AB1∴AB1=2cm,∵四边形ABCD是矩形,AE=CE,∴∠ABE=∠AB1E=90°∵AE=CE,∴AB1=B1C,∴AC=4cm.【考点】翻折变换(折叠问题).15.计算:的结果是.【答案】-1.【解析】试题解析:原式===-1.【考点】分式的加减法.16.实施素质教育以来,某中学立足于学生的终身发展,大力开发课程资源,在七年级设立六个课外学习小组,下面是七年级学生参加六个学习小组的统计表和扇形统计图,请你根据图表中提供的信息回答下列问题.(1)七年级共有学生人;(2)在表格中的空格处填上相应的数字;(3)表格中所提供的六个数据的中位数是;(4)众数是.【答案】(1)360;(2)72,108,20%;(3)63;(4)72.【解析】解:(1)读图可知:有10%的学生即36人参加科技学习小组,故七年级共有学生:36÷10%=360(人).故答案为:360;(2)统计图中美术占:1﹣30%﹣20%﹣10%﹣15%﹣5%=20%,参加美术学习小组的有:360×(1﹣30%﹣20%﹣10%﹣15%﹣5%)=360×20%=72(人),奥数小组的有360×30%=108(人);(3)(4)从小到大排列:18,36,54,72,72,108故众数是72,中位数=(54+72)÷2=63;故答案为:63,72.17.晚饭后,郑大爷出去散步,如图描述了他散步过程中离家的距离s(米)与散步所用时间t (分)之间的关系,依据图象,下面的描述符合郑大爷散步情景的是()A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了B.从家出发,到了一个公共阅报栏,看了一会儿报,继续向前一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,就找朋友去了,13分后才开始返回【答案】B【解析】根据图象可知,有一段时间内时间在增加,而路程没有增加,意味着有停留,与x轴平行后的函数图象表现为随时间的增多路程又在增加,由此即可作出判断.解:从图中看,有一段时间内函数图象与x轴平行,说明时间在增加,而路程没有增加,C、D中没有停留,所以排除C、D.与x轴平行后的函数图象表现为随时间的增多路程又在增加,排除A.故选B.18.若a,b,c都是负数,并且,则a、b、c中()A.a最大B.b最大C.c最大D.c最小【答案】C【解析】解:∵,∴,∴<<,又a、b、c都是负数,∴a+b<b+c<c+a,∴b<a<c,故选:C.【点评】本题考查的是分式的混合运算和不等式的性质,掌握分式的加减运算法则是解题的关键.19.函数y=kx的图象经过点(1,3),则实数k= .【答案】3【解析】直接把点(1,3)代入y=kx,然后求出k即可.解:把点(1,3)代入y=kx,解得:k=3,故答案为:3【点评】本题考查了待定系数法求正比例函数解析式:设正比例函数解析式为y=kx(k≠0),然后把正比例函数图象上一个点的坐标代入求出k即可.20.下列说法:①-是17的平方根;②的立方根是±;③-81没有立方根;④互为相反数的两个数的立方根也互为相反数,错误的有()A.①③B.①④C.②③D.②④【答案】C【解析】①、正确;②、的立方根是;③、-81的立方根为;④、正确.【考点】立方根21.因式分解(1)(2)【答案】(1)、(4+9)(2m+3)(2m-3);(2)、4a【解析】(1)、本题需要利用两次平方差公式进行因式分解;(2)、首先进行提取公因式4a,然后再利用完全平方公式进行因式分解.试题解析:(1)、原式=(4+9)(4-9)=(4+9)(2m+3)(2m-3)(2)、原式=4a()=4a【考点】因式分解22.下列四副图案中,不是轴对称图形的是().【答案】A.【解析】根据轴对称图形的定义进行判断. A、沿某条直线折叠后直线两旁的部分不能够完全重合,不是轴对称图形,故A符合题意;B、C、D都是轴对称图形,不符合题意.故选:A.【考点】轴对称图形.23.二次根式有意义,则的取值范围是___________.【答案】x≥2.【解析】【考点】二次根式有意义的条件.根据二次根式有意义的条件,可得x﹣2≥0,解不等式得x≥2.故答案为:x≥2.24.在平面直角坐标系中,对于平面内任一点,若规定以下三种变换:①;②;③.按照以上变换例如:,则等于______________.【答案】【解析】分析:按运算顺序和变换法则对式子进行化简。
初二数学试题答案及解析1..因式分解:【答案】【解析】略2.如图,四边形ABCD中,AD∥BC,∠ABD=30o,AB=AD,DC⊥BC于点C,若BD=2,求CD的长.【答案】证明:∵ AD="AB"∴∠ADB=∠ABD=300-----2分又∵ AD∥BC∴∠DBC=∠ABD=300-----3分∵ DC⊥BC ∴△DBC为直角三角形在Rt△DBC中,∵∠DBC=300∴CD=BD=【解析】略3.如图,数轴上A、B两点对应的实数分别是1和,若点A关于点B的对称点为点C,则点C所对应的实数为________.【答案】【解析】因为数轴上A、C两点关于点B对称,所以AB=BC,又,则将点B向右平移个单位长度得到点C,则点C对应的实数为.4.(2013四川宜宾)如图,直线y=kx+b经过A(2,1),B(-1,-2)两点,则不等式的解集为()A.-1<x<2B.x<2C.x>-1D.-2<x<1【答案】A【解析】因为的图象过A(2,1),O(0,0),我们可画出的图象,观察图象可得-1<x<2.故选A.5.已知两组数据:【答案】×(9.9+10.3+9.8+10.1+10.4+10+9.8+9.7)=10.×(10.2+10+9.5+10.3+10.5+9.6+9.8+10.1)=10.×[(9.9-10)2+(10.3-10)2+…+(9.7-10)2]=×(0.01+0.09+…+0.09)=×0.44=0.055,×[(10.2-10)2+(10-10)2+…+(10.1-10)2]=×(0.04+0+…+0.01)=×0.84=0.105.因为,,所以乙组数据比甲组数据波动大.【解析】根据方差的定义,要求一组数据的方差,应该先求这组数据的平均数,然后再直接利用方差公式求值,即步骤为(1)求平均数;(2)求方差;(3)比较方差的大小得出结论.6.八年级一班有学生52人,八年级二班有学生48人,期末数学测试中一班学生的平均分为81.2分,二班学生的平均分为84.5分,求:这两个班100名学生的平均分是多少?【答案】82.784分【解析】求两个班100名学生的数学成绩,即100个数据求平均数,不是两个班平均分81.2和84.5的平均数.