冷却塔三种运行控制方式的比较_谭伟成
- 格式:pdf
- 大小:192.00 KB
- 文档页数:3
各种冷却塔的优缺点1、逆流式节能冷却塔逆流式节能冷却塔是指水流在塔内垂直落下,气流方向与水流方向相反的冷却塔。
逆流式冷却塔是水在塔内填料中,塔内的水从上到下,塔内的空气从下到上进行反流,这既是逆流式冷却塔。
逆流式节能冷却塔的优点:1、整套涉笔设计简单,配水系统通畅,整个配水过程不需要特别要求,并且不易堵塞。
采用了淋水填料,防止老化和湿气回流。
在温度比较低的地方,容易采取抗冻措施。
并且可以设计多台冷却塔同时使用。
2、整套设备设计比较简单,操作比较简单。
整套设备生产成本可以控制,通常会在一些大型的冷却循环水中使用。
冷却塔工作原理是通风的空气从正确的角度吹向滴下来的水,当空气通过这些水滴的时候,一部分水就蒸发了,由于用于蒸发水滴的热量降低了水的温度,剩余的水就被冷却了。
这种方法的冷却效果依赖于空气的相对湿度以及压力。
当水滴和空气接触时,一方面由于空气与不的直接传热,另一方面由于水蒸汽表面和空气之间存在压力差,在压力的作用下产生蒸发现象,带到目前为走蒸发潜热,将水中的热量带走即蒸发传热,从而达到降温之目的。
冷却塔的工作过程:圆形逆流式冷却塔的工作过程为例:热水自主机房通过水泵以一定的压力经过管道、横喉、曲喉、中心喉将循环水压至冷却塔的播水系统内,通过播水管上的小孔将水均匀地播洒在填料上面;干燥的低晗值的空气在风机的作用下由底部入风网进入塔内,热水流经填料表面时形成水膜和空气进行热交换,高湿度高晗值的热风从顶部抽出,冷却水滴入底盆内,经出水管流入主机。
但是,水向空气中的蒸发不会无休止地进行下去。
当与水接触的空气不饱和时,水分子不断地向空气中蒸发,但当水气接触面上的空气达到饱和时,水分子就蒸发不出去,而是处于一种动平衡状态。
蒸发出去的水分子数量等于从空气中返回到水中的水分子的数量,水温保持不变。
2、干式冷却塔干式冷却塔,水和空气不直接接触,只有热交换的冷却塔。
干式冷却塔,干式冷却难的热水在散热翅管内流动,靠与管外空气的温差,形成接触传热而冷却。
FBN系列一闭式冷却塔(逆流)1、工作原理FBN逆流式冷却塔的进风形式为底部逆流进风,与下落的喷淋水逆向交替形成饱和湿热空气,热量由顶部风机排出,水分由特殊结构的脱水器挡回集水槽循环使用,内部空间没有预冷散热的填料,余出更多的空间来增加盘管的单位散热面积,结构紧凑,占地小。
特别适用于温度较低或温差较小的流体冷却。
FBN概念:F-风水冷却B-闭式系统N-逆流式2、组成部分成套设备一般有三大部分组成:主机、辅机、电控箱;主机组成部分:1)风机:设计诱风型风筒,符合空气动力学原理,充分利用气体流场均化理论,缩小了涡流区,降低了流阻,使机体内热气能够快速排出机外;2)收水器:主要作用是最大限度的挡回排放的水分,设备正常运行时,下面喷淋泵喷到铜管上面大量水分,由于上部比较靠近风机所在位置,为防止一些水分被风机吸出机外,从而需收水器阻挡一番;3)冷却盘管(冷凝器):一般可采用二种材质:a、采用优质T2 紫铜管焊接而成,耐压设计 1.6Mpa,铜管散热效果相对较好,一般应用在中频炉行业、冷库(食品)、化工等;b、采用优质低碳无缝钢管制成,经过分级和整体三次 2.5Mpa 强压试验,整体在高温溶槽里进行浸锌处理,确保钢管的卓越性能,一般应用在中央空调(螺杆机组)行业。
