高考数学一轮复习 不等式选讲 第2讲 不等式的证明学案
- 格式:doc
- 大小:326.50 KB
- 文档页数:12
第2课时不等式的证明最新考纲通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.知识梳理1。
基本不等式定理1:如果a,b∈R,那么a2+b2≥2ab,当且仅当a=b时,等号成立.定理2:如果a,b>0,那么错误!≥错误!,当且仅当a=b时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均。
定理3:如果a,b,c∈R+,那么错误!≥错误!,当且仅当a=b=c时,等号成立.2.不等式的证明方法(1)比较法①作差法(a,b∈R):a-b〉0⇔a>b;a-b〈0⇔a〈b;a-b=0⇔a=b。
②作商法(a〉0,b〉0):错误!〉1⇔a>b;错误!<1⇔a<b;错误!=1⇔a=b.(2)综合法与分析法①综合法:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立。
综合法又叫顺推证法或由因导果法.②分析法:从要证的结论出发,逐步寻求使它成立的充分条件,所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证法称为分析法,即“执果索因”的证明方法.[微点提醒]1。
作差比较法的实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系.2.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)……"“即要证……"“就要证……"等分析到一个明显成立的结论,再说明所要证明的数学问题成立.3。
利用基本不等式证明不等式或求最值时,要注意变形配凑常数.基础自测1.判断下列结论正误(在括号内打“√"或“×")(1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.( )(3)分析法又叫逆推证法或执果索因法,是从待证结论出发,一步一步地寻求结论成立的必要条件,最后达到题设的已知条件或已被证明的事实.()(4)使用反证法时,“反设"不能作为推理的条件应用。
第2讲 不等式的证明1.基本不等式定理1:设a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a 、b 为正数,那么a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a 、b 、c 为正数,那么a +b +c3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,那么a 1+a 2+…+a n n≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.2.不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法、数学归纳法等. 3.数学归纳法证明不等式的关键使用数学归纳法证明与自然数有关的不等式,关键是由n =k 时不等式成立推证n =k +1时不等式成立,此步的证明要具有目标意识,要注意与最终达到的解题目标进行分析、比较,以便确定解题方向.对于任意的x 、y ∈R ,求证|x -1|+|x |+|y -1|+|y +1|≥3. 证明:根据绝对值的几何意义,可知|x -1|+|x |≥1, |y -1|+|y +1|≥2,所以|x -1|+|x |+|y -1|+|y +1|≥1+2=3. 假设a ,b ∈(0,+∞)且a +b =1,求证:1a 2+1b2≥8.证明:因为a +b =1, 所以a 2+2ab +b 2=1. 因为a >0,b >0, 所以1a 2+1b 2=〔a +b 〕2a 2+〔a +b 〕2b 2=1+2ba +b 2a 2+1+2a b +a 2b 2=2+⎝ ⎛⎭⎪⎫2b a +2a b +⎝ ⎛⎭⎪⎫b 2a 2+a 2b 2≥2+22b a ·2ab+2b 2a 2·a 2b 2=8⎝ ⎛⎭⎪⎫当a =b =12时取等号.假设x ,y ,z ∈R +,且x +y >z ,求证:x 1+x +y 1+y >z1+z .证明:因为x +y >z , 所以x +y -z >0.由分数性质得z 1+z <z +〔x +y -z 〕1+z +〔x +y -z 〕=x +y1+x +y.因为x >0,y >0,所以x +y 1+x +y =x 1+x +y +y 1+x +y <x 1+x +y 1+y.所以x 1+x +y 1+y >z1+z.假设a >b >1,证明:a +1a >b +1b.证明:a +1a -⎝ ⎛⎭⎪⎫b +1b =a -b +b -a ab =〔a -b 〕〔ab -1〕ab.由a >b >1得ab >1,a -b >0, 所以〔a -b 〕〔ab -1〕ab>0.即a +1a -⎝ ⎛⎭⎪⎫b +1b >0,所以a +1a >b +1b.比较法证明不等式[典例引领](2016·高考全国卷Ⅱ)函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.【解】 (1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0. 因此|a +b |<|1+ab |.比较法证明不等式的方法与步骤(1)作差比较法:作差、变形、判号、下结论. (2)作商比较法:作商、变形、判断、下结论.[提醒] (1)当被证的不等式两端是多项式、分式或对数式时,一般使用作差比较法. (2)当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法.[通关练习]1.假设a ,b ∈R +,证明:(a +b )(a 5+b 5)≤2(a 6+b 6).证明:因为(a +b )(a 5+b 5)-2(a 6+b 6)=a 6+a 5b +ab 5+b 6-2a 6-2b 6=a 5b +ab 5-a 6-b 6=a 5(b -a )+b 5(a -b )=(a -b )(b 5-a 5).当a >b >0时,a -b >0,b 5-a 5<0,有(a -b )(b 5-a 5)<0. 当b >a >0时,a -b <0,b 5-a 5>0,有(a -b )(b 5-a 5)<0. 当a =b >0时,a -b =0,有(a -b )(b 5-a 5)=0. 综上可知(a +b )(a 5+b 5)≤2(a 6+b 6).2.a ,b ∈(0,+∞),求证:a b b a≤(ab )a +b2.证明:a b b a 〔ab 〕a +b 2=ab -a +b 2ba -a +b 2=⎝ ⎛⎭⎪⎫b a a -b2.当a =b 时,⎝ ⎛⎭⎪⎫b a a -b2=1; 当a >b >0时,0<b a<1,a -b2>0,⎝ ⎛⎭⎪⎫b a a -b2<1.当b >a >0时,b a >1,a -b 2<0,⎝ ⎛⎭⎪⎫b a a -b 2<1.所以a b b a≤(ab )a +b2.用综合法、分析法证明不等式[典例引领](2017·高考全国卷Ⅱ)a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.【证明】 法一:(综合法)(1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3〔a +b 〕24·(a +b )=2+3〔a +b 〕34,所以(a +b )3≤8,因此a +b ≤2. 法二:(分析法)(1)因为a >0,b >0,a 3+b 3=2. 要证(a +b )(a 5+b 5)≥4,只需证(a +b )(a 5+b 5)≥(a 3+b 3)2, 再证a 6+ab 5+a 5b +b 6≥a 6+2a 3b 3+b 6, 再证a 4+b 4≥2a 2b 2,因为(a 2-b 2)2≥0,即a 4+b 4≥2a 2b 2成立. 故原不等式成立. (2)要证a +b ≤2成立, 只需证(a +b )3≤8,再证a 3+3a 2b +3ab 2+b 3≤8,再证ab (a +b )≤2, 再证ab (a +b )≤a 3+b 3,再证ab (a +b )≤(a +b )(a 2-ab +b 2), 即证ab ≤a 2-ab +b 2显然成立. 故原不等式成立.分析法与综合法常常结合起来使用,称为分析综合法,其实质是既充分利用条件,又时刻瞄准解题目标,即不仅要搞清什么,还要明确干什么,通常用分析法找到解题思路,用综合法书写证题过程.[通关练习]1.设x ≥1,y ≥1,求证:x +y +1xy ≤1x +1y+xy .证明:由于x ≥1,y ≥1, 要证x +y +1xy ≤1x +1y+xy ,只需证xy (x +y )+1≤y +x +(xy )2. 因为[y +x +(xy )2]-[xy (x +y )+1] =[(xy )2-1]-[xy (x +y )-(x +y )] =(xy +1)(xy -1)-(x +y )(xy -1) =(xy -1)(xy -x -y +1) =(xy -1)(x -1)(y -1),因为x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0, 从而所要证明的不等式成立.2.实数a ,b ,c 满足a >0,b >0,c >0,且abc =1. (1)证明:(1+a )(1+b )(1+c )≥8; (2)证明:a +b +c ≤1a +1b +1c.证明:(1)1+a ≥2a ,1+b ≥2b ,1+c ≥2c , 相乘得:(1+a )(1+b )(1+c )≥8abc =8. (2)1a +1b +1c=ab +bc +ac ,ab +bc ≥2ab 2c =2b ,ab +ac ≥2a 2bc =2a , bc +ac ≥2abc 2=2c ,相加得a +b +c ≤1a +1b +1c.反证法证明不等式[典例引领]设0<a ,b ,c <1,求证:(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.【证明】 设(1-a )b >14,(1-b )c >14,(1-c )a >14,三式相乘得(1-a )b ·(1-b )c ·(1-c )a >164,①又因为0<a ,b ,c <1,所以0<(1-a )a ≤⎣⎢⎡⎦⎥⎤〔1-a 〕+a 22=14.同理:(1-b )b ≤14,(1-c )c ≤14,以上三式相乘得(1-a )a ·(1-b )b ·(1-c )c ≤164,与①矛盾.