(课标版)2020届高考物理二轮复习专题二第5讲应用“三大观点”解决力学综合问题课件
- 格式:pptx
- 大小:994.19 KB
- 文档页数:66
高考物理复习:力学三大观点的综合应用考点一 动力学和能量观点的应用[知能必备]1.过程分析:将复杂的物理过程分解为几个简单的物理过程,挖掘出题中的隐含条件,找出联系不同阶段的“桥梁”.2.受力及功能分析:分析物体所经历的各个运动过程的受力情况以及做功情况的变化,选择适合的规律求解.3.规律应用:选用相应规律解决不同阶段的问题,列出规律性方程.[典例剖析](2020·全国卷Ⅱ)如图,一竖直圆管质量为M ,下端距水平地面的高度为H ,顶端塞有一质量为m 的小球.圆管由静止自由下落,与地面发生多次弹性碰撞,且每次碰撞时间均极短;在运动过程中,管始终保持竖直.已知M =4m ,球和管之间的滑动摩擦力大小为4mg ,g 为重力加速度的大小,不计空气阻力.(1)求管第一次与地面碰撞后的瞬间,管和球各自的加速度大小;(2)管第一次落地弹起后,在上升过程中球没有从管中滑出,求管上升的最大高度; (3)管第二次落地弹起的上升过程中,球仍没有从管中滑出,求圆管长度应满足的条件. 解析:(1)管第一次落地弹起的瞬间,小球仍然向下运动.设此时管的加速度大小为a 1,方向向下;球的加速度大小为a 2,方向向上;球与管之间的摩擦力大小为f ,由牛顿运动定律有Ma 1=Mg +f ① ma 2=f -mg ②联立①②式并代入题给数据,得a 1=2g ,a 2=3g ③(2)管第一次碰地前与球的速度大小相同.由运动学公式,碰地前瞬间它们的速度大小均为v 0=2gH ④方向均向下.管弹起的瞬间,管的速度反向,球的速度方向依然向下.设自弹起时经过时间t 1,管与小球的速度刚好相同.取向上为正方向,由运动学公式v 0-a 1t 1=-v 0+a 2t 1⑤ 联立③④⑤式得t 1=252H g⑥ 设此时管下端的高度为h 1,速度为v .由运动学公式可得 h 1=v 0t 1-12a 1t 21⑦v =v 0-a 1t 1⑧由③④⑥⑧式可判断此时v >0.此后,管与小球将以加速度g 减速上升h 2,到达最高点.由运动学公式有h 2=v 22g⑨设管第一次落地弹起后上升的最大高度为H 1, 则H 1=h 1+h 2⑩联立③④⑥⑦⑧⑨⑩式可得H 1=1325H ⑪(3)设第一次弹起过程中球相对管的位移为x 1.在管开始下落到上升H 1这一过程中,由动能定理有Mg (H -H 1)+mg (H -H 1+x 1)-4mgx 1=0⑫ 联立⑪⑫式并代入题给数据得x 1=45H ⑬同理可推得,管与球从再次下落到第二次弹起至最高点的过程中,球与管的相对位移x 2为x 2=45H 1⑭设圆管长度为L .管第二次落地弹起后的上升过程中,球不会滑出管外的条件是x 1+x 2≤L ⑮联立⑪⑬⑭⑮式,L 应满足的条件为L ≥152125H ⑯答案:(1)2g 3g (2)1325H (3)L ≥152125H[题组精练]1.(多选)如图所示,长直杆固定放置与水平面夹角θ=30°,杆上O 点以上部分粗糙,O 点以下部分(含O 点)光滑.轻弹簧穿过长杆,下端与挡板相连,弹簧原长时上端恰好在O 点,质量为m 的带孔小球穿过长杆,与弹簧上端连接.小球与杆粗糙部分的动摩擦因数μ=33,最大静摩擦力等于滑动摩擦力,现将小球拉到图示a 位置由静止释放,一段时间后观察到小球振动时弹簧上端的最低位置始终在b 点,O 点与a 、b 间距均为l .则下列说法正确的是( )A .小球在a 点弹簧弹性势能最大B .小球在a 点加速度大小是在b 点加速度大小的2倍C .整个运动过程小球克服摩擦力做功mglD .若增加小球质量,仍从a 位置静止释放,则小球最终运动的最低点仍在b 点 解析:BC 由于O 点与a 、b 间距均为l ,所以小球在a 、b 两点的弹性势能相等,则A 错误;小球从a 运动到b 过程,由动能定理可得mg sin θ2l -W f =0,解得W f =mgl ,所以C 正确;小球在a 点有mg sin 30°+kl -μmg cos 30°=ma 1,小球在b 点有kl -mg sin 30°=ma 2,由于小球最后是在O 与b 两点间做简谐振动,则在b 点与O 点的加速度大小相等,小球在O 点有mg sin 30°=ma 3,a 2=a 3,联立解得a 2=a 3=g 2,a 1=g ,所以小球在a 点加速度大小是在b 点加速度大小的2倍,则B 正确;若增加小球质量,仍从a 位置静止释放,设小球最终运动的最低点为c ,由于小球最后是在O 与最低点c 两点间做简谐振动,则在c 点与O 点的加速度大小相等,小球在c 点有kl ′-mg sin 30°=ma 2,解得l ′=mgk,所以增大小球的质量,弹簧在最低点的形变量也会增大,则最低点位置发生了改变,所以D 错误.2.如图所示,在光滑水平地面上放置质量M =2 kg 的长木板,木板上表面与固定的竖直弧形轨道相切.一质量m =1 kg 的小滑块自A 点沿弧面由静止滑下,A 点距离长木板上表面高度h =0.6 m .滑块在木板上滑行t =1 s 后,和木板一起以速度v =1 m /s 做匀速运动,取g =10 m /s 2.求:(1)滑块与木板间的摩擦力;(2)滑块沿弧面下滑过程中克服摩擦力做的功; (3)滑块相对木板滑行的距离. 解析:(1)对木板受力分析F f =Ma 1 由运动学公式,有v =a 1t 解得F f =2 N .(2)对滑块受力分析-F f =ma 2 设滑块滑上木板时的初速度为v 0 由公式v -v 0=a 2t 解得v 0=3 m /s滑块沿弧面下滑的过程,由动能定理得 mgh -W f =12m v 20W f =mgh -12m v 20=1.5 J .(3)t =1 s 内木板的位移x 1=12a 1t 2此过程中滑块的位移x 2=v 0t +12a 2t 2故滑块相对木板滑行距离L =x 2-x 1=1.5 m . 答案:(1)2 N (2)1.5 J (3)1.5 m3.(2020·江苏卷)如图所示,鼓形轮的半径为R ,可绕固定的光滑水平轴O 转动.在轮上沿相互垂直的直径方向固定四根直杆,杆上分别固定有质量为m 的小球,球与O 的距离均为2R .在轮上绕有长绳,绳上悬挂着质量为M 的重物.重物由静止下落,带动鼓形轮转动.重物落地后鼓形轮匀速转动,转动的角速度为ω.绳与轮之间无相对滑动,忽略鼓形轮、直杆和长绳的质量,不计空气阻力,重力加速度为g .