=82.784(分).所以这两个班100名学生的平均分是82.784分.7.(2013大连)在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:A.3.5元B.6元C.6.5元D.7元【答案】C【解析】(5×2+6×3+7×2+10×1)÷8=6.5(元).故选C.8.如图所示,已知一次函数y=2x+a与y=-x+b的图象都经过点A(-2,0),且与y轴分别交于B,C两点,求△ABC的面积.【答案】∵一次函数y=2x+a与y=-x+b的图象都经过点(-2,0),∴解得故一次函数y=2x+4的图象与y轴的交点为B(0,4),一次函数y=-x-2的图象与y轴的交点为C(0,-2).∴.【解析】把点A(-2,0)的坐标分别代入两个一次函数解析式,求出字母a与b的值,然后求出B,C的坐标,则线段BC的长即可求出,再利用可求出△ABC的面积.9.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,则满足下列条件,但不是直角三角形的是()A.∠A=∠B-∠CB.∠A︰∠B︰∠C=1︰3︰5C.D.a2+c2=b2【答案】B【解析】选项A中,∠A+∠C=∠B.∴∠B=90°,由勾股定理的逆定理知选项C、D是直角三角形,故选B.10.(本题满分8分,每小题4分)计算:(1);(2)【答案】(1)﹣6;(2) 2x﹣x.【解析】(1)根据二次根式的运算先用括号外的项乘以括号内的每一项,然后化为最简二次根式即可;(2)先化为最简二次根式吗,然后合并同类二次根式.试题解析:(1)原式=﹣2= ﹣6;(2)原式=2+2x﹣x﹣2= 2x﹣x.【考点】二次根式的计算11.如图所示,一根长2a的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为P,若木棍A端沿墙下滑,且B端沿地面向右滑行.请判断木棍滑动的过程中,点P到点O的距离变化(用“发生”或“不发生”填空).【答案】不发生.【解析】试题解析:在木棍滑动的过程中,点P到点O的距离不发生变化,理由是:连接OP,∵∠AOB=90°,P为AB中点,AB=2a,∴OP=AB=a,即在木棍滑动的过程中,点P到点O的距离不发生变化,永远是a,【考点】直角三角形斜边上的中线12.如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【答案】D.【解析】亮亮书上的三角形被墨迹污染了一部分,剩下的部分是两个角和这两个角的夹边没被污染,所以亮亮根据ASA画出一个与书上完全一样的三角形.故答案选D.【考点】全等三角形的判定.13.求下列各式中的x:(1)已知,求x;(2)计算:;【答案】(1)x=-2,;(2)6【解析】(1)根据立方根的意义可求解;(2)根据二次根式的性质和立方根的意义可求解.试题解析:解:(1);解得.(2)原式=3-2+5=6【考点】立方根,平方根14.一次函数y=kx+b,当k<0,b<0时,它的图象大致为()【答案】B【解析】对于一次函数y=kx+b,当k<0,b<0时,图象经过二、三、四象限.【考点】一次函数的图象15.若则= ________.【答案】.【解析】∵,,∴==9÷5=.故答案为.【考点】①同底数幂除法;②积的乘方与幂的乘方.16. P(m-4,1-m)在x轴上,则m= 1 .【答案】1.【解析】试题解析:∵P(m-4,1-m)在x轴上,∴1-m=0,解得m=1.【考点】点的坐标.17.(2015秋•龙口市期末)若样本x1+1,x2+1,x3+1,…,xn+1的平均数为18,方差为2,则对于样本x1+2,x2+2,x3+2,…,xn+2,下列结论正确的是()A.平均数为18,方差为2 B.平均数为19,方差为3 C.平均数为19,方差为2 D.平均数为20,方差为4【答案】C【解析】根据样本x1+1,x2+1,x3+1,…,xn+1的平均数为18,方差为2,先看出样本x1,x 2,…,xn的平均数和方差,再看出样本x1+2,x2+2,x3+2,…,xn+2的平均数,方差.解:∵x1+1,x2+1,x3+1,…,xn+1的平均数为18,方差为2,∴样本x1,x2,…,xn的平均数是17,方差为2,∴样本x1+2,x2+2,x3+2,…,xn+2的平均数是2+17=19,方差是2.故选C.【考点】方差;算术平均数.18.(2011•郑州校级三模)如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.(1)求证:AD⊥CF;(2)连接AF,试判断△ACF的形状,并说明理由.【答案】(1)见解析;(2)△ACF是等腰三角形.见解析【解析】(1)欲求证AD⊥CF,先证明∠CAG+∠ACG=90°,需证明∠CAG=∠BCF,利用三角形全等,易证.(2)要判断△ACF的形状,看其边有无关系.根据(1)的推导,易证CF=AF,从而判断其形状.(1)证明:在等腰直角三角形ABC中,∵∠ACB=90°,∴∠CBA=∠CAB=45°.又∵DE⊥AB,∴∠DEB=90°.∴∠BDE=45°.又∵BF∥AC,∴∠CBF=90°.∴∠BFD=45°=∠BDE.∴BF=DB.又∵D为BC的中点,∴CD=DB.即BF=CD.在△CBF和△ACD中,,∴△CBF≌△ACD(SAS).∴∠BCF=∠CAD.又∵∠BCF+∠GCA=90°,∴∠CAD+∠GCA=90°.即AD⊥CF.(2)△ACF是等腰三角形,理由为:连接AF,如图所示,由(1)知:△CBF≌△ACD,∴CF=AD,∵△DBF是等腰直角三角形,且BE是∠DBF的平分线,∴BE垂直平分DF,∴AF=AD,∵CF=AD,∴CF=AF,∴△ACF是等腰三角形.【考点】等腰三角形的判定与性质;全等三角形的判定与性质.19.如果二元一次方程组的解是二元一次方程2x﹣3y+12=0的一个解,那么a的值是()A.B.﹣C.D.﹣【答案】B【解析】将a看做已知数,求出方程组的解得到x与y,代入方程中计算即可求出a的值.解:依题意知,,由①+②得x=6a,把x=6a代入①得y=﹣3a,把代入2x﹣3y+12=0得2×6a﹣3(﹣3a)+12=0,解得:a=﹣.故选B.【考点】二元一次方程组的解;二元一次方程的解.20.(2015秋•南京期中)如图,在△ABC中,AB=AC,AD是BC边上中线.若AB=10,AD=8,则△ABC的周长是()A.26B.28C.32D.36【答案】C【解析】由等腰三角形的三线合一性质得出AD⊥BC,BD=CD=BC,由勾股定理求出BD,得出BC,即可得出结果.