圆周运动实例1水平面的圆周运动
- 格式:pptx
- 大小:4.07 MB
- 文档页数:17
水平面、竖直面内的圆周运动类型一水平面内圆周运动的临界问题知识回望1.运动特点(1)运动轨迹是水平面内的圆.(2)合外力沿水平方向指向圆心,提供向心力,竖直方向合力为零,物体在水平面内做匀速圆周运动.2.几种常见的临界条件(1)水平转盘上的物体恰好不发生相对滑动的临界条件是物体与盘间恰好达到最大静摩擦力.(2)物体间恰好分离的临界条件是物体间的弹力恰好为零.(3)绳的拉力出现临界条件的情形有:绳恰好拉直意味着绳上无弹力;绳上拉力恰好为最大承受力等.例1(多选)如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a 与转轴OO′的距离为l,b与转轴的距离为2l.木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg【答案】AC【解析】小木块a、b做圆周运动时,由静摩擦力提供向心力,即F f=mω2R.当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a:F f a=mωa2l,当F f a=kmg时,kmg=mωa2l,ωa=kgl;对木块b:F f b=mωb2·2l,当F f b=kmg时,kmg=mωb2·2l,ωb =kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则F f a =mω2l ,F f b =mω2·2l ,F f a <F f b ,选项B 错误;当ω=kg2l时,b 刚开始滑动,选项C 正确;ω=2kg3l<ωa =kg l ,a 没有滑动,则F f a =mω2l =23kmg ,选项D 错误. 故选AC 。
变式训练1 (汽车在水平地面上转弯)(多选)如图所示为赛车场的一个水平“U ”形弯道,转弯处为圆心在O 点的半圆,内、外半径分别为r 和2r .一辆质量为m 的赛车通过AB 线经弯道到达A ′B ′线,有如图所示的①、②、③三条路线,其中路线③是以O ′为圆心的半圆,OO ′=r .赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max ,选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则( )A.选择路线①,赛车经过的路程最短B.选择路线②,赛车的速率最小C.选择路线③,赛车所用时间最短D.①、②、③三条路线的圆弧上,赛车的向心加速度大小相等 【答案】ACD【解析】由题图及几何关系知:路线①的路程为s 1=2r +πr ,路线②的路程为s 2=2r +2πr ,路线③的路程为s 3=2πr ,A 正确;赛车以不打滑的最大速率通过弯道,有F max =ma n =m v 2R ,速度v =F max Rm,即半径越大,速率越大,选择路线①赛车的速率最小,B 错误,D 正确;根据t =sv ,代入数据解得,选择路线③,赛车所用时间最短,C 正确. 故选ACD 。
水平面内圆周运动的两种模型一、两种模型模型Ⅰ圆台转动类小物块放在旋转圆台上,与圆台保持相对静止,如图1所示.物块与圆台间的动摩擦因数为μ,离轴距离为R,圆台对小物块的静摩擦力(设最大静摩擦力等于摩擦力)提供小物块做圆周运动所需的向心力.水平面内,绳拉小球在圆形轨道上运动等问题均可归纳为“圆台转动类”.图1临界条件圆台转动的最大角速度ωmax=,当ω<ωmax时,小物块与圆台保持相对静止;当ω>ωmax时,小物块脱离圆台轨道.