所以(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.利用反证法证明问题的一般步骤(1)否定原结论;(2)从假设出发,导出矛盾; (3)证明原命题正确.a +b +c >0,ab +bc +ca >0,abc >0,求证:a ,b ,c >0.证明:(1)设a <0,因为abc >0, 所以bc <0.又由a +b +c >0,那么b +c >-a >0,所以ab +bc +ca =a (b +c )+bc <0,与题设矛盾. (2)假设a =0,那么与abc >0矛盾, 所以必有a >0.同理可证:b >0,c >0. 综上可证a ,b ,c >0.放缩法证明不等式[典例引领]假设a ,b ∈R ,求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.【证明】 当|a +b |=0时,不等式显然成立. 当|a +b |≠0时, 由0<|a +b |≤|a |+|b | ⇒1|a +b |≥1|a |+|b |, 所以|a +b |1+|a +b |=11|a +b |+1≤11+1|a |+|b |=|a |+|b |1+|a |+|b |=|a |1+|a |+|b |+|b |1+|a |+|b |≤|a |1+|a |+|b |1+|b |. 综上,原不等式成立.“放〞和“缩〞的常用技巧在不等式的证明中,“放〞和“缩〞是常用的推证技巧. 常见的放缩变换有:(1)变换分式的分子和分母,如1k2<1k 〔k -1〕,1k 2>1k 〔k +1〕,1k <2k +k -1,1k>2k +k +1.上面不等式中k ∈N *,k >1;(2)利用函数的单调性;(3)真分数性质“假设0<a <b ,m >0,那么a b <a +mb +m〞. [提醒] 在用放缩法证明不等式时,“放〞和“缩〞均需把握一个度.设n 是正整数,求证:12≤1n +1+1n +2+…+12n<1.证明:由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ;当k =2时,12n ≤1n +2<1n ;…当k =n 时,12n ≤1n +n <1n,所以12=n 2n ≤1n +1+1n +2+…+12n <n n =1.所以原不等式成立.用数学归纳法证明不等式[典例引领]证明贝努利不等式:设x ∈R ,且x >-1,x ≠0,n ∈N ,n >1,那么(1+x )n>1+nx . 【证明】 (1)当n =2时,因为x ≠0. 所以(1+x )2=1+2x +x 2>1+2x ,不等式成立. (2)假设当n =k (k ≥2)时不等式成立, 即有(1+x )k >1+kx ,那么当n =k +1时,由于x >-1,x ≠0. 所以(1+x )k +1=(1+x )(1+x )k>(1+x )(1+kx )=1+x +kx +kx 2>1+(k +1)x , 所以当n =k +1时不等式成立. 由(1)(2)可知,贝努利不等式成立.用数学归纳法证明与自然数有关的命题时应注意以下两个证题步骤: (1)证明当n =n 0(满足命题的最小的自然数的值)时,命题正确.(2)在假设n =k (k ≥n 0)时命题正确的基础上,推证当n =k +1时,命题也正确.这两步合为一体才是数学归纳法,缺一不可.其中第一步是基础,第二步是递推的依据.证明:对于n ∈N *,不等式|sin n θ|≤n |sin θ|恒成立.证明:(1)当n =1时,上式左边=|sin θ|=右边,不等式成立.(2)假设当n=k(k≥1,k∈N*)时不等式成立,即有|sin kθ|≤k|sin θ|.当n=k+1时,|sin(k+1)θ|=|sin kθcos θ+cos kθsin θ|≤|sin kθcos θ|+|cos kθsin θ|=|sin kθ|·|cos θ|+|cos kθ|·|sin θ|≤|sin kθ|+|sin θ|≤k|sin θ|+|sin θ|=(k+1)|sin θ|.所以当n=k+1时不等式也成立.由(1)(2)可知,不等式对一切正整数n均成立.证明不等式的常用方法与技巧(1)如果条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少〞“至多〞等方式给出或否定性命题、唯一性命题,那么考虑用反证法;如果待证不等式与自然数有关,那么考虑用数学归纳法等.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的基本思路是去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来〞为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要分析每次使用时等号是否成立.1.(2018·某某省两校阶段性测试)函数f(x)=|x-2|.(1)解不等式:f(x)+f(x+1)≤2;(2)假设a<0,求证:f(ax)-af(x)≥f(2a).解:(1)由题意,得f(x)+f(x+1)=|x-1|+|x-2|.因此只要解不等式|x-1|+|x-2|≤2.当x ≤1时,原不等式等价于-2x +3≤2,即12≤x ≤1;当1<x ≤2时,原不等式等价于1≤2,即1<x ≤2; 当x >2时,原不等式等价于2x -3≤2,即2<x ≤52.综上,原不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫12≤x ≤52.(2)证明:由题意得f (ax )-af (x )=|ax -2|-a |x -2|=|ax -2|+|2a -ax |≥|ax -2+2a -ax |=|2a -2|=f (2a ), 所以f (ax )-af (x )≥f (2a )成立. 2.求证:112+122+132+…+1n 2<2.证明:因为1n 2<1n 〔n -1〕=1n -1-1n,所以112+122+132+…+1n 2<1+11×2+12×3+13×4+…+1〔n -1〕×n =1+⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝⎛⎭⎪⎫1n -1-1n =2-1n <2.3.函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),当x ∈[-1,1]时,|f (x )|≤1. (1)求证:|b |≤1;(2)假设f (0)=-1,f (1)=1,某某数a 的值.解:(1)证明:由题意知f (1)=a +b +c ,f (-1)=a -b +c , 所以b =12[f (1)-f (-1)].因为当x ∈[-1,1]时,|f (x )|≤1, 所以|f (1)|≤1,|f (-1)|≤1,所以|b |=12|f (1)-f (-1)|≤12[|f (1)|+|f (-1)|]≤1.(2)由f (0)=-1,f (1)=1可得c =-1,b =2-a , 所以f (x )=ax 2+(2-a )x -1. 当a =0时,不满足题意,当a ≠0时, 函数f (x )图象的对称轴为x =a -22a ,即x =12-1a. 因为x ∈[-1,1]时,|f (x )|≤1,即|f (-1)|≤1,所以|2a -3|≤1,解得1≤a ≤2.所以-12≤12-1a ≤0,故|f ⎝ ⎛⎭⎪⎫12-1a |= |a ⎝ ⎛⎭⎪⎫12-1a 2+(2-a )⎝ ⎛⎭⎪⎫12-1a -1|≤1. 整理得|〔a -2〕24a+1|≤1, 所以-1≤〔a -2〕24a+1≤1, 所以-2≤〔a -2〕24a≤0, 又a >0,所以〔a -2〕24a≥0, 所以〔a -2〕24a=0,所以a =2. 4.设a ,b ,c ∈(0,+∞),且a +b +c =1.(1)求证:2ab +bc +ca +c 22≤12; (2)求证:a 2+c 2b +b 2+a 2c +c 2+b 2a≥2. 证明:(1)要证2ab +bc +ca +c 22≤12,只需证1≥4ab +2bc +2ca +c 2,即证1-(4ab +2bc +2ca +c 2)≥0,而1-(4ab +2bc +2ca +c 2)=(a +b +c )2-(4ab +2bc +2ca +c 2)=a 2+b 2-2ab =(a -b )2≥0成立,所以2ab +bc +ca +c 22≤12. (2)因为a 2+c 2b ≥2ac b ,b 2+a 2c ≥2ab c ,c 2+b 2a ≥2bc a, 所以a 2+c 2b +b 2+a 2c +c 2+b 2a ≥⎝ ⎛⎭⎪⎫ac b +ab c +⎝ ⎛⎭⎪⎫ab c +bc a +⎝ ⎛⎭⎪⎫ac b +bc a =a ⎝ ⎛⎭⎪⎫c b +b c +b ⎝ ⎛⎭⎪⎫a c +c a +c ⎝ ⎛⎭⎪⎫a b +b a ≥2a +2b +2c =2(当且仅当a =b =c =13时,等号成立). 5.函数f (x )=|x -1|.(1)解不等式f (x )+f (x +4)≥8;(2)假设|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a .解:(1)f (x )+f (x +4)=|x -1|+|x +3|=⎩⎪⎨⎪⎧-2x -2,x <-3,4,-3≤x ≤12x +2,x >1.当x <-3时,由-2x -2≥8,解得x ≤-5;当-3≤x ≤1时,4≥8不成立;当x >1时,由2x +2≥8,解得x ≥3.所以不等式f (x )+f (x +4)≥8的解集为{x |x ≤-5或x ≥3}.(2)证明:f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a,即|ab -1|>|a -b |. 因为|a |<1,|b |<1,所以|ab -1|2-|a -b |2=(a 2b 2-2ab +1)-(a 2-2ab +b 2)=(a 2-1)(b 2-1)>0, 所以|ab -1|>|a -b |.故所证不等式成立.1.(2018·某某市武昌区调研考试)设函数f (x )=|x -2|+2x -3,记f (x )≤-1的解集为M .(1)求M ;(2)当x ∈M 时,证明:x [f (x )]2-x 2f (x )≤0.解:(1)由,得f (x )=⎩⎪⎨⎪⎧x -1,x ≤23x -5,x >2. 当x ≤2时,由f (x )=x -1≤-1,解得x ≤0,此时x ≤0;当x >2时,由f (x )=3x -5≤-1,解得x ≤43,显然不成立. 