注:冷却盘管中需冷却的流体可为多种,如纯洁水、淬火液、液压油、液态氨、氟利昂等;4)集水槽:主要是盛放一定量的水源 (一般为普通自来水即可) ,使喷淋装置工作时保证喷淋泵水的循环,使喷淋泵喷到冷却盘管上面的水自然落入集水槽中,从而保证喷淋工序的正常运行。
5)喷淋头:为使喷到冷却盘管上面的水分均匀流畅,达到最佳散热效果;6)喷淋水泵:主要功能是将集水槽中的水,通过管道与喷淋头均匀的喷淋到冷却盘管上面,当大量有喷淋泵喷上去的水自上而下流淌时,从而带走一部分从冷却盘管内传出的热量,达到降温的目的;7)进风格栅:防水溅、防灰尘、防阳光直射、进风量大、风阻小、降低了风机能耗、且不会有喷淋水外溅现象,避免阳光照射到水槽内部,有效的保证喷淋水的水质及使用温度,有效防止灰尘及水藻滋生;8)冷却塔外壳:支撑,机体主要组成部分;采用镀铝锌板制作,是耐腐蚀、阻热性能最强的板材之一,使用寿命是普通镀锌板的3—6倍;根据特殊需要,也可采用201、304或316不锈钢板制作。
冷却塔运行原理冷却塔是一种常见的工业设备,用于降低热水或蒸汽的温度。
它的运行原理基于热交换和蒸发冷却的原理。
本文将详细介绍冷却塔的运行原理及其在工业中的应用。
一、冷却塔的基本原理冷却塔的基本原理是利用水与空气之间的热量传递来降低水的温度。
冷却塔通常由填料层、风扇、水泵和水箱等组成。
当热水进入冷却塔时,水泵将水送入塔顶的喷头,形成薄薄的水膜,然后水沿着填料层均匀分布。
同时,风扇将空气吹入冷却塔底部,并通过填料层与水进行接触。
二、蒸发冷却的过程在冷却塔中,水与空气之间进行热量交换的过程主要是通过蒸发冷却实现的。
当水与空气接触时,由于空气中的热量比水中的热量低,水中的热量会传递给空气,使水的温度下降。
同时,由于填料层的存在,水的表面积增大,有利于热量的传递。
在这个过程中,一部分水会蒸发成水蒸气,带走了水中的热量,从而使水的温度进一步下降。
三、冷却塔的工作原理冷却塔的工作原理可以分为湿式冷却和干式冷却两种方式。
1. 湿式冷却湿式冷却是指冷却塔中的水与空气直接接触,通过蒸发冷却来降低水的温度。
在湿式冷却中,冷却塔内部的填料层起到增加水与空气接触面积的作用,从而提高热量传递效率。
湿式冷却广泛应用于电力、化工、制药等行业,能够有效地降低工业设备的温度。
2. 干式冷却干式冷却是指冷却塔中的水与空气通过间接热交换来降低水的温度。
在干式冷却中,冷却塔内部的填料层起到增加热量交换面积的作用,使水与空气之间的热量传递更加高效。
干式冷却适用于一些对水质要求较高的场合,如核电站等。
四、冷却塔的应用冷却塔在工业中有着广泛的应用。
它可以用于冷却发电厂中的汽轮机排出的热水,降低水的温度,提高发电效率。
此外,冷却塔还可以用于冷却化工厂中的生产设备,保证设备的正常运行。
在石油炼制、钢铁冶炼等行业中,冷却塔也扮演着重要的角色。
总结:冷却塔是一种利用热交换和蒸发冷却原理降低水温的设备。
它通过水与空气之间的热量传递来实现冷却效果。
冷却塔的工作原理可以分为湿式冷却和干式冷却两种方式。
冷却塔定频控制
冷却塔定频控制是一种常见的冷却塔控制方式,其主要特点是根据设定的固定频率来控制冷却塔的运行。
以下是冷却塔定频控制的一般工作原理:
1. 设定频率:根据冷却塔的设计要求和环境条件,确定一个固定的运行频率。
2. 风扇控制:冷却塔的风扇根据设定的频率进行恒速运行。
风扇的转速通常是固定的,以提供恒定的风量。
3. 水泵控制:如果冷却塔配备有水泵,水泵的运行也可能受到定频控制。
水泵的流量通常是固定的,以维持恒定的水循环。