模型Ⅱ火车拐弯类如图2 所示,火车拐弯时,在水平面内做圆周运动,重力mg和轨道支持力N的合力F提供火车拐弯时所需的向心力.圆锥摆、汽车转弯等问题均可归纳为“火车拐弯类”.图2临界条件若v=,火车拐弯时,既不挤压内轨也不挤压外轨;若v>,火车拐弯时,车轮挤压外轨,外轨反作用于车轮的力的水平分量与F之和提供火车拐弯时所需的向心力;若v>,火车拐弯时,车轮挤压内轨,内轨反作用于车轮的力的水平分量与F之差提供火车拐弯时所需的向心力.二、两种模型的应用例1 如图3所示,半径为R的洗衣筒,绕竖直中心轴00'转动,小橡皮块P靠在圆筒内壁上,它与圆筒间的动摩擦因数为μ.现要使小橡皮块P恰好不下落,则圆筒转动的角速度ω至少为多大?(设最大静摩擦力等于滑动摩擦力)图3 图4【解析】此题属于“圆台转动类”,当小橡皮块P绕轴00'做匀速圆周运动时,小橡皮块P受到重力G、静摩擦力f和支持力N的作用,如图4所示.其中“恰好”是隐含条件,即重力与最大静摩擦力平衡f max=G,μN=mg列出圆周运动方程N=mω2min R联立解得ωmin=例2 在半径为R的半球形碗的光滑内面,恰好有一质量为m的小球在距碗底高为H处与碗保持相对静止,如图5所示.则碗必以多大的角速度绕竖直轴在水平面内匀速转动?图5【解析】此题属于“火车拐弯类”,当小球做匀速圆周运动时,其受到重力G和支持力F的作用,如图5所示.隐含条件一是小球与碗具有相同的角速度ω,隐合条件二是小球做匀速圆周运动的半径r=Rcosθ.列出圆周运动方程Fcosθ=mω2Rcosθ竖直方向上由平衡条件有Fsinθ-mg=0其中 sinθ=联立解得ω=例3 长度为2l的细绳,两端分别固定在一根竖直棒上相距为l的A、B两点,一质量为m的光滑小圆环套在细绳上,如图6所示.则竖直棒以多大角速度匀速转动时,小圆环恰好与A点在同一水平面内?图6【解析】此题属于“火车拐弯类”,当小圆环做匀速圆周运动时,小圆环受到重力G、绳OB的拉力F和绳OA的拉力F的作用,如图7所示图7隐含条件一是小圆环与棒具有相同角速度ω,隐含条件二是小圆环光滑,两侧细绳拉力大小相等,隐含条件三是小圆环做匀速圆周运动的圆心为A点、半径为r(OA).列出圆周运动方程 F+Fcosθ=mω2r由平衡条件有 Fsinθ-mg=0其中 cosθ=,sinθ=联立解得ω=小试身手1、如图8所示,质量均为m的A、B两物体用细绳悬着,跨过固定在圆盘中央光滑的定滑轮.物体A与圆盘问的动摩擦因数为μ,离圆盘中心距离R.为使物体A与圆盘保持相对静止,则圆盘角速度ω的取值范围为多少?(设最大静摩擦力等于滑动摩擦力)图82、如图9所示,长度分别为l1和l2两细绳OA、OB,一端系在竖直杆,另一端系上一质量为m的小球,两细绳OA和OB同时拉直时,与竖直杆的夹角分别为30°、45°.则杆以多大角速度转动时,两细绳同时且始终拉直?图9。
水平面内的圆周运动一、水平圆盘问题例1、水平圆盘以角速度ω匀速转动,距转动轴L的位置有一小物块与圆盘相对静止,小物块的向心加速度多大所受摩擦力多大对接触面有什么要求离轴近的还是远的物体容易滑动练习:质量相等的小球A、B分别固定在轻杆的中点和端点,当杆在光滑的水平面上绕O点匀速转动时,求杆的OA段和AB段对小球的拉力之比;O A例2、中心穿孔的光滑水平圆盘匀速转动,距转动轴L的位置有一质量为m的小物块A通过一根细线穿过圆盘中心的光滑小孔吊着一质量为M的物体B,小物块A与圆盘相对静止,求盘的角速度;°变式:若圆盘上表面不光滑,与A的动摩擦因数为μ,则圆盘角速度的取值范围是多少例3、在半径为r的匀速转动的竖直圆筒内壁上附着一物块,物块与圆筒的动摩擦因数为μ,要使物块不滑下来,圆筒转动的角速度应满足什么条件例4、长为L的细线悬挂质量为M的小球,小球在水平面内做匀速圆周运动,细线与竖直方向夹角为θ,求1