故f (x )≤-1的解集为M ={x |x ≤0}.(2)证明:当x ∈M 时,f (x )=x -1,于是x [f (x )]2-x 2f (x )=x (x -1)2-x 2(x -1)=-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14. 令g (x )=-⎝ ⎛⎭⎪⎫x -122+14,那么函数g (x )在(-∞,0]上是增函数, 所以g (x )≤g (0)=0.故x [f (x )]2-x 2f (x )≤0.2.(2018·某某模拟)设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥ 3.(2)a bc +b ac +c ab ≥3(a +b +c ). 证明:(1)要证a +b +c ≥3,由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3.而ab +bc +ca =1,故只需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ),即证a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c 时等号成立)证得.所以原不等式成立. (2)a bc +b ac +c ab =a +b +c abc. 在(1)中已证a +b +c ≥ 3.因此要证原不等式成立,只需证明1abc ≥a +b +c , 即证a bc +b ac +c ab ≤1,即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac2, b ac ≤ab +bc 2,c ab ≤bc +ac 2, 所以a bc +b ac +c ab ≤ab +bc +ca(当且仅当a =b =c =33时等号成立). 所以原不等式成立.3.a ,b ,c 均为正实数.求证:(1)(a +b )(ab +c 2)≥4abc ;(2)假设a +b +c =3,那么a +1+b +1+c +1≤3 2.证明:(1)要证(a +b )(ab +c 2)≥4abc ,可证a 2b +ac 2+ab 2+bc 2-4abc ≥0,需证b (a 2+c 2-2ac )+a (c 2+b 2-2bc )≥0,即证b (a -c )2+a (c -b )2≥0,当且仅当a =b =c 时,取等号,由,上式显然成立,故不等式(a +b )(ab +c 2)≥4abc 成立.(2)因为a ,b ,c 均为正实数,由不等式的性质知 a +1·2≤a +1+22=a +32,当且仅当a +1=2时,取等号, b +1·2≤b +1+22=b +32,当且仅当b +1=2时,取等号, c +1·2≤c +1+22=c +32,当且仅当c +1=2时,取等号, 以上三式相加,得2(a +1+b +1+c +1)≤a +b +c +92=6, 所以a +1+b +1+c +1≤32,当且仅当a =b =c =1时,取等号.。
一、知识梳理1.基本不等式定理1:设a,b∈R,则a2+b2≥2ab,当且仅当a=b时,等号成立.定理2:如果a,b为正数,则错误!≥错误!,当且仅当a=b时,等号成立.定理3:如果a,b,c为正数,则错误!≥错误!,当且仅当a=b=c时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a1,a2,…,a n为n个正数,则错误!≥错误!,当且仅当a1=a2=…=a n时,等号成立.2.不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法、数学归纳法等.常用结论基本不等式及其推广1.a2≥0(a∈R).2.(a—b)2≥0(a,b∈R),其变形有a2+b2≥2ab,错误!错误!≥ab,a2+b2≥错误!(a+b)2.3.若a,b为正实数,则错误!≥错误!.特别地,错误!+错误!≥2.4.a2+b2+c2≥ab+bc+ca.二、教材衍化求证:错误!+错误!<2+错误!.证明:错误!+错误!<2+错误!⇐(错误!+错误!)2<(2+错误!)2⇐10+2错误!<10+4错误!⇐错误!<2错误!⇐21<24.故原不等式成立.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)比较法最终要判断式子的符号得出结论.()(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.()(3)使用反证法时,“反设”不能作为推理的条件应用.()答案:(1)×(2)√(3)×二、易错纠偏错误!不等式放缩不当致错.已知三个互不相等的正数a,b,c满足abc=1.试证明:错误!+错误!+错误!<错误!+错误!+错误!.证明:因为a,b,c>0,且互不相等,abc=1,所以错误!+错误!+错误!=错误!+错误!+错误! <错误!+错误!+错误!=错误!+错误!+错误!,即错误!+错误!+错误!<错误!+错误!+错误!.用综合法、分析法证明不等式(师生共研)(2019·高考全国卷Ⅰ)已知a,b,c为正数,且满足abc=1.证明:(1)错误!+错误!+错误!≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.证明:(1)因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,又abc=1,故有a2+b2+c2≥ab+bc+ca=错误!=错误!+错误!+错误!.当且仅当a=b=c=1时,等号成立.所以错误!+错误!+错误!≤a2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)3≥3错误!=3(a+b)(b+c)(a+c)≥3×(2错误!)×(2错误!)×(2错误!)=24.当且仅当a=b=c=1时,等号成立.所以(a+b)3+(b+c)3+(c+a)3≥24.错误!用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提.充分利用这一辩证关系,可以增加解题思路,开阔视野.1.若a,b∈R,ab>0,a2+b2=1.求证:错误!+错误!≥1.证明:错误!+错误!=错误!=错误!=错误!—2ab.因为a2+b2=1≥2ab,当且仅当a=b时等号成立,所以0<ab≤错误!.令h(t)=错误!—2t,0<t≤错误!,则h(t)在(0,错误!]上递减,所以h(t)≥h(错误!)=1.所以当0<ab≤错误!时,错误!—2ab≥1.所以错误!+错误!≥1.2.(一题多解)(2020·宿州市质量检测)已知不等式|2x+1|+|2x—1|<4的解集为M.(1)求集合M;(2)设实数a∈M,b∉M,证明:|ab|+1≤|a|+|b|.解:(1)当x<—错误!时,不等式化为—2x—1+1—2x<4,即x>—1,所以—1<x<—错误!;当—错误!≤x≤错误!时,不等式化为2x+1—2x+1<4,即2<4,所以—错误!≤x≤错误!;当x>错误!时,不等式化为2x+1+2x—1<4,即x<1,所以错误!<x<1.综上可知,M={x|—1<x<1}.(2)法一:因为a∈M,b∉M,所以|a|<1,|b|≥1.而|ab|+1—(|a|+|b|)=|ab|+1—|a|—|b|=(|a|—1)(|b|—1)≤0,所以|ab|+1≤|a|+|b|.法二:要证|ab|+1≤|a|+|b|,只需证|a||b|+1—|a|—|b|≤0,只需证(|a|—1)(|b|—1)≤0,因为a∈M,b∉M,所以|a|<1,|b|≥1,所以(|a|—1)(|b|—1)≤0成立.所以|ab|+1≤|a|+|b|成立.放缩法证明不等式(师生共研)若a,b∈R,求证:错误!≤错误!+错误!.【证明】当|a+b|=0时,不等式显然成立.当|a+b|≠0时,由0<|a+b|≤|a|+|b|⇒错误!≥错误!,所以错误!=错误!≤错误!=错误!=错误!+错误!≤错误!+错误!.错误!在不等式的证明中,“放”和“缩”是常用的推证技巧.常见的放缩变换有:(1)变换分式的分子和分母,如错误!<错误!,错误!>错误!,错误!<错误!,错误!>错误!上面不等式中k∈N+,k>1.(2)利用函数的单调性.(3)真分数性质“若0<a<b,m>0,则错误!<错误!”.[注意] 在用放缩法证明不等式时,“放”和“缩”均需把握一个度.设n是正整数,求证:错误!≤错误!+错误!+…+错误!<1.证明:由2n≥n+k>n(k=1,2,…,n),得错误!≤错误!<错误!.当k=1时,错误!≤错误!<错误!;当k=2时,错误!≤错误!<错误!;…当k=n时,错误!≤错误!<错误!,所以错误!=错误!≤错误!+错误!+…+错误!<错误!=1.所以原不等式成立.反证法证明不等式(师生共研)设0<a,b,c<1,求证:(1—a)b,(1—b)c,(1—c)a不可能同时大于错误!.【证明】设(1—a)b>错误!,(1—b)c>错误!,(1—c)a>错误!,三式相乘得(1—a)b·(1—b)c·(1—c)a>错误!,1又因为0<a,b,c<1,所以0<(1—a)a≤错误!错误!=错误!.同理:(1—b)b≤错误!,(1—c)c≤错误!,以上三式相乘得(1—a)a·(1—b)b·(1—c)c≤错误!,与1矛盾.所以(1—a)b,(1—b)c,(1—c)a不可能同时大于错误!.错误!利用反证法证明问题的一般步骤(1)否定原结论.(2)从假设出发,导出矛盾.(3)证明原命题正确.已知a+b+c>0,ab+bc+ca>0,abc>0,求证:a,b,c>0.证明:1设a<0,因为abc>0,所以bc<0.又由a+b+c>0,则b+c>—a>0,所以ab+bc+ca=a(b+c)+bc<0,与题设矛盾.2若a=0,则与abc>0矛盾,所以必有a>0.同理可证:b>0,c>0.综上可证a,b,c>0.[基础题组练]1.设a>0,b>0,若错误!是3a与3b的等比中项,求证:错误!+错误!≥4.证明:由错误!是3a与3b的等比中项得3a·3b=3,即a+b=1,要证原不等式成立,只需证错误!+错误!≥4成立,即证错误!+错误!≥2成立,因为a>0,b>0,所以错误!+错误!≥2错误!=2,(当且仅当错误!=错误!,即a=b=错误!时,“=”成立),所以错误!+错误!≥4.2.求证:错误!+错误!+错误!+…+错误!<2.证明:因为错误!<错误!=错误!—错误!,所以错误!+错误!+错误!+…+错误!<1+错误!+错误!+错误!+…+错误!=1+错误!+错误!+…+错误!=2—错误!<2.3.