解:∵AB=AC,AD是BC边上中线,∴AD⊥BC,BD=CD=BC,∴BD===6,∴BC=2BD=12,∴△ABC的周长=AB+AC+BC=10+10+12=32;故选:C.【考点】等腰三角形的性质.21.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AB+AC=2AE中正确的是 .【答案】①、②、④【解析】根据BE=CD,BE=CE,∠E=∠DFC=90°可得△BDE≌△CDF,则DE=DF,则①正确;根据①可得AD平分∠BAC,则②正确;根据角平分线可得∠EAD=∠FAD,∠D=∠AFD=90°,AD=AD可得△ADE≌△ADF,则AE=AF,则③错误;根据①可得BE=FC,则AB+AC=AB+AF+CF=AB+BE+AF=AE+AF=2AE,则④正确.【考点】(1)、角平分线的性质;(2)、三角形全等.22.若函数y=(a﹣3)x|a|﹣2+2a+1是一次函数,则a= .【答案】﹣3【解析】根据一次函数的定义得到a=±3,且a≠3即可得到答案.解:∵函数y=(a﹣3)x|a|﹣2+2a+1是一次函数,∴a=±3,又∵a≠3,∴a=﹣3.故答案为:﹣3.23.二次根式是一个整数,那么正整数a最小值是.【答案】2【解析】解:由二次根式是一个整数,那么正整数a最小值是2,故答案为:2.24.下列各命题的逆命题成立的是()A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D.如果两个角都是45°,那么这两个角相等【答案】C【解析】首先写出各个命题的逆命题,再进一步判断真假.解:A、逆命题是三个角对应相等的两个三角形全等,错误;B、绝对值相等的两个数相等,错误;C、同位角相等,两条直线平行,正确;D、相等的两个角都是45°,错误.故选C.25.关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是.【答案】﹣1【解析】根据一元二次方程的解的定义,将x=0代入已知方程就可以求得a的值.注意,二次项系数a﹣1≠0.解:∵关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,∴x=0满足该方程,且a﹣1≠0.∴a2﹣1=0,且a≠1.解得a=﹣1.故答案是:﹣1.【点评】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.26.如图,直线y=x+1与x轴交于点A,与y轴交于点B,正方形OCDE的顶点D在线段AB上,点C在y轴上,点E在x轴上,则点D的坐标为.【答案】(﹣,).【解析】可设出点D的坐标,表示出DE和OE,可求得D点的坐标.解:∵四边形OCDE为正方形,∴DE⊥EO,DE=EO,∵D点在y=x+1上,∴可设D点坐标为(x,x+1),∴DE=x+1,EO=﹣x,∴x+1=﹣x,解得x=﹣,∴在点坐标为(﹣,),故答案为:(﹣,).【点评】本题主要考查一次函数图象上点的坐标特征,利用正方形的性质得到关于D点的坐标的方程是解题的关键.27.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2)。
初二数学试题答案及解析1.解不等式组(5分)【答案】见解析【解析】故不等式组无解.2..下列各式从左到右的变形中,正确的是 ( )A.B.C.D.【答案】A【解析】略3.已知,,求的值。
【答案】已知,,∴4【解析】略4.已知一次函数y=kx+b(k≠0)的图象过点(0,2),且与两坐标轴围成的三角形的面积为2,求此一次函数的解析式.【答案】y=x+2或y=-x+2【解析】解:∵一次函数y=kx+b(k≠0)的图象过点(0,2),∴b=2.令y=0,则.∵函数y=kx+b的图象与两坐标轴围成的三角形面积为2,∴,即,当k>0时,,解得k=1;当k<0时,,解得k=-1.故此函数的解析式为y=x+2或y=-x+2.5.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠AEB的度数为________.【答案】15°【解析】由题意得∠BAE=90°+60°=150°,∴.6.如图,平行四边形ABCD的两条对角线AC和BD相交于点O,并且BD=4,AC=6,.(1)AC与BD有什么位置关系?为什么?(2)四边形ABCD是菱形吗?为什么?【答案】见解析【解析】(1)AC⊥BD,理由如下:∵四边形ABCD为平行四边形,∴,.在△OBC中,OC2+OB2=9+4=13=BC2,∴△OBC为直角三角形,即OC⊥OB,∴AC⊥BD.(2)四边形ABCD是菱形,理由如下:∵AC⊥BD.∴平行四边形ABCD是菱形.7.如图,在矩形ABCD中,DF平分∠ADC交AC于点E,交BC于点F,∠BDF=15°,求∠DOC与∠COF的度数.【答案】75°【解析】解:∵DF平分∠ADC,∴∠FDC=45°.又∵∠BDF=15°,∴∠BDC=45°+15°=60°.又∵四边形ABCD是矩形,∴AC=BD,AO=OC=BO=OD,∴△DOC是等边三角形.∴∠DOC=60°.在Rt△DCF中,∠FDC=45°,∴CF=CD=OC,∴∠COF=∠CFO.又∵∠OCF=90°-∠OCD=90°-60°=30°,∴∠COF=75°.8.当a= 时,最简二次根式与是同类二次根式.【答案】4【解析】同类二次根式是指化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.∵最简二次根式与是同类二次根式,∴a﹣2=10﹣2a,解得:a=4.【考点】同类二次根式9.若分式有意义,则a的取值范围是 .【答案】a≠-1【解析】根据分式的分母不为0时,分式有意义可得a+1≠0,解得a≠-1.【考点】分式有意义的条件10.如图,直线l∥m,将含有45°角的三角形板ABC的直角顶点C放在直线m上,若∠1=,则∠2的度数为 .【答案】【解析】首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,即可求得答案∠4的度数,又由△ABC是含有45°角的三角板,即可求得∠3的度数,继而求得∠2的度数.解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1=20°,∵∠ABC=45°,∴∠3=∠ABC-∠4=45°-20°=25°,∴∠2=∠3=25°.【考点】平行线性质.11.