求:(1)重物落地后,小球线速度的大小v ;(2)重物落地后一小球转到水平位置A ,此时该球受到杆的作用力的大小F ; (3)重物下落的高度h . 解析:(1)线速度v =ωr 得v =2ωR .(2)向心力F 向=2m ω2R设F 与水平方向的夹角为α,则 F cos α=F 向;F sin α=mg解得F = (2m ω2R )2+(mg )2. (3)落地时,重物的速度v ′=ωR 由机械能守恒得12M v ′2+4×12m v 2=Mgh解得h =M +16m2Mg(ωR )2.答案:(1)2ωR (2) (2m ω2R )2+(mg )2 (3)M +16m2Mg(ωR )2考点二 动量和能量观点的应用[知能必备]1.动量观点(1)对于不涉及物体运动过程中的加速度而涉及物体运动时间的问题,特别对于打击一类的问题,因时间短且冲力随时间变化,应用动量定理求解,即Ft =m v -m v 0.(2)对于碰撞、爆炸、反冲一类的问题,若只涉及初、末速度而不涉及力、时间,应用动量守恒定律求解.2.能量观点(1)对于不涉及物体运动过程中的加速度和时间问题,无论是恒力做功还是变力做功,一般都利用动能定理求解.(2)如果只有重力和弹簧弹力做功而又不涉及运动过程中的加速度和时间问题,则采用机械能守恒定律求解.(3)对于相互作用的两物体,若明确两物体相对滑动的距离,应考虑选用能量守恒定律建立方程.[典例剖析](2020·天津卷)长为l 的轻绳上端固定,下端系着质量为m 1的小球A ,处于静止状态.A 受到一个水平瞬时冲量后在竖直平面内做圆周运动,恰好能通过圆周轨迹的最高点.当A 回到最低点时,质量为m 2的小球B 与之迎面正碰,碰后A 、B 粘在一起,仍做圆周运动,并能通过圆周轨迹的最高点.不计空气阻力,重力加速度为g ,求:(1)A 受到的水平瞬时冲量I 的大小; (2)碰撞前瞬间B 的动能E k 至少多大?解析:(1)A 恰好能通过圆周轨迹的最高点,此时轻绳的拉力刚好为零,设A 在最高点时的速度大小为v ,由牛顿第二定律,有m 1g =m 1v 2l①A 从最低点到最高点的过程中机械能守恒,取轨迹最低点处重力势能为零,设A 在最低点的速度大小为v A ,有12m 1v 2A =12m 1v 2+2m 1gl ② 由动量定理,有I =m 1v A ③ 联立①②③式,得I =m 15gl ④(2)设两球粘在一起时的速度大小为v ′,A 、B 粘在一起后恰能通过圆周轨迹的最高点,需满足v ′=v A ⑤要达到上述条件,碰后两球速度方向必须与碰前B 的速度方向相同,以此方向为正方向,设B 碰前瞬间的速度大小为v B ,由动量守恒定律,有m 2v B -m 1v A =(m 1+m 2)v ′⑥ 又E k =12m 2v 2B⑦ 联立①②⑤⑥⑦式,得碰撞前瞬间B 的动能E k 至少为 E k =5gl (2m 1+m 2)22m 2⑧答案:(1)m 15gl (2)5gl (2m 1+m 2)22m 2动量和能量观点应用的四点注意(1)弄清有几个物体参与运动,并划分清楚物体的运动过程. (2)进行正确的受力分析,明确各过程的运动特点.(3)光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析.(4)如含摩擦生热问题,则考虑用能量守恒定律分析.[题组精练]1.(2021·上海浦东区二模)质量M =0.6 kg 的平板小车静止在光滑水平面上,如图所示,当t =0时,两个质量都为m =0.2 kg 的小物体A 和B ,分别从小车的左端和右端以水平速度v 1=5.0 m /s 和v 2=2.0 m /s 同时冲上小车,当它们相对于小车停止滑动时,没有相碰.已知A 、B 两物体与车面的动摩擦因数都是0.20,g 取10 m /s 2,求:(1)A 、B 两物体在车上都停止滑动时的速度. (2)车的长度至少是多少?解析:(1)设物体A 、B 相对于车停止滑动时,车速为v ,根据动量守恒定律: m (v 1-v 2)=(M +2m )v v =0.6 m /s 方向向右(2)设物体A 、B 在车上相对于车滑动的距离分别为L 1、L 2,车长为L ,由功能关系 μmg (L 1+L 2)=12m v 21+12m v 22-12(M +2m )v 2解得:L 1+L 2=6.8 m L ≥L 1+L 2=6.8 m 可知L 至少为6.8 m答案:(1)0.6 m /s 方向向右 (2)6.8 m2.(2021·铜陵一模)如图所示,半径R =1.0 m 的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B 和圆心O 的连线与水平方向间的夹角θ=37°,另一端点C 为轨道的最低点.C 点右侧的光滑水平面上紧挨C 点静止放置一木板,木板质量M =1 kg ,上表面与C 点等高.质量为m =1 kg 的物块(可视为质点)从空中A 点以v 0=1.2 m /s 的速度水平抛出,恰好从轨道的B 端沿切线方向进入轨道.取g =10 m /s 2.求:(1)物块经过C 点时的速度v C ;(2)若木板足够长,物块在木板上相对滑动过程中产生的热量Q .解析:(1)设物块在B 点的速度为v B ,在C 点的速度为v C ,从A 到B 物块做平抛运动,有v B sin θ=v 0从B 到C ,根据动能定理有 mgR (1+sin θ)=12m v 2C -12m v 2B解得v C =6 m /s .(2)根据动量守恒定律得:(m +M )v =m v C 根据能量守恒定律有 12(m +M )v 2+Q =12m v 2C 联立解得Q =9 J . 答案:(1)6 m /s (2)9 J考点三 动力学、动量和能量观点的应用[知能必备]1.力学解题的三大观点分类规律 数学表达式 动力学 观点力的瞬 时作用牛顿第二定律 F 合=ma牛顿第 三定律F =-F ′ 能量 观点力的空间 积累作用动能定理 W 合=E k2-E k1 机械能守 恒定律 E k1+E p1=E k2+E p2 动量 观点力的时间积累作用动量定理 F 合t =m v ′-m v 动量守 恒定律m 1 v 1+m 2 v 2=m 1 v 1′+m 2 v 2′2.选用原则(1)单个物体:宜选用动量定理、动能定理和牛顿运动定律.若其中涉及时间的问题,应选用动量定理;若涉及位移的问题,应选用动能定理;若涉及加速度的问题,只能选用牛顿第二定律.(2)多个物体组成的系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题,应选用动量守恒定律,然后再根据能量关系分析解决.3.