(2020·蚌埠一模)已知函数f(x)=|x|+|x—3|.(1)解关于x的不等式f(x)—5≥x;(2)设m,n∈{y|y=f(x)},试比较mn+4与2(m+n)的大小.解:(1)f(x)=|x|+|x—3|=错误!f(x)—5≥x,即错误!或错误!或错误!解得x≤—错误!或x∈∅或x≥8.所以不等式的解集为错误!∪[8,+∞).(2)由(1)易知f(x)≥3,所以m≥3,n≥3.由于2(m+n)—(mn+4)=2m—mn+2n—4=(m—2)(2—n).且m≥3,n≥3,所以m—2>0,2—n<0,即(m—2)(2—n)<0,所以2(m+n)<mn+4.4.(2020·开封市定位考试)已知函数f(x)=|x—1|+|x—m|(m>1),若f(x)>4的解集是{x|x<0或x>4}.(1)求m的值;(2)若正实数a,b,c满足错误!+错误!+错误!=错误!,求证:a+2b+3c≥9.解:(1)因为m>1,所以f(x)=错误!,作出函数f(x)的图象如图所示,由f(x)>4的解集及函数f(x)的图象得错误!,得m=3.(2)由(1)知m=3,从而错误!+错误!+错误!=1,a+2b+3c=(错误!+错误!+错误!)(a+2b+3c)=3+(错误!+错误!)+(错误!+错误!)+(错误!+错误!)≥9,当且仅当a=3,b=错误!,c=1时“=”成立.5.(2020·原创冲刺卷)已知定义在R上的函数f(x)=|x+1|+|x—2|+(x—1)2的最小值为s.(1)试求s的值;(2)若a,b,c∈R+,且a+b+c=s,求证:a2+b2+c2≥3.解:(1)f(x)=|x+1|+|x—2|+(x—1)2≥|x+1|+|2—x|≥|(x+1)+(2—x)|=3,即f(x)≥3.当且仅当x=1,且(x+1)(2—x)≥0,即x=1时,等号成立,所以f(x)的最小值为3,所以s=3.(2)证明:由(1)知a+b+c=3.故a2+b2+c2=(a2+12)+(b2+12)+(c2+12)—3≥2a+2b+2c—3=2(a+b+c)—3=3(当且仅当a=b=c=1时,等号成立).6.设不等式—2<|x—1|—|x+2|<0的解集为M,a,b∈M.(1)证明:错误!<错误!;(2)比较|1—4ab|与2|a—b|的大小.解:(1)证明:记f(x)=|x—1|—|x+2|=错误!由—2<—2x—1<0解得—错误!<x<错误!,即M=错误!,所以错误!≤错误!|a|+错误!|b|<错误!×错误!+错误!×错误!=错误!.(2)由(1)得a2<错误!,b2<错误!,因为|1—4ab|2—4|a—b|2=(1—8ab+16a2b2)—4(a2—2ab+b2)=(4a2—1)(4b2—1)>0,故|1—4ab|2>4|a—b|2,即|1—4ab|>2|a—b|.[综合题组练]1.(2020·江西八所重点中学联考)已知不等式|ax—1|≤|x+3|的解集为{x|x≥—1}.(1)求实数a的值;(2)求错误!+错误!的最大值.解:(1)|ax—1|≤|x+3|的解集为{x|x≥—1},即(1—a2)x2+(2a+6)x+8≥0的解集为{x|x≥—1}.当1—a2≠0时,不符合题意,舍去.当1—a2=0,即a=±1时,x=—1为方程(2a+6)x+8=0的一解,经检验a=—1不符合题意,舍去,a=1符合题意.综上,a=1.(2)(错误!+错误!)2=16+2错误!=16+2错误!,当t=错误!=4时,(错误!+错误!)2有最大值,为32.又错误!+错误!≥0,所以错误!+错误!的最大值为4错误!.2.(2019·高考全国卷Ⅲ)设x,y,z∈R,且x+y+z=1.(1)求(x—1)2+(y+1)2+(z+1)2的最小值;(2)若(x—2)2+(y—1)2+(z—a)2≥错误!成立,证明:a≤—3或a≥—1.解:(1)由于[(x—1)+(y+1)+(z+1)]2=(x—1)2+(y+1)2+(z+1)2+2[(x—1)(y+1)+(y+1)(z+1)+(z+1)(x—1)]≤3[(x—1)2+(y+1)2+(z+1)2],故由已知得(x—1)2+(y+1)2+(z+1)2≥错误!,当且仅当x=错误!,y=—错误!,z=—错误!时等号成立.所以(x—1)2+(y+1)2+(z+1)2的最小值为错误!.(2)证明:由于[(x—2)+(y—1)+(z—a)]2=(x—2)2+(y—1)2+(z—a)2+2[(x—2)(y—1)+(y—1)(z—a)+(z—a)(x—2)]≤3[(x—2)2+(y—1)2+(z—a)2],故由已知得(x—2)2+(y—1)2+(z—a)2≥错误!,当且仅当x=错误!,y=错误!,z=错误!时等号成立.因此(x—2)2+(y—1)2+(z—a)2的最小值为错误!.由题设知错误!≥错误!,解得a≤—3或a≥—1.。
第2讲不等式的证明最新考纲通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.知识梳理1.不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法等.(1)比较法①求差比较法知道a>b⇔a-b>0,a<b⇔a-b<0,因此要证明a>b,只要证明a-b>0即可,这种方法称为求差比较法.②求商比较法由a>b>0⇔ab>1且a>0,b>0,因此当a>0,b>0时要证明a>b,只要证明ab>1即可,这种方法称为求商比较法.(2)分析法从待证不等式出发,逐步寻求使它成立的充分条件,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等).这种证法称为分析法,即“执果索因”的证明方法.(3)综合法从已知条件出发,利用不等式的有关性质或定理,经过推理论证,推导出所要证明的不等式成立,即“由因寻果”的方法,这种证明不等式的方法称为综合法.(4)反证法的证明步骤第一步:作出与所证不等式相反的假设;第二步:从条件和假设出发,应用正确的推理方法,推出矛盾的结论,否定假设,从而证明原不等式成立.2.几个常用基本不等式(1)柯西不等式:①柯西不等式的代数形式:设a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2(当且仅当ad =bc 时,等号成立).②柯西不等式的向量形式:设α,β是两个向量,则|α||β|≥|α·β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立.③柯西不等式的三角不等式:设x 1,y 1,x 2,y 2,x 3,y 3∈R , 则(x 1-x 2)2+(y 1-y 2)2+(x 2-x 3)2+(y 2-y 3)2 ≥(x 1-x 3)2+(y 1-y 3)2.④柯西不等式的一般形式:设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.(2)算术—几何平均不等式若a 1,a 2,…,a n 为正数,则a 1+a 2+…+a n n ≥a 1=a 2=…=a n 时,等号成立.诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)用反证法证明命题“a ,b ,c 全为0”时假设为“a ,b ,c 全不为0”.( )(2)若实数x ,y 适合不等式xy >1,x +y >-2,则x >0,y >0.( )答案 (1)× (2)√2.(2017·泰安模拟)若a >b >1,x =a +1a ,y =b +1b ,则x 与y 的大小关系是( )A.x >yB.x <yC.x ≥yD.x ≤y解析 x -y =a +1a -⎝ ⎛⎭⎪⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab .由a >b >1得ab >1,a -b >0,所以(a -b )(ab -1)ab>0,即x -y >0,所以x >y . 答案 A3.(2017·聊城模拟)下列四个不等式:①log x 10+lg x ≥2(x >1);②|a -b |<|a |+|b |;③⎪⎪⎪⎪⎪⎪b a +a b ≥2(ab ≠0);④|x -1|+|x -2|≥1,其中恒成立的个数是( )A.1B.2C.3D.4解析 log x 10+lg x =1lg x +lg x ≥2(x >1),①正确.ab ≤0时,|a -b |=|a |+|b |,②不正确;因为ab ≠0,b a 与a b 同号,所以⎪⎪⎪⎪⎪⎪b a +a b =⎪⎪⎪⎪⎪⎪b a +⎪⎪⎪⎪⎪⎪a b ≥2,③正确; 由|x -1|+|x -2|的几何意义知,|x -1|+|x -2|≥1恒成立,④也正确,综上①③④正确.答案 C4.设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则m 2+n 2的最小值为________. 解析 由柯西不等式得(ma +nb )2≤(m 2+n 2)(a 2+b 2),即m 2+n 2≥5,∴m 2+n 2≥5,∴所求最小值为5.答案 55.(2016·全国Ⅱ卷)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12, M 为不等式f (x )<2的解集.(1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.(1)解 f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2, 解得x >-1;当-12<x <12时,f (x )<2成立;当x≥12时,由f(x)<2得2x<2,解得x<1.所以f(x)<2的解集M={x|-1<x<1}.(2)证明由(1)知,当a,b∈M时,-1<a<1,-1<b<1,从而(a+b)2-(1+ab)2=a2+b2-a2b2-1=(a2-1)(1-b2)<0,即(a+b)2<(1+ab)2,因此|a+b|<|1+ab|.考点一用分析法证明不等式『例1』设a,b,c>0,且ab+bc+ca=1.求证:(1)a+b+c≥ 3.(2)abc+bac+cab≥3(a+b+c).证明(1)要证a+b+c≥3,由于a,b,c>0,因此只需证明(a+b+c)2≥3.即证:a2+b2+c2+2(ab+bc+ca)≥3,而ab+bc+ca=1,故需证明:a2+b2+c2+2(ab+bc+ca)≥3(ab+bc+ca).即证:a2+b2+c2≥ab+bc+ca.而这可以由ab+bc+ca≤a2+b22+b2+c22+c2+a22=a2+b2+c2(当且仅当a=b=c时等号成立)证得.∴原不等式成立.(2)abc+bac+cab=a+b+cabc.