小球的角速度;2小球对细线的拉力大小;变式:一个光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定,质量为m的小球沿着筒的内壁在水平面内做匀速圆周运动,圆锥母线与轴线夹角为θ,小球到锥面顶点的高为h,1小球的向心加速度为多少2对圆锥面的压力为多大3小球的角速度和线速度各为多少·θ思考:小球的向心加速度与小球质量有关吗与小球的高度有关吗若有两个小球在同一光滑的圆锥形筒内转动,A球较高而B球较低,试比较它们的向心加速度、对圆锥面的压力、线速度、角速度大小;二、临界问题例5:如图所示,洗衣机内半径为r 的圆筒,绕竖直中心轴OO ′转动,小物块a 靠在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要使a 不下落,则圆筒转动的角速度ω至少为A .r g /μB .g μC .r g /D .r g μ/例6:如图所示,细绳一端系着质量M =的物体,静止在水平桌面上,另一端通过光滑的小孔吊着质量m =的物体 m,已知M 与圆孔距离为,M 与水平面间的最大静摩擦力为2N;现使此平面绕中心轴线转动,问角速度ω在什么范围m 会处于静止状态g =10m /s 2例7、如图所示,两根相同的细线长度分别系在小球和竖直杆M 、N 两点上,其长度分别为L 、R 且构成如图一个直角三角形,小球在水平面内做匀速圆周运动,细线能承受的最大拉力为2mg,当两根细线都伸直时,若保持小球做圆周运动的半径不变,求:小球的角速度范围变式、如图所示,两根相同的细线长度分别系在质量为m 的小球和竖直杆M 、N 两点上;小球在水平面内做匀速圆周运动,当两根细线都伸直时,小球到杆的距离为R,且细线与杆的夹角分别为θ和α,承受的最大拉力为2mg,若保持小球做圆周运动的半径不变,求:小球的角速度范围三、两个或多个物体的圆周运动例4:如图所示,A 、B 、C 三个物体放在水平旋转的圆盘上,三物与转盘的最大静摩擦因数均为μ,A 的质量是2m ,B 和C 的质量均为m ,A 、B 离轴距离为R ,C 离轴2R ,若三物相对盘静止,则A .每个物体均受重力、支持力、静摩擦力、向心力四个力作用B .C 的向心加速度最大 C .B 的摩擦力最小D .当圆台转速增大时,C 比B 先滑动,A 和B 同时滑动例5:在光滑杆上穿着两个小球m 1、m 2,且m 1=2m 2,用细线把两球连起来,当盘架匀速转动时,两小球刚好能与杆保持无相对滑动,如右图所示,此时两小球到转轴的距离r 1与r 2之比为A .1∶1B .1∶2C .2∶1D .1∶2四、课后作业1.在水平面上转弯的汽车,提供向心力的是A .重力与支持力的合力B .静摩擦力Mr o mgR v ≤μC .滑动摩擦力 D .重力、支持力、牵引力的合力 2.有长短不同,材料相同的同样粗细的绳子,各拴着一个质量相同的小球在光滑水平面上做匀速圆周运动,那么A .两个小球以相同的线速度运动时,长绳易断B .两个小球以相同的角速度运动时,长绳易断C .两个球以相同的周期运动时,短绳易断D .不论如何,短绳易断3.在一段半径为R 的圆孤形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的μ倍,则汽车拐弯时的安全速度是A .v gR ≤μ B . C .v gR ≤2μ D .v gR ≤μ 4.如图所示,A 、B 、C 三个小物体放在水平转台上,m A =2m B =2m C ,离转轴距离分别为2R A =2R B =R C ,当转台转动时,下列说法正确的是A .如果它们都不滑动,则C 的向心加速度最大B .如果它们都不滑动,则B 所受的静摩擦力最小C .