4. 温度监测:通常会监测进入和离开冷却塔的水温,以确保冷却塔的效率和性能。
定频控制的优点包括:
1. 简单可靠:定频控制方式相对简单,易于实现和维护。
2. 稳定性高:由于频率固定,系统的运行相对稳定,减少了因频率变化引起的不稳定因素。
3. 成本较低:定频控制所需的设备和控制系统相对简单,成本较低。
然而,定频控制也存在一些缺点:
1. 能效可能较低:无法根据实际负荷需求调整风扇转速,可能导致在部分负载情况下能效较低。
2. 适应性差:无法灵活适应负载变化或环境条件的变化,可能导致能源浪费或性能下降。
冷却塔控制原理冷却塔是一种将热水通过水冷却的设备,一般应用于制造业、空调、发电等领域,能有效地调节室内温度和维护生产设备的稳定性。
冷却塔的控制原理对于保险起见是非常关键的,下面我们就来详细讲述一下。
冷却塔的主要控制原理1.水流量控制冷却塔水流量的控制十分重要,过高的水流量会使得冷却效果降低,过低的水流量则会导致冷却塔的热量交换过程出现异常。
正常情况下冷却塔的水流是通过一些特定的阀门控制的。
这些阀门一般由一个主控制器来管理,主控制器根据冷却塔水流传感器的数据,自动调节阀门开度,保持恰当的水流量。
2.水温控制在运行中,冷却塔需要稳定的水温,这也影响着水的冷却速度。
过高的水温会导致水在热交换过程中无法有效地减温,过低的水温则会降低冷却塔的效率。
因此,在冷却塔中安装温度传感器,根据传感器的数据,系统可以控制水温通过水泵或加热器的方式进行调节。
3.湿度控制湿度是另一个重要的因素。
过高的湿度会导致系统的防锈性能降低,过低的湿度则会使系统中的设备过热、过干燥。
为解决这个问题,通常需要在冷却塔中安装空气湿度传感器。
传感器会检测湿度的变化,并将数据传输到控制器中,控制器中的逻辑会根据实际情况来自动调节空气湿度。
4.风速控制最后是风速的控制,这个比较简单。
因为风速的变化可以直接影响到湿度的变化,所以通常需要设备配备一个高速电动风扇。
控制器会在必要时进行调整,控制风扇的速度,从而保持恰当的空气流动。
总的来说,冷却塔的控制原理可以说十分复杂,其中需要在实际情况下选择不同的控制方法,因为不同的情况需要不同的策略。
因此,如果想要让冷却塔能够持续稳定的运行,我们需要选择合适的控制器。
这样,我们可以确保冷却塔能够为我们的生活和生产带来一定的保障。
三种冷却塔的比较与选用2.1风机的大直径节能化冷却塔的大型化可以减少占地、节约投资,同时减少了维护工作量,降低了维护费用,这在业内已是共识。
当冷却塔的大小确定后,在不影响塔的技术性能的条件下,应选择较大直径的风机,这是因为:在风量相同时,风机直径越大,风机出口空气动压越小,减少了系统的动压损失,从而达到了节能降耗的目的。
举例来说,在洞庭湖氮肥厂项目中,最初,风机有两种设计方案:①直径Φ9.14 m,风量323×104 m3/h,全压203 Pa,动压112.2 Pa,所需轴功率212 kW;②直径Φ10.06 m,风量323×104 m3/h,全压167.2 Pa,动压76.45 Pa,所需轴功率174 kW。
最终选用了Φ10.06 m风机,风机动压减小了35.75 Pa,功率消耗减少了38 kW,起到了良好的节能作用。
2.2提高风机效率,做好机塔匹配冷却塔风机的选型关系到冷却塔的效率、系统能耗、管理维护及噪声影响等。
正确选择配套风机已成为冷却塔成功设计的标志之一。