由于(1)中已证a+b+c≥ 3.因此要证原不等式成立,只需证明1abc≥a+b+c.即证a bc+b ac+c ab≤1,即证a bc+b ac+c ab≤ab+bc+ca.规律方法当所证明的不等式不能使用比较法,且和重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.『训练1』 (2016·宜昌一中月考)已知函数f (x )=|x -1|.(1)解不等式f (x -1)+f (x +3)≥6;(2)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a . (1)解 由题意,知原不等式等价为|x -2|+|x +2|≥6,令g (x )=|x -2|+|x +2|,则g (x )=⎩⎨⎧-2x ,x ≤-2,4,-2<x <2,2x ,x ≥2.当x ≤-2时,由-2x ≥6,得x ≤-3;当-2<x <2时,4≥6不成立,此时无解;当x ≥2时,由2x ≥6,得x ≥3.综上,不等式的解集是(-∞,-3』∪『3,+∞).(2)证明 要证f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a , 只需证|ab -1|>|b -a |,只需证(ab -1)2>(b -a )2.而(ab -1)2-(b -a )2=a 2b 2-a 2-b 2+1=(a 2-1)·(b 2-1)>0,从而原不等式成立. 考点二 用综合法证明不等式『例2』 已知a >0,b >0,a +b =1,求证:(1)1a +1b +1ab ≥8;(2)⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9. 证明 (1)∵a +b =1,a >0,b >0,∴1a +1b +1ab =1a +1b +a +b ab =2⎝ ⎛⎭⎪⎫1a +1b =2⎝ ⎛⎭⎪⎫a +b a +a +b b =2⎝ ⎛⎭⎪⎫b a +a b +4≥4 b a ×a b +4=8.∴1a +1b +1ab ≥8(当且仅当a =b =12时等号成立).(2)∵⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =1a +1b +1ab +1, 由(1)知1a +1b +1ab ≥8.∴⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9. 规律方法 (1)综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.(2)在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.『训练2』 (2017·重庆适应性测试)设a ,b ,c ∈R +且a +b +c =1.(1)求证:2ab +bc +ca +c 22≤12;(2)求证:a 2+c 2b +b 2+a 2c +c 2+b 2a ≥2.证明 (1)因为1=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca ≥4ab +2bc +2ca +c 2,所以2ab +bc +ca +c 22=12(4ab +2bc +2ca +c 2)≤12.(2)因为a 2+c 2b ≥2ac b ,b 2+a 2c ≥2ab c ,c 2+b 2a ≥2bc a ,所以a 2+c 2b +b 2+a 2c +c 2+b 2a ≥⎝ ⎛⎭⎪⎫ac b +ab c +⎝ ⎛⎭⎪⎫ab c +bc a +⎝ ⎛⎭⎪⎫ac b +bc a =a ⎝ ⎛⎭⎪⎫c b +b c +b ⎝ ⎛⎭⎪⎫a c +c a +c ⎝ ⎛⎭⎪⎫a b +b a ≥2a +2b +2c =2. 考点三 柯西不等式的应用『例3』 已知x ,y ,z 均为实数.(1)若x +y +z =1,求证:3x +1+3y +2+3z +3≤33;(2)若x +2y +3z =6,求x 2+y 2+z 2的最小值.(1)证明 因为(3x +1+3y +2+3z +3)2≤(12+12+12)(3x +1+3y +2+3z +3)=27. 所以3x +1+3y +2+3z +3≤3 3.当且仅当x =23,y =13,z =0时取等号.(2)解 因为6=x +2y +3z ≤x 2+y 2+z 2·1+4+9,所以x 2+y 2+z 2≥187,当且仅当x =y 2=z 3即x =37,y =67,z =97时,x 2+y 2+z 2有最小值187.规律方法 (1)使用柯西不等式证明的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明.(2)利用柯西不等式求最值的一般结构为:(a 21+a 22+…+a 2n )⎝ ⎛⎭⎪⎫1a 21+1a 22+…+1a 2n ≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边常数且应注意等号成立的条件.『训练3』 已知大于1的正数x ,y ,z 满足x +y +z =3 3.求证:x 2x +2y +3z+y 2y +2z +3x +z 2z +2x +3y ≥32. 证明 由柯西不等式及题意得,⎝ ⎛⎭⎪⎫x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y ·『(x +2y +3z )+(y +2z +3x )+(z +2x +3y )』≥(x +y +z )2=27.又(x +2y +3z )+(y +2z +3x )+(z +2x +3y )=6(x +y +z )=183,∴x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y ≥27183=32, 当且仅当x =y =z =3时,等号成立.『思想方法』证明不等式的方法和技巧:(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、唯一性命题,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法等.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的在本思路是去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.『易错防范』1.在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要求分析每次使用时等号是否成立.2.柯西不等式使用的关键是出现其结构形式,也要注意等号成立的条件.。
6.3 不等式的证明(二)●知识梳理1.用综合法证明不等式:利用不等式的性质和已证明过的不等式以及函数的单调性导出待证不等式的方法叫综合法,概括为“由因导果”.2.用分析法证明不等式:从待证不等式出发,分析并寻求使这个不等式成立的充分条件的方法叫分析法,概括为“执果索因”.3.放缩法证明不等式.4.利用单调性证明不等式.5.构造一元二次方程利用“Δ”法证明不等式.6.数形结合法证明不等式.7.反证法、换元法等.特别提示不等式证明方法多,证法灵活,其中比较法、分析法、综合法是基本方法,要熟练掌握,其他方法作为辅助,这些方法之间不能截然分开,要综合运用各种方法.●点击双基1.(2005年春季北京,8)若不等式(-1)na <2+nn 11+-)(对任意n ∈N *恒成立,则实数a 的取值范围是A.[-2,23) B.(-2,23) C.[-3,23)D.(-3,23) 解析:当n 为正偶数时,a <2-n 1,2-n 1为增函数,∴a <2-21=23. 当n 为正奇数时,-a <2+n 1,a >-2-n 1.而-2-n 1为增函数,-2-n1<-2, ∴a ≥-2.故a ∈[-2,23). 答案:A2.(2003年南京市质检题)若a 1<b1<0,则下列结论不正确...的是 A.a 2<b 2B.ab <b 2C.a b +ba>2D.|a |+|b |>|a +b |解析:由a 1<b1<0,知b <a <0.∴A 不正确. 答案:A3.分析法是从要证的不等式出发,寻求使它成立的A.充分条件B.必要条件C.充要条件D.既不充分又不必要条件 答案:A4.(理)在等差数列{a n }与等比数列{b n }中,a 1=b 1>0,a n =b n >0,则a m 与b m 的大小关系是____________.解析:若d =0或q =1,则a m =b m .若d ≠0,画出a n =a 1+(n -1)d 与b n =b 1·q n -1的图象,易知a m >b m ,故a m ≥b m . 答案:a m ≥b m(文)在等差数列{a n }与等比数列{b n }中,a 1=b 1>0,a 2n +1=b 2n +1>0(n =1,2,3,…),则a n +1与b n +1的大小关系是____________.解析:a n +1=2121++n a a ≥121+n a a =121+n b b =b n +1. 答案:a n +1≥b n +15.若a >b >c ,则b a -1+c b -1_______c a -3.(填“>”“=”“<”)解析:a >b >c ,(b a -1+c b -1)(a -c )=(b a -1+cb -1)[(a -b )+(b -c )] ≥2))((c b b a --1·2))((c b b a --=4.∴b a -1+c b -1≥c a -4>ca -3. 答案:> ●典例剖析【例1】 设实数x 、y 满足y +x 2=0,0<a <1.求证:log a (a x +a y)<log a 2+81.剖析:不等式左端含x 、y ,而右端不含x 、y ,故从左向右变形时应消去x 、y .证明:∵a x >0,a y>0, ∴a x+a y≥2y x a +=22x x a -.∵x -x 2=41-(x -21)2≤41,0<a <1,∴a x +a y≥241a =2a 81.∴log a (a x+a y)<log a 2a 81=log a 2+81.评述:本题的证题思路可由分析法获得.要证原不等式成立,只要证a x +a y≥2·a 81即可. 【例2】 已知a 、b 、c ∈R +,且a +b +c =1.求证: (1+a )(1+b )(1+c )≥8(1-a )(1-b )(1-c ).剖析:在条件“a +b +c =1”的作用下,将不等式的“真面目”隐含了,给证明不等式带来困难,若用“a +b +c ”换成“1”,则还原出原不等式的“真面目”,从而抓住实质,解决问题.