基于MATLAB的数字图像边缘检测算法研究开题报告
- 格式:doc
- 大小:37.50 KB
- 文档页数:2
重庆邮电大学毕业设计(论文)任务书学生姓名_A_学院_计算机学院_专业_地理信息系统_年级班别_1 _指导教师 —b__职 称—副教授—下达任务日期_2009_年_ 1_月_ 10_日研究内容 1•收集相关的相关学术报告,对其进行深入的学习了解及分析,了 解各种处理图像的过程和方法,了解常用的边缘检测算法,如图像的数 字化和离散图像的数学描述;数学形态学与二值图像的数学形态学运算; 图像分割和特征提取中的分割技术;边缘提取的经典方法;图像特征提 2.对经典边缘检测算法进行学习、分析和比较,如 Roberts 算子、 Sobel 算子、Prewitt 算子、Laplacian 算子、Marr 算子、Canny 算子等;3.用VC++实现这些算法,对边缘检测算法进行理解和加深,并通 过比较找出每种算法的优缺点和各自适用的范围;4.对上述算法融合自己的想法,并初步提出改进,让算法更实用。
研究方法和要求一个好的边缘检测算子应该具有三个指标: 1•低失误率,既要少将真正的边缘丢失也要少将非边缘判为边缘;2•高位置精度,检测出的边缘应在真正的边界上; 3.对每个边缘有唯一的响应,得到的边界为单像素宽;要做好边缘检测,首先,清楚待检测的图像特性变化的形式,从而使用适应这类变化的检测方法。
其次,要知道特性变化总是发生在一定 的空间范围内,不能期望用一种检测算子就能最佳检测出发生在图像上的所有特性变化。
当需要提取多空间范围内的变化特性时,要多考虑算子的综合应用。
第三,要考虑噪声的影响,其中的一个办法就是滤除噪设计(论文)题目 ____图象边缘检测算法研究与实现主要研究内容取等;方法和要求声,但这有一定的局限性。
第四,可以考虑各种方法的组合;第五,在正确检测边缘的基础上,要考虑精确定位的问题。
进度计划4月 2号-4月19号:4月on C R -7 县.20号5月7号:5月Q县8号5月23号.5月 24号一—5月31号:查阅相关资料,写出开题报告,熟悉VC++开发工具,并用VC++实现一些经典的算法测试,编写文档,完成毕业设计论文初稿对毕业设计论文进行修改,并最终完成毕业设计论文主要参考文献[1][2][3][4][7][8][9]谢凤英等.VC++数字图像处理[M].电子工业出版社,2008. 9.K. R. Castlemen, 朱志刚等(译).数字图象处理[M].北京.电子工业出版社.1998. 387-422.张凯丽,刘辉.边缘检测技术的发展研究[J].昆明理工大学学报,2000, 25(5): 36-39章毓晋.图象分割[M].北京:科学出版社,2001. 116-119. 何斌,马天予等编著.Visual C++数字图像处理[M], 2001.4.刘曙光,刘明远等.基于Canny准则的基数B样条小波边缘检测[J].信号处理,2001,17(5):418-423.赵志刚,管聪慧.基于多尺度边缘检测的自适应阈值小波图像降噪[J+].仪器仪表学报,2007,(2): 288-292田岩岩,齐国清.基于小波变换模极大值的边缘检测方法[J].大连海事大学学报:自然科学版,2007, (1): 102-106Mallat Stephane, Zhong Sifen. Characterization of Signals fromMultiscale EdgesJ]. IEEE Trans. on Pattern Analysis and MachineIn tellige nee, 1992, 14(7): 710-733[10]王文庆,支华.基于统计的边缘阈值检验方法[J].测绘科学,2007(2):71-72.指导教师签字教学部主任签字备注:此任务书由指导教师填写,并于毕业设计(论文)开始前下达给学生。
基于matlab的图像边缘检测算法研究和仿真目录第1章绪论 11.1 序言 11.2 数字图像边缘检测算法的意义 1第2章传统边缘检测方法及理论基础 2 2.1 数字图像边缘检测的现状与发展 22.2 MATLAB和图像处理工具箱的背景知识 32.3 数字图像边缘检测关于边缘的定义 42.4 基于一阶微分的边缘检测算子 42.5 基于二阶微分的边缘检测算子 7第3章编程和调试 103.1 edge函数 103.2 边缘检测的编程实现 11第4章总结 13第5章图像边缘检测应用领域 13附录参考文献 15第1章绪论§1.1 序言理解图像和识别图像中的目标是计算机视觉研究的中心任务,物体形状、物体边界、位置遮挡、阴影轮廓及表面纹理等重要视觉信息在图像中均有边缘产生。