当转台转速增大时,B 比A 先滑动D .当转台转速增大时,C 比B 先滑动5.如图所示,甲、乙两名滑冰运动员,M 甲=80kg,M 乙=40kg,面对面拉着弹簧秤做圆周运动的溜冰表演,两人相距,弹簧秤的示数为600N,下列判断中正确的是A .两人的线速度相同,约为sB .两人的角速度相同,约为5rad/sC .两人的运动半径相同,都是D .两人的运动半径不同,甲为,乙为6.汽车在倾斜的轨道上转弯如图所示,弯道的倾角为θ,半径为r ,则汽车完全不靠摩擦力转弯的速率是设转弯半径水平A .θsin grB .θcos grC .θtan grD .θcot gr7.一辆质量为1t 的赛车正以14m/s 的速度进入一个圆形跑道,已知跑道半径为50m,最大静摩擦力约等于滑动摩擦力,则:1此赛车转弯所需的向心力是多大2当天气晴朗时,赛车和路面之间的摩擦系数是,问比赛过程中赛车是否能顺利通过弯道3在雨天时,赛车和路面之间的摩擦系数是,问比赛过程中赛车是否能顺利通过弯道8.水平圆盘绕竖直轴以角速度ω匀速转动;一个质量为50kg 的人坐在离轴r=m/3处随盘一起转动;设人与盘的最大静摩擦力均为体重的倍,g取10 m/s2,求:1ω为多大时,人开始相对盘滑动;2此时离中心r′= m处的质量为100kg的另一个人是否已相对滑动请简述理由;。
《水平面内的圆周运动》知识清单一、什么是水平面内的圆周运动在水平面上,一个物体沿着圆周轨迹运动,这种运动就被称为水平面内的圆周运动。
比如,在光滑水平桌面上用绳子拴着一个小球做圆周运动,或者汽车在水平弯道上行驶等,都是常见的水平面内圆周运动的例子。
二、水平面内圆周运动的受力特点要使物体在水平面内做圆周运动,必须有一个指向圆心的合力来提供向心力。
这个向心力可以由一个力单独提供,也可以由几个力的合力来提供。
当只有一个力提供向心力时,比如用绳子拴着小球在水平面上做圆周运动,绳子的拉力就提供了向心力。
如果是几个力的合力提供向心力,比如汽车在水平弯道上行驶,汽车受到的重力和支持力相互平衡,而地面给汽车的摩擦力就提供了向心力,使得汽车能够沿着弯道做圆周运动。
三、向心力的表达式向心力的大小可以用以下公式来计算:\(F_{向} = m\frac{v^{2}}{r}\),其中\(m\)是物体的质量,\(v\)是物体做圆周运动的线速度,\(r\)是圆周运动的半径。
或者\(F_{向} =mω^{2}r\),其中\(ω\)是物体做圆周运动的角速度。
四、线速度与角速度的关系在水平面内的圆周运动中,线速度\(v\)和角速度\(ω\)之间存在着密切的关系,即\(v =ωr\)。
线速度是物体在圆周运动中经过的弧长与所用时间的比值,它描述了物体在圆周上运动的快慢。
角速度是物体在单位时间内转过的角度,它反映了物体转动的快慢。
五、常见的水平面内圆周运动实例1、圆锥摆运动一个小球用一根长为\(L\)的细线悬挂起来,在水平面内做圆周运动。
此时,小球受到重力和绳子的拉力,拉力在水平方向的分力提供了向心力。
向心力大小为\(F_{向} =mgtanθ\),根据向心力的表达式\(F_{向} =mω^{2}r\),可以得出角速度\(ω =\sqrt{\frac{gtanθ}{Lcosθ}}\)。
2、汽车在水平弯道上行驶汽车在弯道上行驶时,为了避免侧滑,弯道通常会有一定的倾斜角度。
水平面内的圆周运动实例分析总结水平面内的圆周运动,顾名思义即为物体在水平面内所作的圆周运动。
在生活中这样的例子很多,其运动的分析在高中物理中也是比较重要的,对学生来说也存在着一定的难度。
其实做这方面的习题时,关键是找出是什么力来提供的向心力,将受力分析所得的实际力与理论公式中的向心力联立,就可以得到所需要求的物理量。