证明:∵a 、b 、c ∈R +且a +b +c =1, ∴要证原不等式成立, 即证[(a +b +c )+a ]·[(a +b +c )+b ][(a +b +c )+c ]≥8[(a +b +c )-a ]·[(a +b +c )-b ]·[(a +b +c )-c ].也就是证[(a +b )+(c +a )][(a +b )+(b +c )]·[(c +a )+(b +c )]≥8(b +c )(c +a )(a +b ). ①∵(a +b )+(b +c )≥2))((c b b a ++>0, (b +c )+(c +a )≥2))((a c c b ++>0, (c +a )+(a +b )≥2))((b a a c ++>0, 三式相乘得①式成立. 故原不等式得证.【例3】 已知a >1,n ≥2,n ∈N *. 求证:n a -1<na 1-. 证法一:要证n a -1<n a 1-,即证a <(na 1-+1)n. 令a -1=t >0,则a =t +1.也就是证t +1<(1+nt )n. ∵(1+n t )n =1+C 1n n t +…+C n n (n t )n >1+t ,即n a -1<na 1-成立. 证法二:设a =x n,x >1.于是只要证nx n 1->x -1,即证11--x x n >n .联想到等比数列前n 项和1+x +…+x n -1=11--x x n,① 倒序xn -1+xn -2+…+1=11--x x n .②①+②得2·11--x x n =(1+x n -1)+(x +x n -2)+…+(x n -1+1)>21-n x +21-n x +…+21-n x >2n . ∴11--x x n >n .思考讨论本不等式是与自然数有关的命题,用数学归纳法可以证吗?读者可尝试一下. ●闯关训练 夯实基础1.已知a 、b 是不相等的正数,x =2b a +,y =b a +,则x 、y 的关系是A.x >yB.y >xC.x >2yD.不能确定解析:∵x 2=21(a +b )2=21(a +b +2ab ), y 2=a +b =21(a +b +a +b )>21(a +b +2ab )=x 2,又x >0,y >0.∴y >x . 答案:B2.对实数a 和x 而言,不等式x 3+13a 2x >5ax 2+9a 3成立的充要条件是____________.解析:(x 3+13a 2x )-(5ax 2+9a 3) =x 3-5ax 2+13a 2x -9a 3=(x -a )(x 2-4ax +9a 2)=(x -a )[(x -2a )2+5a 2]>0.∵当x ≠2a ≠0时,有(x -2a )2+5a 2>0.由题意故只需x -a >0即x >a ,以上过程可逆. 答案:x >a3.已知a >b >c 且a +b +c =0,求证:ac b -2<3a . 证明:要证ac b -2<3a ,只需证b 2-ac <3a 2,即证b 2+a (a +b )<3a 2,即证(a -b )(2a +b )>0, 即证(a -b )(a -c )>0. ∵a >b >c ,∴(a -b )·(a -c )>0成立. ∴原不等式成立.4.已知a +b +c =0,求证:ab +bc +ca ≤0.证法一:(综合法)∵a +b +c =0,∴(a +b +c )2=0.展开得ab +bc +ca =-2222c b a ++,∴ab +bc +ca ≤0. 证法二:(分析法)要证ab +bc +ca ≤0, ∵a +b +c =0,故只需证ab +bc +ca ≤(a +b +c )2,即证a 2+b 2+c 2+ab +bc +ca ≥0,亦即证21[(a +b )2+(b +c )2+(c +a )2]≥0. 而这是显然的,由于以上相应各步均可逆, ∴原不等式成立.证法三:∵a +b +c =0,∴-c =a +b .∴ab +bc +ca =ab +(b +a )c =ab -(a +b )2=-a 2-b 2-ab =-[(a +2b )2+432b ]≤0.∴ab +bc +ca ≤0.培养能力5.设a +b +c =1,a 2+b 2+c 2=1且a >b >c . 求证:-31<c <0.证明:∵a 2+b 2+c 2=1,∴(a +b )2-2ab +c 2=1.∴2ab =(a +b )2+c 2-1=(1-c )2+c 2-1=2c 2-2c .∴ab =c 2-c .又∵a +b =1-c ,∴a 、b 是方程x 2+(c -1)x +c 2-c =0的两个根,且a >b >c . 令f (x )=x 2+(c -1)x +c 2-c ,则⎪⎪⎩⎪⎪⎨⎧><<-⇒>->.0031210)(c f c c c Δ6.已知ac b 22-=1,求证:方程ax 2+bx +c =0有实数根. 证明:由a cb 22-=1,∴b =22c a +. ∴b 2=(2a+2c )2=22a +2ac +2c 2=4ac +(2a -2c )2≥4ac .∴方程ax 2+bx +c =0有实数根.7.设a 、b 、c 均为实数,求证:a 21+b 21+c 21≥c b +1+a c +1+ba +1. 证明:∵a 、b 、c 均为实数,∴21(a 21+b 21)≥ab21≥b a +1,当a =b 时等号成立;21(b 21+c 21)≥bc21≥c b +1,当b =c 时等号成立; 21(c 21+a 21)≥ca21≥a c +1. 三个不等式相加即得a 21+b 21+c 21≥c b +1+a c +1+ba +1,当且仅当a =b =c 时等号成立. 探究创新8.已知a 、b 、c 、d ∈R ,且a +b =c +d =1,ac +bd >1. 求证:a 、b 、c 、d 中至少有一个是负数. 证明:假设a 、b 、c 、d 都是非负数, ∵a +b =c +d =1,∴(a +b )(c +d )=1.∴ac +bd +bc +ad =1≥ac +bd .这与ac +bd >1矛盾. 所以假设不成立,即a 、b 、c 、d 中至少有一个负数. ●思悟小结1.综合法就是“由因导果”,从已知不等式出发,不断用必要条件替换前面的不等式,直至推出要证的结论.2.分析法就是“执果索因”,从所证不等式出发,不断用充分条件替换前面的不等式,直至找到成立的不等式.3.探求不等式的证法一般用分析法,叙述证明过程用综合法较简,两法结合在证明不等式中经常遇到.4.构造函数利用单调性证不等式或构造方程利用“Δ≥0”证不等式,充分体现相关知识间的联系.●教师下载中心 教学点睛1.在证明不等式的过程中,分析法和综合法是不能分离的,如果使用综合法证明不等式难以入手时,常用分析法探索证题途径,之后用综合法的形式写出它的证明过程,以适应学生习惯的思维规律.有时问题证明难度较大,常使用分析综合法,实现两头往中间靠以达到证题目的.2.由于高考试题不会出现单一的不等式的证明题,常常与函数、数列、三角、方程综合在一起,所以在教学中,不等式的证明除常用的三种方法外,还需介绍其他方法,如函数的单调性法、判别式法、换元法(特别是三角换元)、放缩法以及数学归纳法等.拓展题例【例1】 已知a 、b 为正数,求证:(1)若a +1>b ,则对于任何大于1的正数x ,恒有ax +1-x x>b 成立; (2)若对于任何大于1的正数x ,恒有ax +1-x x>b 成立,则a +1>b . 分析:对带条件的不等式的证明,条件的利用常有两种方法:①证明过程中代入条件;②由条件变形得出要证的不等式.证明:(1)ax +1-x x =a (x -1)+11-x +1+a ≥2a +1+a =(a +1)2. ∵a +1>b (b >0),∴(a +1)2>b 2. (2)∵ax +1-x x >b 对于大于1的实数x 恒成立,即x >1时,[ax +1-x x ]min >b , 而ax +1-x x =a (x -1)+11-x +1+a ≥2a +1+a =(a +1)2, 当且仅当a (x -1)=11-x ,即x =1+a1>1时取等号.故[ax +1-x x ]min =(a +1)2.则(a +1)2>b ,即a +1>b .评述:条件如何利用取决于要证明的不等式两端的差异如何消除. 【例2】 求证:||1||b a b a +++≤||1||a a ++||1||b b +.剖析:|a +b |≤|a |+|b |,故可先研究f (x )=xx+1(x ≥0)的单调性. 证明:令f (x )=xx+1(x ≥0),易证f (x )在[0,+∞)上单调递增. |a +b |≤|a |+|b |,∴f (|a +b |)≤f (|a |+|b |),即||1||b a b a +++≤||||1||||b a b a +++=||||1||||||1||b a b b a a +++++≤||1||||1||b b a a +++.思考讨论1.本题用分析法直接去证可以吗?2.本题当|a +b |=0时,不等式成立;当|a +b |≠0时,原不等式即为||111b a ++≤||1||||1||b b a a +++.再利用|a +b |≤|a |+|b |放缩能证吗?读者可以尝试一下!。