以往在冷却塔风机的选取上,存在两个方面的问题,一方面是根据冷却塔要求的风量和风压,按风机厂家提供的风机性能曲线进行选型,首要考虑的是风机的风量、风压能否满足要求,风机的效率次之。
另一方面,冷却塔设计时的风量和风压,都留有一定量的裕度,裕度的大小因设计者的习惯和经验而异,这就造成风机实际塔内的工作点与理论选型时的工作点出现偏离,风机的效率点也随之偏离,甚至下降。
以常用的Φ8.0~Φ8.53 m风机为例,一般轴功率为135 kW左右,如果风机效率点下降3%,每年按运行360 d计,一台风机年增加电能损耗34 992 kW〃h。
因此,一旦出现机塔选型和匹配不好,将使风机在较低的效率下运行,增加了功耗。
为了避免上述问题的发生,设计院、冷却塔厂家和风机厂家三方有必要进行一些有益的探索和试验,加强合作和交流,找出机塔匹配的一般规律,并在今后的应用中形成设计选型的行业规范。
冷却塔风机二种启动、运转控制方式的简述一、冷却塔风机软启动运转控制方式简述:1、软启动启停、运转控制方式:软起动器是一种集电机软起动、软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,国外称为Soft Starter。
软启器采用三相反并联晶闸管作为调压器,将其接入电源和电动机定子之间。
这种电路如三相全控桥式整流电路。
使用软启动器启动电动机时,晶闸管的输出电压逐渐增加,电动机逐渐加速,直到晶闸管全导通,电动机工作在额定电压的机械特性上,实现平滑启动,降低启动电流,避免启动过流跳闸。
待电机达到额定转数时,启动过程结束,软启动器自动用旁路接触器取代已完成任务的晶闸管,为电动机正常运转提供额定电压,以降低晶闸管的热损耗,延长软启动器的使用寿命,提高其工作效率,又使电网避免了谐波污染。
软启动器同时还提供软停车功能,软停车与软启动过程相反,电压逐渐降低,转数逐渐下降到零,避免自由停车引起的转矩冲击。
但是,软启动装置只能对电机的启、停实施控制,无法对电机的运行过程实施控制,同时,软启动装置没有外部输入调节端口,而不能实现远程调节的功能。
2、软起动与传统减压起动方式的不同之处是:(1)无冲击电流。
软启动器在起动电机时,通过逐渐增大晶闸管导通角,使电机起动电流从零线性上升至设定值。
对电机无冲击,提高了供电可靠性,平稳起动,减少对负载机械的冲击转矩,延长机器使用寿命。
(2)有软停车功能,即平滑减速,逐渐停机,它可以克服瞬间断电停机的弊病,减轻对重载机械的冲击,避免高程供水系统的水锤效应,减少设备损坏。
(3)起动参数可调,根据负载情况及电网继电保护特性选择,可自由地无级调整至最佳的起动电流。
二、冷却塔风机变频器运转控制方式的简述:1、变频器启停、运转控制方式:这种控制方式不仅可以实现逐步增加输出,电动机逐步加速,实现平滑启动,降低启动电流。
运行控制过程中系统基本控制原理为变频恒温自动控制,可以手动/自动完成电机工频和变频间的切换,从而实现系统的恒温控制。
家庭冷却塔系统中使用的冷却水泵的运行控制策略与节能技术随着科技的不断发展和家庭能源消耗的增加,节能成为了全球范围内的重要议题。
在家庭冷却塔系统中,冷却水泵作为关键设备之一,其运行控制策略和节能技术的应用对于提高系统效率、降低能耗非常关键。
本文将深入探讨家庭冷却塔系统中冷却水泵的运行控制策略与节能技术。
首先,冷却水泵的运行控制策略包括启停控制、变频调速控制和并联运行控制等多种方式。
启停控制是最常见的方式,通过设置合理的启停温度差来控制水泵的启停。