系统化思维方法(1)对多个物理过程进行整体思维,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂的运动.(2)对多个研究对象进行整体思维,即把两个或两个以上的独立物体合为一个整体进行考虑,如应用动量守恒定律时,就是把多个物体看成一个整体(或系统).[典例剖析](2021·湖南卷)如图,竖直平面内一足够长的光滑倾斜轨道与一长为L的水平轨道通过一小段光滑圆弧平滑连接,水平轨道右下方有一段弧形轨道PQ.质量为m的小物块A与水平轨道间的动摩擦因数为μ.以水平轨道末端O点为坐标原点建立平面直角坐标系xOy,x轴的正方向水平向右,y轴的正方向竖直向下,弧形轨道P端坐标为(2μL,μL),Q端在y轴上.重力加速度为g.(1)若A从倾斜轨道上距x轴高度为2μL的位置由静止开始下滑,求A经过O点时的速度大小;(2)若A从倾斜轨道上不同位置由静止开始下滑,经过O点落在弧形轨道PQ上的动能均相同,求PQ的曲线方程;(3)将质量为λm(λ为常数且λ≥5)的小物块B置于O点,A沿倾斜轨道由静止开始下滑,与B发生弹性碰撞(碰撞时间极短),要使A和B均能落在弧形轨道上,且A落在B落点的右侧,求A下滑的初始位置距x轴高度的取值范围.解析:(1)若A从倾斜轨道上距x轴高度为2μL处由静止开始下滑,对A从静止释放到运动到O点的过程,由动能定理得mg×2μL-μmgL=12m v2,解得v0=2μgL.(2)在PQ曲线上任意取一点,设坐标为(x、y),设A从O点抛出的初速度为v,由平抛运动规律有x=v t,y =12gt 2, 联立解得y =12g x 2v2,设A 落在P 点时从O 点抛出的初速度为v P , 将P 点坐标代入上式,有μL =12g (2μL )2v 2P , 解得v P =2μgL ,小物块A 从倾斜轨道上不同位置由静止释放,落在曲线PQ 上的动能均相同,有12m v 2P+mg ·μL =12m v 2+mgy ,解得x 2+4y 2-8μLy =0(0≤x ≤2μL ).(3)设A 与B 碰前瞬间的速度为v 0′,A 、B 碰后瞬间的速度分别为v 1、v 2,对A 、B 组成的系统,根据动量守恒定律与机械能守恒定律有m v 0′=m v 1+λm v 2, 12m v 0′2=12m v 21+12λm v 22, 解得v 1=1-λ1+λv 0′,v 2=21+λv 0′,又因为mgh -μmgL =12m v 0′2,要使A 、B 均能落在PQ 上且A 落在B 落点的右侧,则有12m v 2P ≥12m v 21-2μmgL >12m v 22,联立解得3μL ⎝ ⎛⎭⎪⎫1+λ1-λ2+μL ≥h >2μL (1+λ)λ-3+μL . 答案:(1)2μgL (2)x 2+4y 2-8μLy =0(0≤x ≤2μL ) (3)3μL ⎝ ⎛⎭⎪⎫1+λ1-λ2+μL ≥h >2μL (1+λ)λ-3+μL [题组精练]1.一玩具厂家设计了一款玩具,模型如下.游戏时玩家把压缩的弹簧释放后使得质量m =0.2 kg 的小弹丸A 获得动能,弹丸A 再经过半径R 0=0.1 m 的光滑半圆轨道后水平进入光滑水平平台,与静止的相同的小弹丸B 发生碰撞,并在黏性物质作用下合为一体.然后从平台O 点水平抛出,落于水平地面上设定的得分区域.已知压缩弹簧的弹性势能范围为0≤E p ≤4 J ,距离抛出点正下方O ′点右方0.4 m 处的M 点为得分最大值处,小弹丸均看作质点.(1)要使得分最大,玩家释放弹簧时的弹性势能应为多少? (2)得分最大时,小弹丸A 经过圆弧最高点时对轨道的压力大小.(3)若半圆轨道半径R 可调(平台高度随之调节),弹簧的弹性势能范围为0≤E p ≤4 J ,玩家要使得落地点离O 点最远,则半径应调为多少?最远距离多大?解析:(1)根据机械能守恒定律得 E p =12m v 21+mg ·2R 0A 、B 发生碰撞的过程,取向右为正方向,由动量守恒定律有 m v 1=2m v 2 2R 0=12gt 20x =v 2t 0 解得E p =2 J(2)小弹丸A 经过圆弧最高点时,由牛顿第二定律得F N +mg =m v 21R解得F N =30 N 由牛顿第三定律知 F 压=F N =30 N(3)根据E p =12m v 21+mg ·2Rm v 1=2m v 2 2R =12gt 2x =v 2t 联立解得 x =⎝⎛⎭⎫E p mg -2R ·2R 其中E p 最大为4 J ,得R =0.5 m 时落点离O ′点最远,为 x m =1 m答案:(1)2 J (2)30 N (3)0.5 m 1 m2.(2021·潍坊二模)如图所示,一质量M =4 kg 的小车静置于光滑水平地面上,左侧用固定在地面上的销钉挡住.小车上表面由光滑圆弧轨道BC 和水平粗糙轨道CD 组成,BC 与CD 相切于C ,BC 所对圆心角θ=37°,CD 长L =3 m .质量m =1 kg 的小物块从某一高度处的A 点以v 0=4 m /s 的速度水平抛出,恰好沿切线方向自B 点进入圆弧轨道,滑到D 点时刚好与小车达到共同速度v =1.2 m /s .取g =10 m /s 2,sin 37°=0.6,忽略空气阻力.(1)求A 、B 间的水平距离x ;(2)求小物块从C 滑到D 所用时间t 0;(3)若在小物块抛出时拔掉销钉,求小车向左运动到最大位移时滑块离小车左端的水平距离.解析:(1)由平抛运动的规律得tan θ=gt v 0x =v 0t解得x =1.2 m .(2)物块在小车上CD 段滑动过程中,由动量守恒定律得m v 1=(M +m )v由功能关系得fL =12m v 21-12(M +m )v 2 对物块,由动量定理得-ft 0=m v -m v 1得t 0=1 s .(3)有销钉时mgH +12m v 20=12m v 21 由几何关系得H -12gt 2=R (1-cos θ) B 、C 间水平距离x BC =R sin θμmgL =12m v 21-12(M +m )v 2(或f =μmg ) 若拔掉销钉,小车向左运动达最大位移时,速度为0,由系统水平方向动量守恒可知,此时物块速度为4 m /s由能量守恒定律得mgH =μmg (Δx -x BC )解得Δx =3.73 m .答案:(1)1.2 m (2)1 s (3)3.73 m3.(2020·全国卷Ⅲ)如图,相距L =11.5 m 的两平台位于同一水平面内,二者之间用传送带相接.