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形的边长;(3)在(2)的条件下折痕EF的长.【答案】(1)见试题解析(2)5(3)2.【解析】(1)根据折叠的性质得OA=OC,EF⊥AC,EA=EC,再利用AD∥AC得到∠FAC=∠ECA,则可根据“ASA”判断△AOF≌△COE,得到OF=OE,加上OA=OC,AC⊥EF,于是可根据菱形的判定方法得到四边形AECF为菱形;(2)设菱形的边长为x,则BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中根据勾股定理得(8﹣x)2+42=x2,然后解方程即可得到菱形的边长;(3)先在Rt△ABC中,利用勾股定理计算出AC=4,则OA=AC=2,然后在Rt△AOE中,利用勾股定理计算出OE=,所以EF=2OE=2.试题解析:(1)证明:∵矩形ABCD折叠使A,C重合,折痕为EF,∴OA=OC,EF⊥AC,EA=EC,∵AD∥AC,∴∠FAC=∠ECA,在△AOF和△COE中,,∴△AOF≌△COE,∴OF=OE,∵OA=OC,AC⊥EF,∴四边形AECF为菱形;(2)解:设菱形的边长为x,则BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中,∵BE2+AB2=AE2,∴(8﹣x)2+42=x2,解得x=5,即菱形的边长为5;(3)解:在Rt△ABC中,AC===4,∴OA=AC=2,在Rt△AOE中,OE===,∴EF=2OE=2.【考点】菱形的判定与性质;翻折变换(折叠问题).12.的值是_______.【答案】.【解析】∵,∴=.故答案为:.【考点】立方根.13.下列根式中,属于最简二次根式的是()A.-B.C.D.【答案】B.【解析】试题解析:A、被开方数含分母,故A错误;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B正确;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数含能开得尽方的因数或因式,故D错误;故选B.【考点】最简二次根式.14.两个一次函数y=ax+b和y=bx+a在同一直角坐标系中的图象可能是()【答案】B.【解析】试题解析:A、对于y=ax+b,当a>0,图象经过第一、三象限,则b>0,y=bx+a也要经过第一、三象限,所以A选项错误;B、对于y=ax+b,当a>0,图象经过第一、三象限,则b<0,y=bx+a经过第二、四象限,与y 轴的交点在x轴上方,所以B选项正确;C、对于y=ax+b,当a>0,图象经过第一、三象限,则b>0,y=bx+a也要经过第一、三象限,所以C选项错误;D、对于y=ax+b,当a<0,图象经过第二、四象限,若b>0,则y=bx+a经过第一、三象限,所以D选项错误.故选B.【考点】一次函数的图象.15.如图,∠1=∠2,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论错误的是()A.PD=PE B.OD=OE C.∠DPO=∠EPO D.PD=OP【答案】D【解析】根据角平分线的性质可得:PD=PE ,根据题意HL 判定定理可得:Rt △POE ≌Rt △POD ,则OD=OE ,∠DPO=∠EPO .【考点】角平分线的性质16. (2011秋•镇江期末)在下列实数中:3.14,﹣2,、0,,π,,,﹣1.010010001…,无理数有( )A .1个B .2个C .3个D .4个【答案】C【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:无理数有:,π,﹣1.010010001…,共有3个.故选C .【考点】无理数.17. (2015秋•无锡校级月考)在平面直角系中,已知A (﹣2,0),B (0,4),C (3,6);(1)当D (6,0)时,求四边形ABCD 的面积;(2)在x 轴上找一点P ,使△PBC 的周长最小,并求出此时△PBC 的周长.【答案】(1)28;(2)+3.【解析】(1)作CE ⊥x 轴于点E ,则CE=6,四边形BCEO 是直角梯形,根据S 四边形ABCD =S △OAB +S 四边形BCEO +S △CDE 即可求解;(2)求得BC 的长,作出C 关于x 轴的对称点C′的坐标,则BC′与BC 的和就是△PBC 的周长. 解:(1)作CE ⊥x 轴于点E ,则CE=6,四边形BCEO 是直角梯形.则S △OAB =OA•OB=×2×4=4;S 四边形BCEO =(OB+CE )•OE=×(4+6)×3=15;S △CDE =ED•CE=×6×3=9,则S 四边形ABCD =4+15+9=28;(2)BC==,C 关于x 轴的对称点C′的坐标是(3,﹣6),则BC′==3,则△PBC的周长是:+3.【考点】轴对称-最短路线问题;坐标与图形性质.18.如图,在长方形ABCD中,AB=3,AD=5,点P在线段BC上运动,现将纸片折叠,使点A 与点P重合,得折痕EF(点E、F为折痕与长方形边的交点),设BP=x,当点E落在线段AB 上,点F落在线段AD上时,x的取值范围是()A.2≤x≤ 4B.1≤x≤4C.1 ≤x≤3D.2≤x≤ 3【答案】C【解析】此题需要运用极端原理求解:①BP最小时,F、D重合,由折叠的性质知:AF=PF=5,在Rt△PFC中,利用勾股定理可求得PC=4,进而可求得BP的值,即BP的最小值为1;②BP最大时,E、B重合,根据折叠的性质即可得到AB=BP=3,即BP的最大值为3;如果F在DC上,直接将A对折到点B,将D对折到点C,那么折痕EF=BC,且E、F分别在AB,DC中点上.所以答案应该是1≤x≤3.故选C.【考点】1.动点图形,2.线段的范围19.(2015•成都)比较大小:.(填“>”,“<”或“=”)【答案】<【解析】首先求出两个数的差是多少;然后根据求出的差的正、负,判断出、的大小关系即可.解:﹣==∵,∴4,∴,∴﹣<0,∴<.故答案为:<.【考点】实数大小比较.20.下列运算中,正确的是()A.(a+3)(a-3)=a2-3B.(3b+2)(3b-2)=3b2-4C.(3m-2n)(-2n-3m)=4n2-9m2D.(x+2)(x-3)=x2-6【答案】C.【解析】应用多项式的乘法法则分别进行计算,得出结论,A.(a+3)(a-3)=a2-9,故A错误;B.(3b+2)(3b-2)=9b2-4,故B错误;C.(3m-2n)(-2n-3m)=4n2-9m2,故C正确;D.