在冷却需求不高的情况下,可以延长冷却水泵的停机时间,从而实现节能效果。
而变频调速控制是通过改变冷却水泵的转速来调整水流量,进而满足不同冷却负荷条件下的需要,具有灵活性和精确性较高的优点。
并联运行控制则是指在系统故障或负荷过大时,通过多台冷却水泵并联运行,确保系统的连续稳定运行。
这些运行控制策略的灵活应用将有效提高冷却水泵的运行效率,实现节能目标。
其次,冷却水泵的节能技术主要包括阀门调节技术、管道优化设计和能量回收技术。
阀门调节技术利用节流阀控制流量,通过调整出口压力以降低泵的效率损失,从而减少能耗。
合理的管道优化设计包括管道布局、管径选择、管道摩阻等方面的考虑,能够减小管道阻力降低泵的额外负荷,提高能效。
能量回收技术是指利用冷却水泵排放的高温废水中的热量,通过换热器等设备将其回收并再利用,进一步提高能源利用效率,减少系统能耗。
此外,家庭冷却塔系统中还可以使用智能控制技术来提高冷却水泵的能效。
智能控制系统基于传感器和控制算法,能够根据外界环境及实时的冷却负荷情况对冷却水泵进行自动调节。
比如,智能控制系统可以根据室外温度的变化调整冷却水泵的运行状态,在低温或需求量较低时降低泵的运行频率,从而实现能耗的最小化。
此外,智能控制系统还可以通过数据分析和运行监控,提供优化运行建议,帮助用户更好地管理冷却水泵,降低能耗。
针对家庭冷却塔系统中冷却水泵的运行控制策略与节能技术,还可以通过定期维护和设备更新来进一步提高能效。
闭式冷却塔与开式冷却塔的优缺点对比闭式冷却塔与开式冷却塔的优缺点对比闭式冷却塔优缺点:1、整个管路系统为封闭式循环,循环水为蒸馏水,管路不结垢、不污染、不腐蚀,增加管路和设备的使用寿命。
2、循环水几乎没有水消耗,开始塔的扑水量为循环水量的1.24%-2%,闭式冷却塔的补水量紧为循环水量的0.1%-0.2%。
3、闭式冷却塔取消了冷水机于开式冷却塔之间的循环水泵,采用较小的冷却循环水泵,电费的节约能达到30%。
4、安装简单,无需开挖地下水池,管道使用方便,由于是密闭式循环,管损小,需要的管路管径相对减小。
5、飘水现象减少,开式冷却塔的飘水率为0.5%左右,闭式冷却塔飘水率下降到0.05%。
闭式塔的缺点:闭式冷却塔造价为开放式塔的数倍。
(但闭式塔具有回收价值,开式冷却塔几乎没有价值)开放式塔优点:1、开塔造价成本比较低,为闭式塔几分之一的价格。
开放式塔缺点:1、需要开挖地下水池,由于水落差和开放式扬程损耗,耗电比闭式塔多,需要配2套水泵,耗电量大。
建议:使用闭式冷却塔1、保护设备的使用寿命,减少设备维护。
2、环保节能,三年内可以节约下闭式塔和开式塔的价格差。
3、闭式塔使用紫铜管做换热器,设备具有保值性冷却塔冷却塔构成部件、使用范围、注意事项及特点闭式冷却塔成套设备由主机、水箱、循环水泵及电控柜等组成。
主机由壳体、换热器、风机、喷淋水泵、收水器、水槽及管路阀门等零部件组成。
工作过程中,冷却介质(软水、油或其他液体)由主循环泵驱动在换热器及需冷却设备之间循环流动,喷淋水均匀地喷洒在换热器上,在换热器外表面形成均匀的水膜,冷空气由塔体下方的进风口进入塔内,与喷淋水逆流经过换热器表面,在此过程中有两种换热方式,即冷空气与冷却介质之间的热传导和喷淋水蒸发吸热的热交换,吸收热量后的饱和热湿空气由风机排至大气中,其余的喷淋水流入塔体下部的水槽,由水泵再输送至喷淋系统。
如此往复,换热器内的冷却介质得到降温冷却。
闭式冷却塔有两种运行模式。