传送带向右匀速运动,其速度的大小v 可以由驱动系统根据需要设定.质量m =10 kg 的载物箱(可视为质点),以初速度v 0=5.0 m /s 自左侧平台滑上传送带.载物箱与传送带间的动摩擦因数μ=0.10,重力加速度取g =10 m /s 2.(1)若v =4.0 m /s ,求载物箱通过传送带所需的时间;(2)求载物箱到达右侧平台时所能达到的最大速度和最小速度;(3)若v =6.0 m /s ,载物箱滑上传送带Δt =1312s 后,传送带速度突然变为零.求载物箱从左侧平台向右侧平台运动的过程中,传送带对它的冲量.解析:(1)传送带的速度为v =4.0 m /s 时,载物箱在传送带上先做匀减速运动,设其加速度大小为a ,由牛顿第二定律有μmg =ma ①设载物箱滑上传送带后匀减速运动的距离为s 1,由运动学公式有v 2-v 20=-2as 1②联立①②式,代入题给数据得s 1=4.5 m ③因此,载物箱在到达右侧平台前,速度先减小至v ,然后开始做匀速运动.设载物箱从滑上传送带到离开传送带所用的时间为t 1,做匀减速运动所用的时间为t 1′,由运动学公式有v =v 0-at 1′④t 1=t 1′+L -s 1v ⑤联立①③④⑤式并代入题给数据得t 1=2.75 s ⑥(2)当载物箱滑上传送带后一直做匀减速运动时,到达右侧平台时的速度最小,设为v 1;当载物箱滑上传送带后一直做匀加速运动时,到达右侧平台时的速度最大,设为v 2.由动能定理有-μmgL =12m v 21-12m v 20⑦ μmgL =12m v 22-12m v 20⑧ 由⑦⑧式并代入题给条件得v 1=2 m /s ,v 2=43 m /s ⑨(3)传送带的速度为v =6.0 m /s 时,由于v 0<v <v 2,载物箱先做匀加速运动,加速度大小仍为a .设载物箱做匀加速运动通过的距离为s 2,所用时间为t 2,由运动学公式有v =v 0+at 2⑩v 2-v 20=2as 2⑪联立①⑩⑪式并代入题给数据得t 2=1.0 s ⑫s 2=5.5 m ⑬因此载物箱加速运动1.0 s 、向右运动5.5 m 时,达到与传送带相同的速度.此后载物箱与传送带共同匀速运动(Δt -t 2)的时间后,传送带突然停止.设载物箱匀速运动通过的距离为s 3,有s 3=(Δt -t 2)v ⑭由①⑫⑬⑭式可知,12m v 2>μmg (L -s 2-s 3),即载物箱运动到右侧平台时速度大于零,设为v 3.由运动学公式有v 23-v 2=-2a (L -s 2-s 3)⑮v 3=v -at 3⑯设载物箱通过传送带的过程中,传送带对它摩擦力的冲量为I 1,由动量定理有I 1=m (v 3-v 0)⑰联立①⑫⑬⑭⑮⑰式并代入题给数据得I 1=0⑱传送带对它支持力(大小等于重力)的冲量为I 2=mg (Δt +t 3)⑲联立⑮⑯⑲式并代入题给数据得I 2=6253N ·s ⑳ 由于I 1=0,所以传送带对它的冲量为I =I 2=6253N ·s ,方向竖直向上. 答案:(1)2.75 s (2)43 m /s 2 m /s (3)6253N ·s ,方向竖直向上 限时规范训练(九) 力学三大观点的综合应用建议用时60分钟,实际用时________一、单项选择题1.如图所示,小球a 、b (均可视为质点)用等长细线悬挂于同一固定点O .让球a 静止下垂,将球b 向右拉起,使细线水平.从静止释放球b ,两球碰后粘在一起向左摆动,此后细线与竖直方向之间的最大偏角为θ=60°.忽略空气阻力.则两球a 、b 的质量之比m a m b为( )A .22B .2-1C .1-22 D .2+1 解析:B b 球下摆过程中,由动能定理得m b gL =12m b v 20-0,碰撞过程动量守恒,设向左为正方向,由动量守恒定律可得m b v 0=(m a +m b )v ,两球向左摆动过程中,由机械能守恒定律得12(m a +m b )v 2=(m a +m b )gL (1-cos θ),解得m a m b=2-1,故ACD 错误,B 正确. 2.如图所示,质量为3m 的物块A 与质量为m 的物块B 用轻弹簧和不可伸长的细线连接,静止在光滑的水平面上,此时细线刚好伸直且无弹力.现使物块A 瞬间获得向右的速度v 0,在以后的运动过程中,细线没有绷断,以下判断正确的是( )A .细线再次伸直前,物块A 的速度先减小后增大B .细线再次伸直前,物块B 的加速度先减小后增大C .弹簧的最大弹性势能等于38m v 20D .物块A 、B 与弹簧组成的系统,损失的机械能最多为32m v 20解析:C 细线再次伸直时,也就是弹簧再次恢复原长时,细线恢复原长的过程中,A 始终受到向左的弹力,即一直做减速运动,B 始终受到向右的弹力,即一直做加速运动,弹簧的弹力先变大后变小,故B 的加速度先增大后减小,故A 、B 错误;弹簧弹性势能最大时,弹簧压缩到最短,此时A 、B 速度相等,根据动量守恒定律可得3m v 0=(3m +m )v ,解得v =34v 0,根据能量守恒定律可得,弹性势能E pmax =12×3m v 20-12·(3m +m )v 2=38m v 20,故C 正确;整个过程中,物块A 、B 与弹簧组成的系统只有弹簧的弹力做功,系统的机械能守恒,故D 错误.3.如图(a)所示,光滑绝缘水平面上有甲、乙两个带电小球,t =0时,甲静止,乙以6 m /s 的初速度向甲运动.它们仅在静电力的作用下沿同一直线运动(整个运动过程中两球没有接触),它们运动的v t 图像分别如图(b)中甲、乙两曲线所示.则由图线可知( )A .两带电小球的电性一定相反B .甲、乙两球的质量之比为2∶1C .t 2时刻,乙球的电势能最大D .在0~t 3时间内,甲的动能一直增大,乙的动能一直减小解析:B 由题图(b)可知,乙球减速的同时,甲球正向加速,说明两球相互排斥,带有同种电荷,故A 错误;两球作用过程动量守恒m 乙Δv 乙=m 甲Δv 甲,解得m 甲m 乙=21,故B 正确;t 1时刻,两球共速,距离最近,则乙球的电势能最大,故C 错误;在0~t 3时间内,甲的动能一直增大,乙的动能先减小,t 2时刻后逐渐增大,故D 错误.4.如图所示,物体A 、B 的质量分别为m 、2m ,物体B 置于水平面上,B 物体上部半圆形槽的半径为R ,将物体A 从圆槽的右侧最顶端由静止释放,重力加速度为g ,一切摩擦均不计.