(x+2)(x-3)=x2-x-6,故D错误.故选:C.【考点】多项式的乘法;乘法公式.21.(n+1)边形的内角和比n边形的内角和大()A.180°B.360°C.n×180°D.n×360°【答案】A【解析】根据多边形内角和定理:(n﹣2).180 (n≥3)且n为整数)分别表示出内角和即可.解:(n+1)边形的内角和:180°×(n+1﹣2)=180°(n﹣1),n边形的内角和180°×(n﹣2),(n+1)边形的内角和比n边形的内角和大180°(n﹣1)﹣180°×(n﹣2)=180°,故选:A.【考点】多边形内角与外角.22.如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,则CF= .【答案】2【解析】根据角平分线的定义可得∠1=∠2,再根据两直线平行,内错角相等可得∠2=∠3,∠1=∠F,然后求出∠1=∠3,∠4=∠F,再根据等角对等边的性质可得AD=DE,CE=CF,根据平行四边形对边相等代入数据计算即可得解.解:如图,∵AE平分∠DAB,∴∠1=∠2,平行四边形ABCD中,AB∥CD,AD∥BC,∴∠2=∠3,∠1=∠F,又∵∠3=∠4(对顶角相等),∴∠1=∠3,∠4=∠F,∴AD=DE,CE=CF,∵AB=5,AD=3,∴CE=DC﹣DE=AB﹣AD=5﹣3=2,∴CF=2.故答案为:2.【考点】平行四边形的性质.23.已知一个无理数与+1的积为有理数,这个无理数为_________.【答案】-1【解析】因为(+1)(-1)=2-1=1,所以这个无理数为-1.【考点】二次根式.24.若,则b a= .【答案】【解析】解:由题意得,a+3=0,b﹣2=0,解得,a=﹣3,b=2,则b a=,故答案为:.【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.25.如图,在△ABD和△ACD中,已知AB=AC,∠B=∠C,求证:AD是∠BAC的平分线.【答案】见解析【解析】连接BC,由AB=AC得到∠ABC=∠ACB,已知∠ABD=∠ACD,从而得出∠DBC=∠DCB,即BD=CD,又因为AB=AC,AD=AD,利用SSS判定△ABD≌△ACD,全等三角形的对应角相等即∠BAD=∠CAD,所以AD是∠BAC的平分线.证明:连接BC,∵AB=AC,∴∠ABC=∠ACB.∵∠ABD=∠ACD,∴∠DBC=∠DCB.∴BD=CD.在△ADB和△ADC中,,∴△ADB≌△ADC(SSS),∴∠BAD=∠CAD,即AD是∠BAC的平分线.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:防止本题直接应用SSA,作出辅助线是解决本题的关键.26.如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB交于点D,则∠BCD的度数是度.【答案】10【解析】根据垂直平分线的性质计算.∠BCD=∠BCN﹣∠DCA.解:∵Rt△ABC中,∠B=90°,∠A=40°,∴∠BCN=180°﹣∠B﹣∠A=180°﹣90°﹣40°=50°,∵DN是AC的垂直平分线,∴DA=DC,∠A=∠DCA=40°,∠BCD=∠BCN﹣∠DCA=50°﹣40°=10°,∠BCD的度数是10度.故答案为:10.【点评】此题主要考查线段的垂直平分线的性质及等腰三角形的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.27.一个小球从点A(3,3)出发,经过y轴上点C反弹后经过点B(1,0),则小球从A点经过点C到B点经过的最短路线长是()A.4B.5C.6D.7【答案】B【解析】如果设A点关于y轴的对称点为A′,那么C点就是A′B与y轴的交点.易知A′(﹣3,3),又B(1,0),可用待定系数法求出直线A′B的方程.再求出C点坐标,根据勾股定理分别求出AC、BC的长度.那么小球路线从A点到B点经过的路线长是AC+BC,从而得出结果.解:如果将y轴当成平面镜,设A点关于y轴的对称点为A′,则由小球路线知识可知,A′相当于A的像点,光线从A到C到B,相当于小球路线从A′直接到B,所以C点就是A′B与y轴的交点.∵A点关于y轴的对称点为A′,A(3,3),∴A′(﹣3,3),进而由两点式写出A′B的直线方程为:y=﹣(x﹣1).令x=0,求得y=.所以C点坐标为(0,).那么根据勾股定理,可得:AC=,BC=.因此,AC+BC=5.故选B.【点评】此题考查轴对称的基本性质,勾股定理的应用等知识点.关键是根据小球路线从A点到B点经过的路线长是AC+BC.28.如图,一个正比例函数与一个一次函数的图象交于点A(3,4),其中一次函数与y轴交于B点,且OA=OB.(1)求这两个函数的表达式;(2)求△AOB的面积S.【答案】(1)y=ax+b,y=3x﹣5;(2)【解析】(1)把A点坐标代入可先求得直线OA的解析式,可求得OA的长,则可求得B点坐标,可求得直线AB的解析式;(2)由A点坐标可求得A到y轴的距离,根据三角形面积公式可求得S.解:(1)设直线OA的解析式为y=kx,把A(3,4)代入得4=3k,解得k=,所以直线OA的解析式为y=x;∵A点坐标为(3,4),∴OA==5,∴OB=OA=5,∴B点坐标为(0,﹣5),设直线AB的解析式为y=ax+b,把A(3,4)、B(0,﹣5)代入得,解得,∴直线AB的解析式为y=3x﹣5;(2)∵A(3,4),∴A点到y轴的距离为3,且OB=5,∴S=×5×3=.【点评】本题主要考查一次函数的交点问题,掌握两函数图象的交点坐标满足两函数解析式是解题的关键.29.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于( )A.75°B.57°C.55°D.77°【答案】D【解析】根据三角形全等可得:∠D=∠B=28°,根据△ADE的内角和定理可得:∠EAD=180°-95°-28°=57°,则∠BAD=∠BAE+∠EAD=20°+57°=77°.【考点】三角形全等的性质30.如图,将矩形ABCD沿BE折叠,点A落在点A’处,若∠CBA’=30°,则∠BEA’等于 ( ) A.30°B.45°C.60°D.75°【答案】C【解析】根据题意可得:∠ABA′=60°,根据折叠图形的性质可得:∠ABE=∠A′BE=60°÷2=30°,∠A′=90°,则根据三角形的内角和定理可得:∠BEA′=180°-90°-30°=60°.【考点】折叠图形的性质31.观察下列一组等式:,,,(1)以上这些等式中,你有何发现?