第2讲不等式的证明板块一知识梳理·自主学习[必备知识]考点1 比较法比较法是证明不等式最基本的方法,可分为作差比较法和作商比较法两种.考点2 综合法一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法.综合法又叫由因导果法.考点3 分析法证明命题时,从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法,这是一种执果索因的思考和证明方法.考点4 反证法证明命题时先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而得出原命题成立,我们把这种证明方法称为反证法.考点5 放缩法证明不等式时,通过把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法.考点6 柯西不等式 1.二维形式的柯西不等式定理1 若a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时,等号成立.2.柯西不等式的向量形式定理2 设α,β是两个向量,则|α·β|≤|α|·|β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立.[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)用反证法证明命题“a ,b ,c 全为0”时,假设为“a ,b ,c 全不为0”.( ) (2)若x +2yx -y>1,则x +2y >x -y .( ) (3)|a +b |+|a -b |≥|2a |.( )(4)若实数x 、y 适合不等式xy >1,x +y >-2,则x >0,y >0.( ) 答案 (1)× (2)× (3)√ (4)√2.[2018·温州模拟]若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( ) A.1a <1bB .a 2>b 2C.ac 2+1>bc 2+1D .a |c |>b |c |答案 C解析 应用排除法.取a =1,b =-1,排除A ;取a =0,b =-1,排除B ;取c =0,排除D.显然1c 2+1>0,对不等式a >b 的两边同时乘以1c 2+1,立得a c 2+1>bc 2+1成立.故选C. 3.[课本改编]不等式:①x 2+3>3x ;②a 2+b 2≥2(a -b -1);③b a +ab≥2,其中恒成立的是( )A .①③B .②③C .①②③D .①② 答案 D解析 由①得x 2+3-3x =⎝ ⎛⎭⎪⎫x -322+34>0,所以x 2+3>3x ;对于②,因为a 2+b 2-2(a -b-1)=(a -1)2+(b +1)2≥0,所以不等式成立;对于③,因为当ab <0时,b a +a b -2=(a -b )2ab<0,即b a +ab<2.故选D.4.[2018·南通模拟]若|a -c |<|b |,则下列不等式中正确的是( ) A .a <b +c B .a >c -b C .|a |>|b |-|c |D .|a |<|b |+|c |答案 D解析 |a |-|c |≤|a -c |<|b |,即|a |<|b |+|c |,故选D.5.已知a ,b ,c 是正实数,且a +b +c =1,则1a +1b +1c的最小值为________.答案 9解析 解法一:把a +b +c =1代入1a +1b +1c,得a +b +c a +a +b +c b +a +b +cc=3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c≥3+2+2+2=9,当且仅当a =b =c =13时,等号成立.解法二:由柯西不等式得:(a +b +c )⎝ ⎛⎭⎪⎫1a +1b +1c ≥⎝⎛⎭⎪⎫a ·1a +b ·1b+c ·1c 2,即1a +1b +1c≥9.6.[2017·全国卷Ⅱ]已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b ) ≤2+3(a +b )24(a +b )=2+3(a +b )34,所以(a +b )3≤8,因此a +b ≤2.板块二 典例探究·考向突破 考向比较法证明不等式例 1 [2016·全国卷Ⅱ]已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集.(1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.解 (1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2,得-2x <2,解得x >-1,即-1<x ≤-12;当-12<x <12时,f (x )<2,即-12<x <12;当x ≥12时,由f (x )<2,得2x <2,解得x <1,即12≤x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0.因此|a +b |<|1+ab |.触类旁通比较法证明的一般步骤一般步骤:作差—变形—判断—结论.为了判断作差后的符号,有时要把这个差变形为一个常数,或者变形为一个常数与一个或几个平方和的形式,也可变形为几个因式的积的形式,以判断其正负.常用的变形技巧有因式分解、配方、拆项、拼项等方法.【变式训练1】 [2018·福建模拟]已知函数f (x )=|x +1|. (1)求不等式f (x )<|2x +1|-1的解集M ; (2)设a ,b ∈M ,证明:f (ab )>f (a )-f (-b ).解 (1)当x ≤-1时,原不等式可化为-x -1<-2x -2,解得x <-1;当-1<x <-12时,原不等式可化为x +1<-2x -2,解得x <-1,此时原不等式无解;当x ≥-12时,原不等式可化为x +1<2x ,解得x >1,综上,M ={x |x <-1或x >1}.(2)证明:证法一:因为f (ab )=|ab +1|=|(ab +b )+(1-b )|≥|ab +b |-|1-b |=|b ||a +1|-|1-b |.因为a ,b ∈M ,所以|b |>1,|a +1|>0, 所以f (ab )>|a +1|-|1-b |, 即f (ab )>f (a )-f (-b ).证法二:因为f (a )-f (-b )=|a +1|-|-b +1| ≤|a +1-(-b +1)|=|a +b |, 所以要证f (ab )>f (a )-f (-b ),只需证|ab +1|>|a +b |,即证|ab +1|2>|a +b |2,即证a 2b 2+2ab +1>a 2+2ab +b 2,即证a 2b 2-a 2-b 2+1>0,即证(a 2-1)(b 2-1)>0.因为a ,b ∈M ,所以a 2>1,b 2>1,所以(a 2-1)(b 2-1)>0成立,所以原不等式成立.考向用综合法与分析法证明不等式例 2 (1)[2018·浙江金华模拟]已知x ,y ∈R . ①若x ,y 满足|x -3y |<12,|x +2y |<16,求证:|x |<310;②求证:x 4+16y 4≥2x 3y +8xy 3. 证明 ①利用绝对值不等式的性质得:|x |=15[|2(x -3y )+3(x +2y )|]≤15[|2(x -3y )|+|3(x +2y )|]<15⎝ ⎛⎭⎪⎫2×12+3×16=310.②因为x 4+16y 4-(2x 3y +8xy 3) =x 4-2x 3y +16y 4-8xy 3=x 3(x -2y )+8y 3(2y -x ) =(x -2y )(x 3-8y 3)=(x -2y )(x -2y )(x 2+2xy +4y 2) =(x -2y )2[(x +y )2+3y 2]≥0, ∴x 4+16y 4≥2x 3y +8xy 3.(2)[2018·徐州模拟]已知a ,b ∈R ,a >b >e(其中e 是自然对数的底数),求证:b a>a b.(提示:可考虑用分析法找思路)证明 ∵b a>0,a b>0, ∴要证b a>a b 只要证a ln b >b ln a 只要证ln b b >ln aa.(∵a >b >e)取函数f (x )=ln x x ,∵f ′(x )=1-ln x x2令f ′(x )=0,x =e∴当x >e 时,f ′(x )<0,∴函数f (x )在(e ,+∞)上单调递减. ∴当a >b >e 时,有f (b )>f (a ), 即ln b b >ln aa,得证.触类旁通综合法与分析法的逻辑关系用综合法证明不等式是“由因导果”,分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提.【变式训练2】 (1)设a ,b ,c 均为正数,且a +b +c =1,证明:①ab +bc +ca ≤13;②a 2b +b 2c +c 2a≥1. 证明 ①由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1, 即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca )≤1, 即ab +bc +ca ≤13.②证法一:因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c 2a≥1.证法二:由柯西不等式得:(a +b +c )⎝ ⎛⎭⎪⎫c 2a +a 2b +b 2c ≥(c +a +b )2,∵a +b +c =1,∴c 2a +a 2b +b 2c≥1. (2)[2015·全国卷Ⅱ]设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: ①若ab >cd ,则a +b >c +d ;②a +b >c +d 是|a -b |<|c -d |的充要条件.证明 ①因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd ,得(a +b )2>(c +d )2.所以a +b >c +d .②(ⅰ)若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd . 因为a +b =c +d ,所以ab >cd . 由①得a +b >c +d .(ⅱ)若a +b >c +d ,则(a +b )2>(c +d )2, 即a +b +2ab >c +d +2cd . 因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2, 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.考向 反证法证明不等式例 3 [2015·湖南高考]设a >0,b >0,且a +b =1a +1b.证明:(1)a +b ≥2;(2)a 2+a <2与b 2+b <2不可能同时成立.证明 由a +b =1a +1b =a +bab,a >0,b >0,得ab =1.(1)由基本不等式及ab =1,有a +b ≥2ab =2,即a +b ≥2,当且仅当a =b =1时等号成立.(2)假设a 2+a <2与b 2+b <2同时成立,则由a 2+a <2及a >0,得0<a <1;同理,0<b <1,从而ab <1,这与ab =1矛盾.故a 2+a <2与b 2+b <2不可能同时成立.触类旁通对于某些问题中所证结论若是“都是”“都不是”“至多”“至少”等问题,一般用反证法.其一般步骤是反设→推理→得出矛盾→肯定原结论.【变式训练3】 [2018·达州校级期末]已知a ,b ,c ∈(0,1).求证:(1-a )b ,(1-b )c ,(1-c )a 不能同时大于14.证明 假设三式同时大于14,即(1-a )b >14,(1-b )c >14,(1-c )a >14.三式同向相乘,得(1-a )a (1-b )b (1-c )c >164(*)又(1-a )a ≤⎝⎛⎭⎪⎫1-a +a 22=14,同理(1-b )b ≤14,(1-c )c ≤14.