则( )A .A 、B 物体组成的系统动量守恒B .A 不能到达圆槽的左侧最高点C .A 运动到圆槽的最低点时A 的速率为23gR D .A 运动到圆槽的最低点时B 的速率为 gR 3解析:D A 、B 物体组成的系统只有水平方向动量守恒,故A 错误;运动过程不计一切摩擦,系统机械能守恒,故A 可以到达圆槽的左侧最高点,且A 在圆槽的左侧最高点时,A 、B 的速度都为零,故B 错误;对A 运动到圆槽的最低点的运动过程由水平方向动量守恒得m v A =2m v B ,对A 、B 整体由机械能守恒可得mgR =12m v 2A +12×2m v 2B ,所以A 运动到圆槽的最低点时B 的速率为v B = gR 3,v A = 4gR 3,故C 错误,D 正确. 5.(2021·山东济南市高三模拟)碰碰车是大人和小孩都喜欢的娱乐活动.游乐场上,大人和小孩各驾着一辆碰碰车迎面相撞,碰撞前后两人的位移-时间图像(x t 图像)如图所示.已知小孩的质量为20 kg ,大人的质量为60 kg ,碰碰车质量相同,碰撞时间极短.下列说法正确的是( )A .碰撞前后小孩的运动方向没有改变B .碰碰车的质量为50 kgC .碰撞过程中小孩和其驾驶的碰碰车受到的总冲量大小为80 N ·sD .碰撞过程中损失的机械能为600 J解析:D 规定小孩初始运动方向为正方向,由图可知,碰后两车一起向反方向运动,故碰撞前后小孩的运动方向发生了改变,故A 错误;由图可知,碰前瞬间小孩的速度为2 m /s ,大人的速度为-3 m /s ,碰后两人的共同速度为-1 m /s ,设碰碰车的质量为M ,由动量守恒定律有(20+M )×2 kg ·m /s -(60+M )×3 kg ·m /s =(2M +20+60)×(-1) kg ·m /s ,解得M =60 kg ,故B 错误;碰前小孩与其驾驶的碰碰车的总动量为p 1=160 kg ·m /s ,碰后总动量为p 1′=-80 kg ·m /s ,由动量定理可知碰撞过程中小孩和其驾驶的碰碰车受到的总冲量为I =Δp =-240 N ·s ,故其大小为240 N ·s ,故C 错误;由能量守恒定律可得碰撞过程中损失的机械能为ΔE =12×80×22 J +12×120×(-3)2 J -12×200×(-1)2 J =600 J ,故D 正确.6.如图甲所示,一块长度为L 、质量为m 的木块静止在光滑水平面上.一颗质量也为m 的子弹以水平速度v 0射入木块.当子弹刚射穿木块时,木块向前移动的距离为s ,如图乙所示.设子弹穿过木块的过程中受到的阻力恒定不变,子弹可视为质点.则子弹穿过木块的时间为( )A .1v 0(s +L ) B .1v 0(s +2L ) C .12v 0(s +L ) D .1v 0(L +2s ) 解析:D 设子弹穿过木块的速度为v 1,木块最终速度为v 2,子弹穿过木块过程,对子弹和木块组成的系统,外力之和为零,动量守恒,以v 0的方向为正方向,有m v 0=m v 1+m v 2,设子弹穿过木块的过程所受阻力为F f ,对子弹由动能定理-F f (s +L )=12m v 21-12m v 20,由动量定理-F f t =m v 1-m v 0,对木块由动能定理F f s =12m v 22,由动量定理F f t =m v 2,联立解得t =1v 0(L +2s ),故选D .7.质量为1 kg 的物体从足够高处由静止开始下落,其加速度a 随时间t 变化的关系图像如图所示,重力加速度g 取10 m /s 2,下列说法正确的是( )A .2 s 末物体所受阻力的大小为20 NB .在0~2 s 内,物体所受阻力随时间均匀减小C .在0~2 s 内,物体的动能增大了100 JD .在0~1 s 内,物体所受阻力的冲量大小为2.5 N ·s解析:D 2 s 末物体的加速度为零,则此时阻力等于重力,即所受阻力的大小为10 N ,选项A 错误;根据牛顿第二定律有mg -f =ma ,可得f =mg -ma ,在0~2 s 内,物体加速度随时间均匀减小,则所受阻力随时间均匀增大,选项B 错误;根据物体加速度a 随时间t 变化的关系图像与坐标轴所围图形的面积表示速度变化量可知,在0~2 s 内,物体的速度增加了Δv =12×2×10 m /s =10 m /s ,即t =2 s 时速度为v =10 m /s ,则在0~2 s 内,物体的动能增大了12m v 2=12×1×102 J =50 J ,选项C 错误;在0~1 s 内,物体速度的增量Δv 1=12×(5+10)×1 m /s =7.5 m /s ,根据动量定理有mgt -I f =m Δv 1,解得I f =2.5 N ·s ,选项D 正确.8.如图甲所示,光滑水平面上有一上表面粗糙的长木板,t =0时刻,质量m =1 kg 的滑块以速度v 0=7 m /s 滑上长木板左端,此后滑块与长木板运动的v t 图像如图乙所示.下列分析正确的是( )A .长木板的质量为0.5 kgB .长木板的长度为0.5 mC .0~2 s 内滑块与长木板间因摩擦产生的热量为16 JD .0~2 s 内长木板对滑块的冲量大小为4 kg ·m /s解析:C 滑块滑上长木板后,滑块受摩擦力作用做匀减速运动,长木板做匀加速运动,由图乙可知滑块的加速度大小为a 1=Δv Δt =2 m /s 2,长木板的加速度大小为a 2=Δv Δt=1 m /s 2,。
(五)应用动力学观点和能量观点解决力学综合问题1.动力学观点和能量观点综合流程2.涉及问题(1)受力情况:几个力?恒力还是变力? (2)做功情况:是否做功?正功还是负功? (3)能量分析:建立功能关系式.►解题方法1.若只要求分析运动物体的动力学物理量而不涉及能量问题,则用牛顿运动定律和运动学规律求解.2.若物体在运动过程中涉及能量转化问题,则用功能关系求解.角度1 机械能守恒角度2[例1](2017·华中师大一附中模拟)如图甲所示,质量为m =1 kg 的滑块(可视为质点),从光滑、固定的14圆弧轨道的最高点A 由静止滑下,经最低点B 后滑到位于水平面的木板上.已知木板质量M =2 kg ,其上表面与圆弧轨道相切于B 点,且长度足够长.整个过程中木板的v -t 图象如图乙所示,g =10 m/s 2.求:(1)滑块经过B 点时对圆弧轨道的压力; (2)滑块与木板之间的动摩擦因数; (3)滑块在木板上滑过的距离.解析 (1)设圆弧轨道半径为R ,从A 到B 过程,滑块的机械能守恒mgR =12m v 2,经B 点时,根据牛顿第二定律有 F N -mg =m v 2R,整理得F N =3mg =30 N ,根据牛顿第三定律知,滑块对轨道的压力大小为30 N ,方向竖直向下.