利用你的发现填空.①= ;②= ;③= .(2)计算:.【答案】(1)①;②;③;(2).【解析】(1)根据上述等式归纳总结得到规律,即可得到结果;(2)将第一个因式利用平方差公式分解,结合后,利用得出的规律计算即可得到结果.试题解析:(1)①=;②=;③=.故答案为:①;②;③;(2)原式===.【考点】整式的混合运算.32.如图在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,EF=3,BC=8,则△EFM的周长是()A.21B.15C.13D.11【答案】D【解析】根据直角三角形斜边上的中线等于斜边的一半可得EM=FM=BC,再根据三角形的周长的定义列式计算即可得解.∵CF⊥AB,BE⊥AC,M为BC的中点,∴EM=FM=BC=×8=4,∴△EFM的周长=8+8+3=11.【考点】(1)、直角三角形斜边上的中线;(2)、等腰三角形的判定与性质.33.列方程解实际问题华联商厦进货员在广州发现一种饰品,预计能畅销市场,就用8000元购进所有饰品,每件按58元很快卖完.由于销路很好,又在上海用13200元购进,这次比在广州多进了100件,单价比广州贵了10%,但商厦仍按原售价销售,最后剩下的15件按八折销售,很快售完,问该商厦这两批饰品生意共赚了多少?(不考虑其它因素)【答案】赚了7626元【解析】首先设第一次进价为x元,然后根据进货量多了100件列出方程求出x的值,然后分别求出第一次和第二次共卖了多少钱,然后根据利润=售价-成本得出答案.试题解析:设第一次进价为x元,根据题意得,解得x=40.第一次每件的进货价为40元,进了200件,一共卖了58×200=11600元,第二次进了300件,前285件卖58元,一共卖了58×285=16530元,最后15件卖了15×58×80%=696元,两次一共卖了11600+16530+696=28826元,成本一共是21200元,所以一共赚了7626元.【考点】分式方程的应用34.有一块面积为150亩的绿化工程面向全社会公开招标.现有甲、乙两工程队前来竞标,甲队计划比规定时间少一半,乙队按规划时间完成.甲队比乙队每天多绿化10亩,问:规定时间是多少天?【答案】15天.【解析】求的是时间,工作总量为150,一定是根据工作效率来列等量关系,本题的关键描述语是:甲队比乙队每天多绿化10亩.等量关系为:甲工效-乙工效=10.设规定时间为x天,由题意得:解得:x=15,经检验:x="15是原方程的解,且符合实际情况."答:规定时间为15天.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.涉及到的公式:工作总量=工作效率×工作时间.35.已知y与x﹣2成正比例,且当x=1时,y=5;(1)求y关于x的函数解析式;(2)求出当x=﹣2时的函数值.【答案】(1)y=﹣5x+10;(2)20【解析】(1)根据正比例函数的关系式,直接设出关系式,利用待定系数法求解即可;(2)直接代入(1)中的解析式即可求解.试题解析:(1)设y=k(x﹣2)(k≠0),∵当x=1时,y=5,∴5=k(1﹣2),解得:k=﹣5,∴y与x的函数关系式为:y=﹣5(x﹣2)=﹣5x+10;(2)由(1)知,y与x的函数关系式为:y=﹣5x+10.则当x=﹣2时,y=﹣5×(﹣2)+10=20.36.(本题满分6分)计算:【答案】1【解析】本题考察数的计算,利用零指数幂、负指数幂的计算公式,和二次根式的化简即可得出. 试题解析:原式=37.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=1,则BC的长为_____.【答案】【解析】根据矩形的性质可得∠ACB的度数,从而利用勾股定理可求出BC的长度.由题意得:∠ACB=30°,∠ABC=90°,在Rt△ABC中,AC=2AB=2,由勾股定理得,BC=,“点睛”本题考查了矩形的性质,比较简单,解答本题的关键是求出∠ACB的度数.38.若x>y,则下列式子中错误的是()A.x-3>y-3B.C.x+3>y+3D.-3x>-3y【答案】D.【解析】根据不等式的基本性质进行判断:A、在不等式x>y的两边同时减去3,不等式仍成立,即x-3>y-3,故本选项不符合题意;B、在不等式x>y的两边同时除以3,不等式仍成立,即,故本选项不符合题意;C、在不等式x>y的两边同时加上3,不等式仍成立,即x+3>y+3,故本选项不符合题意;D、在不等式x>y的两边同时乘以-3,不等号方向发生改变,即-3x<-3y,故本选项符合题意.故选D.【考点】不等式的性质.39.计算:(1)(2)【答案】(1);(2)【解析】(1)分别计算算术平方根、绝对值、零次幂和负整数指数幂,然后再进行加减运算即可.(2)先进行二次根式的乘除运算,再合并同类二次根式即可.试题解析:(1)原式==(2)原式==40.当x= 时,分式的值为0.【答案】-4【解析】当且x+40时,分式的值为0,所以x=4.【考点】分式的值.41.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力。
初二数学试题及答案(正文开始)第一题:已知正整数a和b的最小公倍数是24,最大公因数是3,求a和b 的值。
解答:设a = 3x,b = 3y(其中x和y为正整数)则3x与3y的最小公倍数是3xy,最大公因数是3。
又已知3xy = 24,解得xy = 8。
由于x和y是正整数,所以满足条件的x和y的组合有(1,8),(2,4),(4,2),(8,1)。
因此,a的值可能为3,6,12,24,b的值可能为8,12,6,3。
第二题:已知一个等差数列的首项为2,公差为3,求第10项的值。
解答:等差数列的通项公式为an = a1 + (n - 1)d,其中an为第n项的值,a1为首项,d为公差。
代入a1 = 2,d = 3,n = 10,可得a10 = 2 + (10 - 1)3 = 2 + 27 = 29。
第三题:若a + b = 7,且ab = 12,求a² + b²的值。
解答:根据题意,我们可以列出一个方程组:a +b = 7 (方程1)ab = 12 (方程2)将方程1平方得:a² + 2ab + b² = 49由方程2可知:ab = 12代入方程1得:a² + 2(12) + b² = 49化简得:a² + b² = 25第四题:求解不等式:2x + 5 > 3x - 6解答:将不等式中的x放在一边,常数放在一边,得:2x - 3x > -6 - 5化简得:-x > -11注意到不等号两边同时乘以-1,此时需改变不等号的方向,得:x < 11第五题:已知一个长方形的宽度是5cm,周长是22cm,求其长度。