所以(1-a )a (1-b )b (1-c )c ≤164,与*式矛盾,即假设不成立,故结论正确.考向柯西不等式的应用例 4 柯西不等式是大数学家柯西在研究数学分析中的“流数”问题时得到的,柯西不等式是指:对任意实数a i ,b i (i =1,2,…,n ),有(a 1b 1+a 2b 2+…+a n b n )2≤(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n ),当且仅当a i =kb i (i =1,2,…,n )时,等号成立.(1)证明:当n =2时的柯西不等式;(2)设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,求m 2+n 2的最小值.解 (1)证明:当n =2时,柯西不等式的二维形式为:(a 21+a 22)(b 21+b 22)≥(a 1b 1+a 2b 2)2,(a 21+a 22)(b 21+b 22)-(a 1b 1+a 2b 2)2=a 21b 22+a 22b 21-2a 1a 2b 1b 2=(a 1b 2-a 2b 1)2≥0,当且仅当a 1b 2=a 2b 1时取得等号.(2)由柯西不等式得(a 2+b 2)(m 2+n 2)≥(ma +nb )2,所以5(m 2+n 2)≥52即m 2+n 2≥5,所以m 2+n 2的最小值为 5.触类旁通利用柯西不等式解题时,要注意配凑成相应的形式,既可从左向右用,也可从右向左用.【变式训练4】 [2018·皇姑区校级期末]设xy >0,则⎝⎛⎭⎪⎫x 2+4y 2⎝⎛⎭⎪⎫y 2+1x2的最小值为( )A .-9B .9C .10D .0 答案 B解析 ⎝ ⎛⎭⎪⎫x 2+4y 2⎝ ⎛⎭⎪⎫y 2+1x 2≥⎝⎛⎭⎪⎫x ·1x +2y·y 2=9.当且仅当xy =2xy即xy =2时取等号.故选B.核心规律1.证明不等式的方法灵活多样,但比较法、综合法、分析法和反证法仍是证明不等式的基本方法.要依据题设、题目的结构特点、内在联系,选择恰当的证明方法,要熟悉各种证法中的推理思维方法,并掌握相应的步骤,技巧和语言特点.2.综合法往往是分析法的相反过程,其表述简单、条理清楚.当问题比较复杂时,通常把分析法和综合法结合起来使用,以分析法寻找证明的思路,而用综合法叙述、表达整个证明过程.3.不等式证明中的裂项形式: (1)1n (n +1)=1n -1n +1,1n (n +k )=1k ⎝ ⎛⎭⎪⎫1n -1n +k .(2)1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.(3)1k -1k +1=1(k +1)k <1k 2<1(k -1)k =1k -1-1k . (4)1n (n +1)(n +2)=12⎣⎢⎡⎦⎥⎤1n (n +1)-1(n +1)(n +2).满分策略1.作差比较法适用的主要题型是多项式、分式、对数式、三角式,作商比较法适用的主要题型是高次幂乘积结构.2.如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、唯一性命题,则考虑用反证法.3.高考命题专家说:“放缩是一种能力.”如何把握放缩的“度”,使得放缩“恰到好处”,这正是放缩法的精髓和关键所在!板块三 模拟演练·提能增分[A 级 基础达标]1.已知a ,b ,c ,d 均为正数,S =a a +b +d +b b +c +a +c c +d +b +d d +a +c,则一定有( )A .0<S <1B .1<S <2C .2<S <3D .3<S <4答案 B 解析 S >a a +b +c +d +b a +b +c +d +ca +b +c +d +da +b +c +d=1,S <aa +b +ba +b +cc +d +dc +d=2,∴1<S <2.故选B.2.[2018·驻马店期末]若x 1,x 2,x 3∈(0,+∞),则3个数x 1x 2,x 2x 3,x 3x 1的值( ) A .至多有一个不大于1 B .至少有一个不大于1 C .都大于1 D .都小于1答案 B解析 解法一:设x 1≤x 2≤x 3,则x 1x 2≤1,x 2x 3≤1,x 3x 1≥1.故选B. 解法二:设x 1x 2>1,x 2x 3>1,x 3x 1>1, ∴x 1x 2·x 2x 3·x 3x 1>1与x 1x 2·x 2x 3·x 3x 1=1矛盾, ∴至少有一个不大于1.3.设x >0,y >0,M =x +y 2+x +y ,N =x 2+x +y2+y,则M 、N 的大小关系为________.答案 M <N解析 N =x 2+x +y 2+y >x 2+x +y +y2+x +y=x +y2+x +y=M .4.已知a ,b ∈R ,a 2+b 2=4,则3a +2b 的取值范围是________. 答案 [-213,213] 解析 根据柯西不等式(ac +bd )2≤(a 2+b 2)·(c 2+d 2),可得(3a +2b )2≤(a 2+b 2)·(32+22) ∴-213≤3a +2b ≤213. 3a +2b ∈[-213,213].[B 级 能力达标]5.求证:11×3+13×5+15×7+…+1(2n -1)(2n +1)<12(n ∈N *).证明 ∵1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1∴左边=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1<12.6.[2018·泸州模拟]设函数f (x )=⎪⎪⎪⎪⎪⎪x -4a +|x +a |(a >0).(1)证明:f (x )≥4;(2)若f (2)<5,求a 的取值范围.解 (1)证明:⎪⎪⎪⎪⎪⎪x -4a +|x +a |≥⎪⎪⎪⎪⎪⎪x +a +4a-x =a +4a≥4;当且仅当a =2时取等号.(2)f (2)=⎪⎪⎪⎪⎪⎪2-4a +|a +2|.①当a =2时,⎪⎪⎪⎪⎪⎪2-4a +|2+a |<5显然满足;②当 0<a ≤2时,不等式变成a +4a<5,即a 2-5a +4<0⇒1<a <4,联立求解得1<a ≤2;③当a >2时,不等式变成a 2-a -4<0,∴1-172<a <1+172,联立求解得2<a <1+172.综上,a 的取值范围为1<a <1+172. 7.[2018·龙门县校级模拟]已知函数f (x )=|2x -1|.(1)若不等式f ⎝ ⎛⎭⎪⎫x +12≤2m +1(m >0)的解集为[-2,2],求实数m 的值; (2)对任意x ∈R ,y >0,求证:f (x )≤2y +42y+|2x +3|.解 (1)不等式f ⎝ ⎛⎭⎪⎫x +12≤2m +1⇔|2x |≤2m +1(m >0), ∴-m -12≤x ≤m +12,由解集为[-2,2],可得m +12=2,解得m =32.(2)证明:原不等式即为|2x -1|-|2x +3|≤2y +42y .令g (x )=|2x -1|-|2x +3|≤|(2x -1)-(2x +3)|=4, 当2x +3≤0,即x ≤-32时,g (x )取得最大值4,又2y +42y≥22y ·42y =4,当且仅当2y =42y,即y =1时,取得最小值4.则|2x -1|-|2x +3|≤2y +42y. 故原不等式成立.8.[2018·黄山期末](1)已知a ,b ∈(0,+∞),求证:x ,y ∈R ,有x 2a +y 2b ≥(x +y )2a +b;(2)若0<a <2,0<b <2,0<c <2,求证:(2-a )b ,(2-b )c ,(2-c )a 不能同时大于1.证明 (1)证法一:⎝ ⎛⎭⎪⎫x 2a +y 2b (a +b )=x 2+bx 2a +ay 2b +y 2≥x 2+2xy +y 2=(x +y )2,当且仅当bx 2a =ay 2b,即|bx |=|ay |时取等号,由于a ,b ∈(0,+∞),所以有x 2a +y 2b ≥(x +y )2a +b. 证法二:由柯西不等式得(a +b )⎝ ⎛⎭⎪⎫x 2a +y 2b ≥⎝ ⎛⎭⎪⎫a ·x a +b ·y b 2, 即(a +b )⎝ ⎛⎭⎪⎫x 2a +y 2b ≥(x +y )2, x 2a +y 2b ≥(x +y )2a +b. (2)假设结论不成立,即(2-a )b ,(2-b )c ,(2-c )a 同时大于1.⎭⎪⎬⎪⎫(2-a )b >1(2-b )c >1(2-c )a >1⇒(2-a )b ·(2-b )c ·(2-c )a >1, 而(2-a )b ·(2-b )c · (2-c )a =(2-a )a ·(2-b )b ·(2-c )c ≤⎝ ⎛⎭⎪⎫2-a +a 22⎝ ⎛⎭⎪⎫2-b +b 22⎝ ⎛⎭⎪⎫2-c +c 22=1, 这与(2-a )b ·(2-b )c ·(2-c )a >1矛盾.所以假设错误,即(2-a )b ,(2-b )c ,(2-c )a 不能同时大于1.9.[2018·天津期末]已知x >y >0,m >0.(1)试比较y x 与y +m x +m的大小; (2)用分析法证明:xy (2-xy )≤1. 解 (1)因为y x -y +m x +m =m (y -x )x (x +m ),x >y >0,m >0. 所以m (y -x )<0,x (x +m )>0,所以m (y -x )x (x +m )<0,即y x -y +m x +m<0, 所以y x <y +m x +m . (2)证明:(用分析法证明)要证xy (2-xy )≤1,只需证2xy -(xy )2≤1,只需证(xy )2-2xy +1≥0,即证(xy -1)2≥0,因为x ,y >0,且(xy -1)2≥0成立,所以xy (2-xy )≤1.10.[2018·江阴市期末]已知实数a >0,b >0.(1)若a +b >2,求证:1+b a ,1+a b中至少有一个小于2; (2)若a -b =2,求证:a 3+b >8.证明 (1)假设1+b a ,1+a b 都不小于2,则1+b a ≥2,1+a b≥2,因为a >0,b >0,所以1+b ≥2a,1+a ≥2b ,1+1+a +b ≥2(a +b ),即2≥a +b ,这与已知a +b >2相矛盾,故假设不成立.综上,1+b a ,1+a b中至少有一个小于2. (2)∵a -b =2,∴b =a -2,∵b >0,∴a >2,∴a 3+b -8=a 3-8+a -2=(a -2)(a 2+2a +5),∴(a -2)[(a +1)2+4]>0,∴a 3+b >8.。