(2)由v -t 图象知,木板加速的加速度大小为a 1=1 m /s 2,滑块与木板共同减速的加速度大小为a 2=1 m/s 2,设木板与地面之间的动摩擦因数为μ1,滑块与木板之间的动摩擦因数为μ2,在0~1 s 内,对木板μ2mg -μ1(m +M )g =Ma 1, 在1 s ~2 s 内,对滑块和木板μ1(m +M )g =(m +M )a 2, 解得μ1=0.1,μ2=0.5.(3)滑块在木板上滑动过程中,设滑块与木板相对静止时的共同速度为v 1,滑块从滑上木板到两者达到共同速度所用时间为t 1.对滑块μ2mg =ma ,v 1=v -at 1,v 1=1 m/s ,t 1=1 s , 木板的位移x 1=v 12t 1,滑块的位移x 2=v 1+v2t 1,滑块在木板上滑过的距离Δx =x 2-x 1, 代入数据解得Δx =3 m.答案 (1)30 N ,方向竖直向下 (2)0.5 (3)3 m[例2]如图,—轻弹簧原长为2R ,其一端固定在倾角为37°的固定直轨道AC 的底端A 处,另一端位于直轨道B 处,弹簧处于自然状态.直轨道与一半径为56R 的光滑圆弧轨道相切于C 点,AC =7R ,A 、B 、C 、D 均在同一竖直平面内.质量为m 的小物块P 自C 点由静止开始下滑,最低到达E 点(未画出).随后P 沿轨道被弹回,最高到达F 点,AF =4R .已知P 与直轨道间的动摩擦因数μ=14,重力加速度大小为g .(取sin 37°=35,cos 37°=45)(1)求P 第一次运动到B 点时速度的大小. (2)求P 运动到E 点时弹簧的弹性势能.(3)改变物块P 的质量,将P 推至E 点,从静止开始释放.已知P 自圆弧轨道的最高点D 处水平飞出后,恰好通过G 点.G 点在C 点左下方,与C 点水平相距72R 、竖直相距R .求P 运动到D 点时速度的大小和改变后P 的质量.解析 (1)根据题意知,B 、C 之间的距离为l =7R -2R ,① 设P 到达B 点时的速度为v B ,由动能定理得 mgl sin θ-μmgl cos θ=12m v 2B , ②式中θ=37°,联立①②式并由题给条件得v B =2gR . ③(2)设BE =x .P 到达E 点时速度为零,设此时弹簧的弹性势能为E p .P 由B 点运动到E 点的过程中,由动能定理有mgx sin θ-μmgx cos θ-E P =0-12m v 2B , ④E 、F 之间的距离为l 1=4R -2R +x , ⑤P 到达E 点后反弹,从E 点运动到F 点的过程中,由动能定理有 E p -mgl 1sin θ-μmgl 1cos θ=0,⑥联立③④⑤⑥式并由题给条件得x =R , ⑦ E P =125mgR . ⑧(3)设改变后P 的质量为m 1.D 点与G 点的水平距离x 1和竖直距离y 1分别为x 1=72R -56R sinθ, ⑨y 1=R +56R +56R cos θ, ⑩式中,已应用了过C 点的圆轨道半径与竖直方向夹角仍为θ的事实.设P 在D 点的速度为v D ,由D 点运动到G 点的时间为t .由平抛运动公式有y 1=12gt 2,⑪x 1=v D t , ⑫联立⑨⑩⑪⑫式得v D =355gR . ⑬设P 在C 点速度的大小为v C .在P 由C 点运动到D 点的过程中机械能守恒,有 12m 1v 2C =12m 1v 2D +m 1g (56R +56R cos θ), ⑭ P 由E 点运动到C 点的过程中,由动能定理有 E p -m 1g (x +5R )sin θ-μm 1g (x +5R )cos θ=12m 1v 2C , ⑮ 联立⑦⑧⑬⑭⑮式得m 1=13m .答案 见解析1.(2017·江苏南京诊断)如图所示,质量M =0.4 kg 的长薄板BC 静置于倾角为37°的光滑斜面上,在A 点有质量m =0.1 kg 的小物体(可视为质点)以v 0=4.0 m /s 速度水平抛出,恰以平行斜面的速度落在薄板的最上端B 并在薄板上运动,当小物体落在薄板上时,薄板无初速度释放开始沿斜面向下运动,小物体运动到薄板的最下端C 时,与薄板速度恰好相等,已知小物体与薄板之间的动摩擦因数为μ=0.5,sin 37°=0.6,cos 37°=0.8,g =10 m/s 2.求:(1)A 点与B 点的水平距离; (2)薄板BC 的长度.解析 (1)小物体从A 到B 做平抛运动,下落时间为t 1,水平位移为x ,则 gt 1=v 0tan 37°, ① x =v 0t 1,②联立①②得x =1.2 m.(2)小物体落到B 点的速度为v ,则 v =v 20+(gt 1)2,③小物体在薄板上运动,则mg sin 37°-μmg cos 37°=ma 1,④ 薄板在光滑斜面上运动,则 Mg sin 37°+μmg cos 37°=Ma 2,⑤小物体从落到薄板到两者速度相等用时t 2,则 v +a 1t 2=a 2t 2,⑥小物体的位移x 1=v t 2+12a 1t 22,⑦薄板的位移x 2=12a 2t 22,⑧薄板的长度l =x 1-x 2,⑨ 联立③~⑨式得l =2.5 m. 答案 (1)1.2 m (2)2.5 m2.(2017·河北衡水一模)如图所示,滑块质量为m ,与水平地面间的动摩擦因数为0.1,它以v 0=3gR 的初速度由A 点开始向B 点滑行,AB =5R ,并滑上光滑的半径为R 的14圆弧BC ,在C 点正上方有一离C 点高度也为R 的旋转平台,沿平台直径方向开有两个离轴心距离相等的小孔P 、Q ,P 、Q 位于同一直径上,旋转时两孔均能达到C 点的正上方.若滑块滑过C 点后穿过P 孔,又恰能从Q 孔落下,则平台转动的角速度ω应满足什么条件?解析 设滑块滑至B 点时速度为v B ,对滑块由A 点到B 点应用动能定理有 -μmg 5R =12m v 2B -12m v 20, 解得v 2B =8gR .滑块从B 点开始,运动过程机械能守恒,设滑块到达P 处时速度为v P ,则 12m v 2B =12m v 2P +mg 2R , 解得v P =2gR ,滑块穿过P 孔后再回到平台的时间t =2v Pg =4R g, 要想实现题述过程,需满足ωt =(2n +1)π, ω=π(2n +1)4gR(n =0,1,2,…). 答案 ω=π(2n +1)4gR(n =0,1,2,…)3.