解答:设长方形的长度为l,根据周长的定义,可得:2 × (l + 5) = 22化简得:l + 5 = 11再次化简得:l = 11 - 5 = 6(正文结束)。
初二数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333...D. 2答案:B2. 一个等腰三角形的两边长分别为5和10,那么它的周长是:A. 15B. 20C. 25D. 30答案:C3. 以下哪个表达式等于0?A. 3x - 3xB. 2x + 3xC. 5x - 5xD. 4x - 3x答案:C4. 如果一个数的平方根是4,那么这个数是:A. 16B. 8C. -16D. -8答案:A5. 以下哪个是二次方程的解?A. x^2 - 5x + 6 = 0B. x^2 + 5x + 6 = 0C. x^2 - 5x - 6 = 0D. x^2 + 5x - 6 = 0答案:A6. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 6答案:A7. 以下哪个是不等式的解?A. x > 5B. x < 5C. x = 5D. x ≥ 5答案:B8. 一个等差数列的首项是2,公差是3,那么第5项是:A. 17B. 14C. 11D. 8答案:A9. 以下哪个是正比例函数?A. y = 2x + 3B. y = 2xC. y = x^2D. y = 1/x答案:B10. 以下哪个是反比例函数?A. y = 2x + 3B. y = 2xC. y = x^2D. y = k/x答案:D二、填空题(每题3分,共30分)11. 一个直角三角形的两个直角边长分别为3和4,那么斜边长为________。
答案:512. 如果一个数的绝对值是5,那么这个数可以是________或________。
答案:5或-513. 一个二次方程的一般形式是________。
答案:ax^2 + bx + c = 014. 一个等腰三角形的底角是45度,那么顶角是________。
答案:90度15. 如果一个数的立方根是2,那么这个数是________。
初二数学试卷附答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.下列各式成立的是( ) A .=﹣3 B .+=C .﹣=3 D .•=2.、一个数的平方根与立方根相等,则这个数是( ) A .0 B .1 C .—1 D .0或—1或13.化简二次根式得 A .B .C .D .304.在下列二次根式中,的取值范围为的是( )A .B .C .D .5.下列条件中,不能判定两个直角三角形全等的是( ▲ ) A .两个锐角对应相等B .一条直角边和一个锐角对应相等C .两条直角边对应相等D .一条直角边和一条斜边对应相等 6.下列关于的说法中,错误的是 ( )A .是无理数 B .3<<4C .是12的算术平方根D .是最简二次根式7.下列解不等式的过程中错误的是( )A .去分母,得B .去括号,得C .移项、合并同类项,得D .系数化为1 ,得8.下列计算错误的是 ( )A.B.C.D.9.小亮在野外的平地上先以1.5米/秒的速度向东走80秒,接着以2米/秒的速度向南走45秒,这时他距离出发点()A.100米B.120米C.150米D.180米10.已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于A.1 B.0 C.-1 D.2二、判断题11.一条直线平移1cm后,与原直线的距离为1cm。
()12.如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里速度匀速前进,乙船沿南偏东某方向以每小时15海里速度匀速前进,2小时后甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船沿那个方向航行吗?13.操作发现:将一副直角三角板如图①摆放,能够发现等腰直角三角板的斜边与含角的直角三角板的长直角边重合.问题解决将图①中的等腰直角三角板绕点顺时针旋转,点落在上,与交于点,连接,如图②.(1)求证:是等腰三角形;(2)若,求的长.(直角三角形中,的锐角所对的直角边等于斜边的一半)14.已知a ,b,c在数轴上的位置如图,化简:-│a+b│++│b+c│+.15.如图,将矩形纸片沿对角线折叠,点落在点处,交于点,连结.证明:(1)BF=DF .(2)若BC=8,DC=6,求BF 的长。
初二数学试题(5)一、填空:(每题2分,共20分)1.当x ________时,分式11x +有意义,当_______时,分式2341x x x --+的值为0.2.如果最简二次根式3x =_______.3.当k =________时,关于x 的方程()11270k k xx +-+-=是一元二次方程.4.命题“矩形的对角线相等”的逆命题是____________________________________.5.若点(2,1)是反比例221m m y x+-=的图象上一点,则m =_______.6.一次函数y =ax +b 图象过一、三、四象限,则反比例函数aby x= (x >0)的函数值随x的增大而_______.7.如图,已知点A 是一次函数y =x +1与反比例函数2y x=图象在第一象限内的交点,点B 在x 轴的负半轴上,且OA =OB ,那么△AOB 的面积为________.8.如图,在正方形ABCD 中,E 为AB 中点,G 、F 分别是AD 、BC 边上的点,若AG =1,BF =2,∠GEF =90°,则GF 的长为________.9.如图,小明设计用手电来测量某古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB =1.2米,BP =1.8米,PD =12米,那么该古城墙的高度是__米.10.数据-2,-3,4,-1,x 的众数为-3,则这组数据的极差是________,方差为________. 二、选择题:(每题2分,共20分)11.下列二次根式中,最简二次根式是( )A C12.分式:①223a a ++,②22a b a b --,③()412a a b -,④12a -中,最简分式有( )A .1个B .2个C .3个D .4个13.