现将常见的水平面内的圆周运动归结如下:一、水平面内汽车转弯、物体随转盘转动:某个力提供向心力在上述两个问题中,物体都处于水平接触面上,竖直方向的支持力和重力两者互相抵消,而物体作圆周运动时都有着被向外甩出的趋势,所以向心力都是由静摩擦力提供,即f静=Fn=。
从公式还可以看出,r一定时,v越大,所需的Fn 就会越大,当所需的Fn>Fmax时,物体将不能再作圆周运动。
临界Fmax=≈F动=μmg,所以v临=μgr。
当v>v临,物体将被甩出。
二、火车转弯、漏斗内物体的圆周运动、圆锥摆类,向心力由几个力的合力提供虽然这几种情况描述的物体运动形式不同,但从受力分析上看非常相似,都是除受到竖直向下的重力之外,再受到一个倾斜的支持力或拉力。
因为物体在水平面上作圆周运动需要水平方向的向心力,所以支持力或拉力与重力的合成后的合力提供向心力,向心力大小可以通过三角形三边关系解得。
练习:1.一辆质量为2t的汽车正在水平路面上行驶,要经过一个水平转弯,已知弯道的转弯半径为20米,汽车轮子与路面的动摩擦因数为0.2,若汽车最大静摩擦力与动摩擦力相等,则汽车行驶的最大速度为()。
A.210m/sB.2m/sC.4m/sD.22m/s2.如图所示,有A、B两个完全相同的小球,在同一光滑漏斗中作匀速圆周运动,则下列说法中正确的是()。
A、两物体的线速度的大小相同B、两物体的角速度相同C、两物体的向心力的大小相同D、两物体的向心加速度大小相同3.一列火车正在行驶,发现前方有一转弯,已知在转弯处的内外轨的高度差为h,内外轨道间距为L,弯道半径为r,则火车要想通过此弯道时不受内外轨道的挤压,应以速度_____转弯。
§4-3-1向心力的实例分析(一)—水平面内匀速圆周运动【学习目标】1、进一步认识匀速圆周运动,知道其合外力提供向心力。
2、能够运动牛顿运动定律,处理圆周运动模型。
3、能够根据匀速圆周运动的规律,分析生活中一些现象并能够加以解释和运用。
【重难点】1、运动圆周运动的动力学分析。
2、匀速圆周运动的实例分析。
读一读【备用知识】一、匀速圆周运动1.定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动。
2.特点:加速度大小不变,方向始终指向圆心,是变加速运动。
3.条件:合外力大小不变、方向始终与速度方向垂直且指向圆心,匀速圆周运动的合外力为变力。
二、匀速圆周运动的向心力1.作用效果:向心力产生向心加速度,只改变速度的方向,不改变速度的大小。
2.大小:F =m v 2r =mω2r =m 4π2T 2r =mωv =4π2mf 2r 。
3.方向:始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力。
4.来源:向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供。
5.实质:做匀速圆周运动的物体,速度大小不变,速度方向时刻改变,因此合外力方向始终应与速度方向垂直、沿半径指向圆心。
可见做匀速圆周运动的物体合外力就是向心力或合外力提供向心力。
1.汽车转弯问题讨论:(1)在水平面:(2)在斜面:思考:为什么在设计高速路和赛车跑道的弯道时,要让内侧低于外侧?例1、随着我国综合国力的提高,近年我国的高速公路网发展迅猛,在高速公路转弯处,采用外高内低的斜坡式弯道,可使车辆通过弯道时不必大幅减速,从而提高通过能力且节约燃料,若某处这样的弯道为半径r =100 m 的水平圆弧,其横截面如图所示。
tanθ=0.4,g 取10 m/s2,11.25=3.36。
(1)求最佳通过速度,即不出现侧向摩擦力的速度;(2)若侧向动摩擦因数μ=0.5,且最大静摩擦力等于滑动摩擦力,求最大通过速度。