图像边缘是分析理解图像的基础,它是图像中最基本的特征。
在Marr的计算机视觉系统中,图像边缘提取占据着非常重要位置,它位于系统的最底层,为其它模块所依赖。
图像边缘提取作为计算机视觉领域最经典的研究课题,长期受到人们的重视。
图像边缘主要划分为阶跃状和屋脊状两种类型。
阶跃状边缘两侧的灰度值变化明显,屋脊状边缘则位于灰度增加与减少的交界处。
传统的图像边缘检测方法大多是从图像的高频分量中提取边缘信息,微分运算是边缘检测与提取的主要手段。
由于传统的边缘检测方法对噪声敏感,所以实际运用效果有一定的局限性。
近年来,越来越多的新技术被引入到边缘检测方法中,如数学形态学、小波变换、神经网络和分形理论等。
Canny于1986年提出基于最优化算法的边缘检测算子,得到了广泛的应用,并成了与其它实验结果作比较的标准。
其原因在于他最先建立了优化边缘检测算子的理论基础,提出了迄今为止定义最为严格的边缘检测的三个标准。
另外其相对简单的算法使得整个过程可以在较短的时间实现。
实验结果也表明,Canny算子在处理受加性高斯白噪声污染的图像方面获得了良好的效果[1]。
基于MATLAB的图形图像处理系统的实现的开题报告一、选题背景和意义图形图像处理是一项重要的计算机技术,在现代社会得到了广泛应用。
图形图像处理技术主要是指利用计算机对图像进行处理、分析、压缩、存储等操作。
MATLAB是一种非常流行的科学计算软件,具有强大的计算和图形处理功能,被广泛应用于科学计算、工程分析、数据探索等领域。
本项目旨在基于MATLAB实现一个图形图像处理系统,该系统可以对图像进行各种处理,并能将处理结果直观地展示。
二、研究内容和目标1. 系统需求分析首先对图形图像处理系统的需求进行分析,确定该系统需要实现的功能和具体的运行环境。
目标是基于MATLAB实现一个简单易用的图形图像处理系统,具有一定的实用性。
2. 图像处理算法研究选择常用的几种图像处理算法进行研究,包括图像滤波、边缘检测、二值化处理、形态学处理等。
研究各种算法的原理和实现方式,为后续系统的实现提供基础。
3. 系统设计和实现根据系统需求和图像处理算法的研究结果,对系统进行设计和实现。
设计包括系统结构、界面设计和算法实现等。
实现方面需要考虑MATLAB 编程语言特有的特点和使用需要注意的事项。
4. 系统测试和性能分析对系统进行全面的测试和性能分析,检验系统是否达到预期的目标。
分析系统的性能,包括运行速度、处理效果等指标。
三、研究方法和步骤1. 文献综述:针对图像处理技术和MATLAB编程语言相关文献进行综述和分析。
深入研究图像处理算法的原理和实现方式,熟悉MATLAB编程语言的基本语法和运用方式。
2. 需求分析:通过调研和访谈等方式,明确图形图像处理系统的需求,包括功能、性能和运行环境等方面。
3. 系统设计:根据需求分析结果,设计系统的结构和界面,并确定具体的算法实现方式。
4. 系统实现:依据系统设计方案,利用MATLAB编程语言实现图形图像处理系统。
5. 系统测试:对系统进行全面的测试和调试,评估系统的运行速度、处理效果等性能指标。
边缘检测matlab实验报告引言边缘检测在图像处理领域中是一项十分重要的任务。
它可以帮助我们从图像中提取出物体的边缘信息,对于图像分割、目标识别等任务都具有重要意义。
本实验旨在通过利用MATLAB中提供的边缘检测函数,实现对图像中边缘的提取,并对实验结果进行分析和探讨。
实验步骤1. 导入图像首先,我们需要从MATLAB工作环境中导入需要进行边缘检测的图像。
我们可以使用`imread`函数将图像读入到MATLAB的内存中。
matlabimage = imread('example.jpg');2. 灰度化灰度化是边缘检测的前提条件,它可以将一幅彩色图像转化为灰度图像,使得后续的操作更加简便。
我们可以使用`rgb2gray`函数将彩色图像转化为灰度图像。
matlabgray_image = rgb2gray(image);3. 边缘检测接下来,我们可以使用MATLAB中提供的边缘检测函数进行实际的边缘检测操作。
MATLAB中有许多边缘检测算法可供选择,例如Sobel算子、Canny算子等。
本实验我们选择使用Canny算子进行边缘检测。