(2017·湖北黄冈模拟)如图所示,半径R =1.0 m 的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B 和圆心O 的连线与水平方向间的夹角θ=37°,另一端点C 为轨道的最低点.C 点右侧的光滑水平面上紧挨C 点静止放置一木板,木板质量M =1 kg ,上表面与C 点等高.质量为m =1 kg 的物块(可视为质点)从空中A 点以v 0=1.2 m /s 的速度水平抛出,恰好从轨道的B 端沿切线方向进入轨道.已知物块与木板间的动摩擦因数μ=0.2,取g =10 m/s 2.求:(1)物块经过C 点时的速度v C ;(2)若木板足够长,物块在木板上相对滑动过程中产生的热量Q .解析 (1)设物块在B 点的速度为v B ,在C 点的速度为v C ,从A 到B 物块做平抛运动,有v B sin θ=v 0,从B 到C ,根据动能定理有mgR (1+sin θ)=12m v 2C -12m v 2B ,解得v C =6 m/s.(2)物块在木板上相对滑动过程中由于摩擦力作用,最终将一起共同运动.设相对滑动时物块加速度为a 1,木板加速度为a 2,经过时间t 达到共同速度为v ,则μmg =ma 1,μmg =Ma 2, v =v C -a 1t ,v =a 2t . 根据能量守恒定律有 12(m +M )v 2+Q =12m v 2C 联立解得Q =9 J. 答案 (1)6 m/s (2)9 J。
第5讲应用“三大观点”解决力学综合问题冲刺提分作业A1.(2019福建大联考)汽车碰撞试验是综合评价汽车安全性能的有效方法之一。
设汽车在碰撞过程中受到的平均撞击力达到某个临界值F时,安全气囊爆开。
某次试验中,质量m1=1 600 kg的试验车以速度v1=36 km/h正面撞击固定试验台,经时间t1=0.10 s碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开。
忽略撞击过程中地面阻力的影响。
求:(1)此过程中试验车受到试验台的冲量I0的大小及F的大小;(2)若试验车以速度v1撞击正前方另一质量m2=1 600 kg、速度v2=18 km/h同向行驶的汽车,经时间t2=0.16 s两车以相同的速度一起滑行。
试通过计算分析这种情况下试验车的安全气囊是否会爆开。
答案见解析解析(1)v1=36 km/h=10 m/s,取速度v1的方向为正方向由动量定理有-I0=0-m1v1得I=1.6×104N·s由冲量定义有I0=Ft1得F=1.6×105 N(2)设试验车和汽车碰撞后获得共同速度v由动量守恒定律有m1v1+m2v2=(m1+m2)v对试验车,由动量定理有-Ft2=m1v-m1v1得F=2.5×104 N可见F<F,故试验车的安全气囊不会爆开2.(2019湖南衡阳模拟)如图甲所示,在高h=0.8 m的水平平台上放置一质量为m'=0.9 kg的小木块(视为质点),距平台右边缘d=2 m。
一质量为m=0.1 kg的子弹沿水平方向射入小木块并留在其中(作用时间极短),然后一起向右运动,在平台上运动的v2-x关系如图乙所示,最后小木块从平台边缘滑出并落在距平台右侧水平距离为s=1.6 m的地面上。
g取10 m/s2,求:(1)小木块滑出平台时的速度;(2)子弹射入小木块前的速度;(3)子弹射入小木块前至小木块滑出平台时,系统所产生的内能。
答案(1)4 m/s (2)80 m/s (3)312 J解析(1)小木块从平台滑出后做平抛运动,有h=12gt2,s=vt联立解得v=√2ℎg=4 m/s(2)设子弹射入小木块后共同速度为v1,由题图乙可知40-v2=v12-40解得v1=8 m/s子弹射入小木块的过程中,根据动量守恒定律有mv0=(m'+m)v1v 0=(m'+m)v1m=80 m/s(3)设子弹射入小木块前至小木块滑出平台时,系统所产生的内能为Q则Q=12m v02-12×(m'+m)v2=12×0.1×802 J-12(0.9+0.1)×42 J=312 J3.(2019山东济宁模拟)如图所示,倾角为37°的斜面固定在地面上,斜面的末端有一垂直于斜面的弹性挡板c,滑块与挡板c相碰后的速率等于碰前的速率,斜面上铺了一层特殊物质,该物质在滑块上滑时对滑块不产生摩擦力,下滑时对滑块有摩擦且动摩擦因数处处相同。
高中物理中力学三大观点的综合应用楼㊀倩(兰州市第七中学ꎬ甘肃兰州730000)摘㊀要:本文主要对力学三大观点进行介绍ꎬ对三大观点的优选原则进行分析ꎬ并结合典型例题ꎬ探讨如何利用力学三大观点解决综合性问题.关键词:高中物理ꎻ力学三大观点ꎻ解题应用中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2024)06-0083-03收稿日期:2023-11-25作者简介:楼倩(1986.2-)ꎬ女ꎬ甘肃省兰州人ꎬ本科ꎬ中学一级教师ꎬ从事初高中物理教学研究.㊀㊀高中物理中力学三大观点ꎬ即动力学观点㊁能量观点和动量观点.是高考中必考的考点ꎬ具有综合性强㊁难度大的特征ꎬ常常作为考试的压轴题出现.本文对该部分知识进行了分析ꎬ以便加强学生对三大观点的理解和应用.1力学三大观点概述高中物理中的力学三大观点ꎬ包括动力学观点㊁能量观点和动量观点[1].其中动力学观点是结合牛顿第二定律和匀变速直线运动的规律ꎬ求解物体做匀变速直线运动时速度㊁加速度㊁位移等物理量ꎬ涉及运动的细节ꎬ可以用来处理匀变速运动的相关问题ꎻ能量观点是结合动能定理㊁功能关系㊁机械守恒定律和能量守恒定律ꎬ解决功和能之间的关系ꎬ涉及做功和能量转换ꎬ既能解决匀变速运动的相关问题ꎬ也能处理非匀变速运动问题ꎻ动量观点是涉及动量定理和动量守恒定律ꎬ解决过程只涉及物体的初末速度㊁力㊁时间或者只与初末速度有关ꎬ和能量观点一样ꎬ动量观点适用范围既包括匀变速运动ꎬ也包括非匀变速运动问题.2三大观点的选用原则力学的三大观点ꎬ针对的是不同的物理情境ꎬ解决的是不同的问题.如若误用ꎬ就会降低解题效率ꎬ甚至求出错误答案或者求解过程陷入僵局.因此ꎬ需要对三大观点的选用原则有一定的了解.(1)当物理情境为碰撞㊁爆炸㊁反冲等问题ꎬ若只涉及初㊁末速度而不涉及力㊁时间ꎬ且研究对象为一个系统ꎬ优先选用动量守恒定律ꎬ并联立能量守恒定律进行求解ꎬ需注意所研究的问题是否满足守恒的条件.(2)当涉及运动的具体细节时ꎬ考虑动力学观点进行解题ꎬ能量和动量观点均只关注初末状态ꎬ不考虑运动细节.(3)当问题涉及相对位移时ꎬ可优先考虑能量守恒定律.此时系统克服摩擦力所做的功和系统机械能的减少量相等ꎬ即转变为系统的内能.这种解法可以避免对复杂的运动过程进行分析ꎬ简化解题步骤.(4)若在求解问题时ꎬ需要求出各个物理量在某时刻的大小ꎬ则可以优先运用牛顿第二定律.