一组数据x 1,x 2,x 3,x 4,x 5,x 6的平均数是2,方差是5,则2x 1+3,2x 2+3,2x 3+3,2x 4+3,2x 5+3,2x 6+3的平均数和方差分别是( )A .2和5B .7和5C .2和13D .7和20 14.若关于x 的方程232x m x -=+的解是正数,则一元二次方程m x 2=1的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .没有实数根 D .只有一个实数根 15.下列命题的逆命题是真命题的是( )A .面积相等的两个三角形是全等三角形B .对顶角相等C .互为邻补角的两个角和为180°D .两个正数的和为正数 16.若函数y =(m +2)x3m -是反比例函数,则m 的值是( )A .2B . -2C .±2D .≠217.如图,正比例函数y =x 与反比例2y x=的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD ⊥x 轴于D ,则四边形ABCD 的面积 为( )A .1B .2C .4D .1218.如图,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是△ABC 的面积的 ( ) A .19 B .29 C . 13D .4919.如图,△ABC 中,∠BAC =90°,AD ⊥BC 于D ,若AB =2,BC =3,则CD 的长是( ) A .83 B .23 C .43 D .5320.已知函数y =x -6,令x =1,2,3,4,5,6可得函数图像上的五个点,在这五个点中随机抽取两个点P(x 1,y 1)、Q (x 2,y 2),则P 、Q 两点在同一反比例函数图像上的概率是 ( ) A .15 B . 25 C .215 D .415二、解答题:(共60分)21.计算:(每题3分,共12分)(1)()()()2111-+(3)32122x x x x --- (4)()()221111a b a b a b a b ⎡⎤⎡⎤-÷+⎢⎥⎢⎥-+⎣⎦-+⎢⎥⎣⎦22.解方程:(每题3分,共12分)(1)(x +4)2=5(x +4) (2)2x 2-10x =3(3)542332x x x +=-- (4)242111x x -=--23.(5,把它们的背面朝上洗匀后,小丽先从中抽取一张,然后小明从余下的卡片中再抽取一张.(1)______________;(2)小刚为他们设计了一个游戏规则:若两人抽取卡片上的数字之积是有理数,则小丽获胜;否则小明获胜.你认为这个游戏规则公平吗?若不公平,则对谁有利?请用画树状图或列表法进行分析说明.24.(5分)已知:如图,△ABC中,∠ABC=2∠C,BD平分∠ABC.求证:AB²BC=AC²CD25.(6分)如图,在△ABC中,AB=8,BC=7,AC=6,有一动点P从A沿AB移动到B,移动速度为2单位/秒,有一动点Q从C沿CA移动到A,移动速度为l单位/秒,问两动点同时出发,移动多少时间时,△PQA与△ABC相似.26.(5分)某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若甲工程队独做a天后,再由甲、乙两工程队合作________天(用含a的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?27.(7分)如图1,已知,CE是Rt△ABC的斜边AB上的高,点P是CE的延长线上任意一点,BG⊥AP,求证:(1)△AEP∽△DEB(2) CE2=ED²EP若点P 在线段CE 上或EC 的延长线上时(如图2和图3),上述结论CE 2=ED ²EP 还成立吗?若成立,请给出证明;若不成立,请说明理由.(图2和图3挑选一张给予说明即可)28.(8分)已知反比例函数2ky x和一次函数y =2x -1,其中一次函数的图象经过(a ,b ),(a +k ,b +k +2)两点. (1)求反比例函数的解析式;(2)求反比例函数与一次函数两个交点A 、B 的坐标: (3)根据函数图像,求不等式2kx>2x -1的解集; (4)在(2)的条件下, x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出 来;若不存在,请说明理由.初二数学试题答案(5)1.x ≠-1; x=4 2.2 3.-1 4.对角线相等的四边形是矩形。
5.1或-3 6.增大 71 8.3 9.8 10.7;6.821.(1)()()()2111-+=2 =2(3)32122x x x x --- (4)()()221111a ba b a b a b ⎡⎤⎡⎤-÷+⎢⎥⎢⎥-+⎣⎦-+⎢⎥⎣⎦=2122x - =11a b a b--+ 22.(1)(x +4)2=5(x +4) (2)2x 2-10x =3 x 1=1或x 2=-4(3)542332x x x +=-- (4)242111x x -=-- x=1 x=-3 23.(113. (2)画树状图:∴共有6种等可能结果,其中积是有理数的有2种、,不是有理数的有4种 ∴,∴这个游戏不公平,对小明有利. 24.略25.设运动时间为t 秒---->AP=2t, AQ=AC-CQ=6-t(1)△PQA∽△CBA --->AP:AQ=AC:AB--->(2t)/(6-t)=6/8=3/4 --->8t=3(6-t)--->t=18/11≈1.64(2)△PQA∽△BCA --->AP:AQ=AB:AC--->(2t)/(6-t)=8/6=4/3 --->6t=4(6-t)--->t=12/5=2.4所以:两动点同时移动1.64秒或2.4秒时,△PQA 与△BCA 相似。
26.(1)设乙独做x 天完成此项工程,则甲独做(x +30)天完成此项工程.由题意得:20(3011++x x )=1 . 整理得:x 2-10x -600=0 . 解得:x 1=30 x 2=-20.经检验:x 1=30 x 2=-20都是分式方程的解, 但x 2=-20不符合题意舍去. x +30=60.答:甲、乙两工程队单独完成此项工程各需要60天、30天. (2)甲独做a 天后,甲、乙再合做(20-3a)天,可以完成此项工程. (3)由题意得:1³64)320)(5.21(≤-++a a . 解得:a ≥36. 27.成立 证明略 28.(1)k=2(2)A(1,1) B(12-,-2) (3)0<x <1或x >12-(4)存在P 点 P 10),P 2(0),P 3(1,0),P 4(2,0)。