matlabedge_image = edge(gray_image, 'Canny');4. 结果显示最后,我们可以使用`imshow`函数将原始图像和边缘检测结果显示出来,以便于观察和分析。
matlabsubplot(1, 2, 1);imshow(gray_image);title('原始图像');subplot(1, 2, 2);imshow(edge_image);title('边缘检测结果');5. 结果分析通过以上步骤,我们可以得到原始图像和边缘检测结果。
我们可以观察边缘检测结果,进一步分析图像中的边缘信息。
同时,我们还可以对不同的边缘检测算法进行对比实验,以评估它们的性能和适用性。
实验结果下图展示了使用Canny算子进行边缘检测的实验结果。
毕业设计(论文)开题报告题目:基于Matlab的数字图像处理学生姓名:学号:专业:通信工程指导教师:2011年 3 月 13 日一.文献综述:随着人类社会的进步和科学技术的发展,人们对信息处理和信息及交流的要求越来越高。
人们传递信息的主要媒介是语音和图像。
在接受的信息中,听觉信息占20%,视觉信息占60%,其它如味觉,嗅觉,触觉总的加起来不超过20%。
图像信息处理是人们视觉延续的重要手段。
人的眼睛只能看到波长为380到780nm的可见光部分,而迄今为止人类发现可成像的射线已有很多种,他们扩大了人类认识客观世界的能力。
数字图像处理是一个跨科学的前沿科技领域,在工程学,计算机科学,信息学,统计学,物理,化学,生物医学,地址,海洋,气象,农业,冶金等许多科学中的应用取得了巨大的成功和显著地经济效益。
图像是当光辐射能量照在物体上,经过他的反射或透射,或有发光物体本身发出的光能量,在人的视觉器官中所重现出的物体的视觉信息。
图像一般用Image表示,是视觉景物的某种形式的标记和记录。
通俗的说,图像是指利用技术手段把目标原封不动的再现。
由于图像感知的主题是人类,所以不仅可以将图像看作是二维平面上或三维立体空间中具有明暗或颜色变化的分布,还可以包括人的心理因素对图像接收和理解所产生的影像。
一般认为图片是图像的一种类型,在一些教科书中将其定义为“经过核实的光照后可见物体的分布”,图片强调了现实世界中的可见物体。
图形是指人为的图形,如图画,动画等人造的二维或三维图形,他强调应用一定的数学模型生成图形。
图形学是研究应用计算机生成,处理和显示图形的一门学科。
它涉及利用计算机将有概念或数学描述所表示的物体图像进行处理和现实的过程,侧重点在于根据给定的物体描述数学模型,光照及想象中的摄像机的成像几何,生成一幅图像的过程。
而图像处理进行的却是与其相反的过程,提示基于画面进行二维或三维物体模型的重建,这在很多场合是十分重要。
从20世纪60年代起,随着电子计算机技术的进步,数字图像处理技术得到了飞跃发展。
图像边缘检测方法研究的开题报告一、选题背景及意义随着数字图像处理技术的发展,图像边缘检测方法经历了从 Sobel 算子、Canny 算子、Laplacian 算子到更加前沿的基于深度学习的方法的演进,但图像边缘检测的准确性和稳定性依然是数字图像处理领域中的一个热点问题。
图像边缘检测在计算机视觉、图像识别等领域有着重要的应用,因此,对于图像边缘检测方法的研究具有重要的理论和实践意义。
二、研究内容本研究将重点探讨图像边缘检测中的经典和创新的算法,包括 Sobel、Prewitt、Roberts 算子、Canny 算子、Laplacian 算子、LoG 算子等经典算法,以及基于深度学习的算法,如卷积神经网络(CNN)等,结合实验数据对各种算法的准确性和稳定性进行对比分析,为更有效地应用图像边缘检测提供理论和实践基础。
三、研究方法1.文献研究法:对图像边缘检测领域目前应用较广泛的算法进行解析,分析各算法的优缺点,为后续实验提供理论基础;2.实验研究法:运用 MATLAB 等数学软件平台,结合不同的测试图像和算法,进行各种图像边缘检测算法的实验研究,从而实现对其准确性和稳定性进行全面评估;四、预期成果1. 收集归纳多种图像边缘检测方法的原理、优缺点等基本理论知识;2. 实现各种图像边缘检测算法,并对其进行实验验证,掌握不同算法的实用价值;3. 对比分析不同算法的准确性和稳定性,找出各种算法的内在关联,为进一步探索图像边缘检测方法提供理论基础。
五、研究难点深度学习算法设计与优化。