(5)若研究对象为单一物体ꎬ且涉及功和位移问题时ꎬ应优先考虑动能定理.3热点题型分析3.1应用三大动力学观点解决碰撞㊁爆炸模型例1㊀如图1所示ꎬ水平地面上放置有P㊁Q两个物块ꎬ两者相距L=0.48mꎬP物块的质量为1kgꎬ38Q物块的质量为4kgꎬP物块的左侧和一个固定的弹性挡板接触.已知P物块与水平地面间无摩擦ꎬ且其和弹性挡板碰撞时无能量损失ꎬQ物块与水平地面有摩擦且动摩擦因数为0.1ꎬ重力加速度取10m/s2.某一时刻ꎬP以4m/s的初速度朝着物块Q运动并和其发生弹性碰撞ꎬ回答以下问题:图1㊀例1题图(1)P物块与Q物块第一次碰撞后ꎬ两者瞬间速度大小各为多少?(2)P物块与Q物块第二次碰撞后ꎬ物块Q的瞬间速度大小为多少?解析㊀(1)第一次弹性碰撞后瞬间两物块的速度分别为v1和v2ꎬ有m1v0=m1v1+m2v2ꎬ12m1v02=12m1v21+12m2v22ꎬ求解得v1=-125m/sꎬv2=85m/s.因此ꎬP物块与Q物块第一次碰撞后ꎬ两者瞬间速度大小分别为125m/s㊁85m/s.(2)设碰后Q的加速度为aꎬ则有μmg=ma.假设第二次碰撞前Q没有停止运动ꎬ有x+2L=|v1|t1ꎬx=v2t1-12at21ꎬ解得t1=0.8s.假设第二次碰撞前Q已经停止运动ꎬ有v2=at2ꎬ解得t2=1.6s.所以第二次碰撞前Q没有停止运动.设第二次碰撞前的瞬间ꎬP的速度为vPꎬQ的速度为vQ.碰撞后瞬间ꎬP的速度为vPᶄꎬQ的速度为vQᶄꎬ则:vQ=v2-at1m1vP+m2vQ=m1vPᶄ+m2vQᶄ12m1vP2+12m2vQ2=12m1vPᶄ2+12m2vQᶄ2vP=-v1解得vQᶄ=3625m/s.例2㊀有一组机械组件ꎬ由螺杆A和螺母B组成ꎬ因为生锈难以分开ꎬ图2为装置剖面示意图.某同学将该组件垂直放置于水平面上ꎬ在螺杆A顶端的T形螺帽与螺母B之间的空隙处装入适量火药并点燃ꎬ利用火药将其 炸开 .已知螺杆A的质量为0.5kgꎬ螺母的质量为0.3kgꎬ火药爆炸时所转化的机械能E=6JꎬB与A的竖直直杆间滑动摩擦力大小恒为f=15Nꎬ忽略空气阻力ꎬ重力加速度g=10m/s2.图2㊀例2题图(1)求火药爆炸瞬间螺杆A和螺母B各自的速度大小ꎻ(2)忽略空隙及螺母B的厚度影响ꎬ要使A与B能顺利分开ꎬ求螺杆A的竖直直杆的最大长度L.解析㊀(1)设火药爆炸瞬间螺杆A的速度大小为v1ꎬ螺母B的速度大小分别为v2ꎬ以竖直向下为正方向ꎬ根据能量守恒定律和动量守恒定律ꎬ有0=m1v1+m2v2E=12m1v21+12m2v22求解得v1=-3m/sꎬv2=5m/sꎬ因此杆A的速度大小为3m/sꎬ方向竖直向上ꎻ螺母B的速度大小为5m/sꎬ方向坚直向下.(2)A相对B向上运动ꎬ所受摩擦力f向下ꎬ则对螺杆A由牛顿第二定律可得m1g+f=m1a1ꎬ解得a1=40m/s2ꎬ方向竖直向下.对螺母B由牛顿第二定律可得f-m2g=m2a2ꎬ解得a2=40m/s2ꎬ方向竖直向上.火药爆炸后ꎬA向上做匀减速直线运动ꎬ其减速至零的时间为t1=v1a1=340s.B向下做匀减速直线运动ꎬ其减速至零的时间为t1=v2a2=540s.所以B一直做匀减速运动ꎬA则先做匀减速将速度减至为0而后做匀加速运动ꎬ当两者速度相等时刚好分开ꎬ此时直杆的长度最大.取向下为正方向ꎬ可得v2-a2t3=-v1+a1t3ꎬ解得t3=0.1s.则直杆长度的最大值为L=(v1+v2)t32ꎬ解得L=0.4m.3.2应用三大动力学观点解决多过程问题例3㊀竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平滑连接ꎬ小物块B静止48于水平轨道的最左端ꎬ如图3(a)所示.t=0时刻ꎬ小物块A在倾斜轨道上从静止开始下滑ꎬ一段时间后与B发生弹性碰撞(碰撞时间极短)ꎻ当A返回到倾斜轨道上的P点(图中未标出)时ꎬ速度减为0ꎬ此时对其施加一外力ꎬ使其在倾斜轨道上保持静止.物块A运动的v-t图像如图3(b)所示ꎬ图中的v1和t1均为未知量.已知A的质量为mꎬ初始时A与B的高度差为Hꎬ重力加速度大小为gꎬ不计空气阻力.(a)㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀(b)图3㊀示意图(1)物块B的质量为多少?(2)物体A在图3(b)所描述的运动过程中ꎬ克服摩擦力做了多少功?(3)已知A物块和B物块和轨道间的摩擦因数是相等的.当物块B停止运动后ꎬ将物块和轨道间的摩擦因数改变ꎬ然后从P点释放物块Aꎬ其运动一段时间后ꎬ刚好能和物块B正好碰上.求改变前后摩擦因数的比值.解析㊀(1)根据图3(b)ꎬ可以得出在t1时刻ꎬ两物块发生了碰撞ꎬ物块A的速度由碰撞前的v1变为碰撞后的v12.碰撞问题ꎬ运用动量守恒和能量守恒观点进行分析ꎬ设物块B的质量为mBꎬ其碰撞后的瞬间速度大小为vB.则有mv1=m(-v12)+mBvB12mv21=12m(-12v1)2+12mBv2B解得mB=3m.(2)求物体A在运动过程中克服摩擦力所做的功的大小ꎬ需要结合能量观点和动力学观点进行求解.设物体A和轨道之间的滑动摩擦力为fꎬP点距地面的高度为hꎬ碰撞前物体A走过的路程为s1ꎬ碰撞之后走过的路程为s2.碰撞之前ꎬ物体A的速度由0加速至v1ꎬ该过程重力做正功ꎬ摩擦力做负功ꎬ根据动能定理ꎬ有mgH-fs1=12mv21-0碰撞之后ꎬ物体A的速度由v12减速至0ꎬ该过程重力和摩擦力均做负功ꎬ根据动能定理ꎬ有-(fs2+mgh)=0-12m(-v12)2在整个过程中ꎬ物体克服摩擦力做功的大小为W=fs1+fs2由图3(b)的v-t图像可知s1=12v1t1s2=12ˑv12ˑ(1.4t1-t1)且s1和s2存在几何关系s2s1=hH联立可得W=215mgH.(3)设轨道和地面之间的夹角为θꎬ改变前的动摩擦因数为μ有W=μmgcosθH+hsinθ设物块B在水平轨道上能够滑行的距离为sᶄꎬ由动能定理有-μmᶄgsᶄ=0-12mᶄvᶄ2设改变后的动摩擦因数为μᶄꎬ依据动能定理有mgh-μᶄmgcosθ hsinθ-μᶄmgsᶄ=0联立可得μμᶄ=119.4结束语总之ꎬ当运用力学三大观点进行解题时ꎬ关键在于明确研究对象和其所经历的物理过程ꎬ并能够根据问题ꎬ应用合适的观点进行求解.该类题对学生的综合素质要求较高ꎬ教学过程切不可机械化㊁模板化ꎬ教师要引导学生多思考㊁多总结ꎬ达到 讲一题会一类 的教学效果ꎬ培养学生的解题思维.参考文献:[1]李得天.利用力学的三大观点解高考力学压轴题[J].高中数理化ꎬ2022(20):34-35.[责任编辑:李㊀璟]58。