六、研究进度安排本研究计划分为以下三个阶段进行:1. 阅读相关文献资料,全面了解不同的图像边缘检测算法和机器学习算法,完成相关理论知识储备,预计耗时 1 个月;2. 在 MATLAB 等计算机软件平台上,实现各种图像边缘检测算法,并通过不同数据集的实验验证,预计耗时 2 个月;3. 在前两个阶段的基础上,对各种算法进行验证和探究,寻找更优秀的算法,用论文的形式进行总结,撰写实验报告和结论,预计耗时 3 个月。
基于matlab的图像边缘检测算法研究和仿真目录第1章绪论 11.1 序言 11.2 数字图像边缘检测算法的意义 1第2章传统边缘检测方法及理论基础 22.1 数字图像边缘检测的现状与发展 2 2.2 MATLAB和图像处理工具箱的背景知识 32.3 数字图像边缘检测关于边缘的定义 42.4 基于一阶微分的边缘检测算子 42.5 基于二阶微分的边缘检测算子 7第3章编程和调试103.1 edge函数 10 3.2 边缘检测的编程实现 11 第4章总结13第5章图像边缘检测应用领域13附录参考文献15第1章绪论§1.1 序言理解图像和识别图像中的目标是计算机视觉研究的中心任务,物体形状、物体边界、位置遮挡、阴影轮廓及表面纹理等重要视觉信息在图像中均有边缘产生。
图像边缘是分析理解图像的基础,它是图像中最基本的特征。
在Marr的计算机视觉系统中,图像边缘提取占据着非常重要位置,它位于系统的最底层,为其它模块所依赖。
图像边缘提取作为计算机视觉领域最经典的研究课题,长期受到人们的重视。
图像边缘主要划分为阶跃状和屋脊状两种类型。
阶跃状边缘两侧的灰度值变化明显,屋脊状边缘则位于灰度增加与减少的交界处。
传统的图像边缘检测方法大多是从图像的高频分量中提取边缘信息,微分运算是边缘检测与提取的主要手段。
由于传统的边缘检测方法对噪声敏感,所以实际运用效果有一定的局限性。
近年来,越来越多的新技术被引入到边缘检测方法中,如数学形态学、小波变换、神经网络和分形理论等。
Canny于1986年提出基于最优化算法的边缘检测算子,得到了广泛的应用,并成了与其它实验结果作比较的标准。
其原因在于他最先建立了优化边缘检测算子的理论基础,提出了迄今为止定义最为严格的边缘检测的三个标准。
另外其相对简单的算法使得整个过程可以在较短的时间内实现。
实验结果也表明,Canny算子在处理受加性高斯白噪声污染的图像方面获得了良好的效果[1]。
§1.2 数字图像边缘检测算法的意义数字图像处理是控制领域的重要课题,数字图像边缘检测是图像分割、目标区域识别和区域形状提取等图像分析领域十分重要的基础,是图像识别中提取图像特征的一个重要方法。
目录摘要 (1)引言 (2)第一章绪论 (3)1.1 课程设计选题的背景及意义 (3)1.2 图像边缘检测的发展现状 (4)第二章边缘检测的基本原理 (5)2.1 基于一阶导数的边缘检测 (8)2.2 基于二阶导的边缘检测 (9)第三章边缘检测算子 (10)3.1 Canny算子 (10)3.2 Roberts梯度算子 (11)3.3 Prewitt算子 (12)3.4 Sobel算子 (13)3.5 Log算子 (14)第四章MATLAB简介 (15)4.1 基本功能 (15)4.2应用领域 (16)第五章编程和调试 (17)5.1 edge函数 (17)5.2 边缘检测的编程实现 (17)第六章总结与体会 (20)参考文献 (21)附录 (22)附录A:程序代码 (22)附录B:各种边缘检测算子得到的边缘图像效果 (23)摘要边缘是图像最基本的特征,包含图像中用于识别的有用信息,边缘检测是数字图像处理中基础而又重要的内容。
该课程设计具体考察了5种经典常用的边缘检测算子,并运用Matlab进行图像处理结果比较。
梯度算子简单有效,LOG算法和Canny边缘检测器能产生较细的边缘。
边缘检测的目的是标识数字图像中灰度变化明显的点,而导函数正好能反映图像灰度变化的显著程度,因而许多方法利用导数来检测边缘。
在分析其算法思想和流程的基础上,利用MATLAB对这5种算法进行了仿真实验,分析了各自的性能和算法特点,比较边缘检测效果并给出了各自的适用范围。
关键词:边缘检测;图像处理;MATLAB仿真如需程序/Word版本,请访问: 嵌入式软件院。
引言边缘检测在图像处理系统中占有重要的作用,其效果直接影响着后续图像处理效果的好坏。
许多数字图像处理直接或间接地依靠边缘检测算法的性能,并且在模式识别、机器人视觉、图像分割、特征提取、图像压缩等方面都把边缘检测作为最基本的工具。
但实际图像中的边缘往往是各种类型的边缘以及它们模糊化后结果的组合,并且在实际图像中存在着不同程度的噪声,各种类型的图像边缘检测算法不断涌现。