核医学仪器与方法-3-1
- 格式:ppt
- 大小:2.38 MB
- 文档页数:43
一、实验名称核医学仪器原理与应用实验二、实验日期2023年11月10日三、实验目的1. 了解核医学仪器的基本原理和结构。
2. 掌握核医学仪器的主要应用领域。
3. 学习核医学仪器在临床诊断和治疗中的作用。
4. 培养实验操作技能和数据处理能力。
四、实验原理核医学仪器利用放射性同位素发出的射线(如γ射线、β射线等)对人体进行成像或测量,从而实现对疾病的诊断和治疗。
本实验主要涉及以下原理:1. 闪烁探测原理:利用闪烁晶体将γ射线转换为可见光,再由光电倍增管转换为电信号,最终进行计数和成像。
2. 计数器原理:通过测量放射性同位素发出的射线数量,计算放射性活度。
3. 核医学成像原理:利用γ相机或SPECT等设备,对放射性同位素在体内的分布进行成像。
五、主要仪器与试剂1. 仪器:核医学仪器、闪烁晶体、光电倍增管、计数器、γ相机、SPECT等。
2. 试剂:放射性同位素、闪烁液、NaI(Tl)晶体等。
六、实验步骤1. 准备阶段:- 熟悉实验原理和仪器操作方法。
- 检查仪器设备是否正常。
2. 实验操作:- 将放射性同位素溶液注入闪烁晶体中,观察闪烁现象。
- 将闪烁晶体与光电倍增管连接,进行计数实验,测量放射性活度。
- 利用γ相机或SPECT进行成像实验,观察放射性同位素在体内的分布。
3. 数据处理:- 记录实验数据,包括放射性活度、计数率等。
- 对实验数据进行统计分析,计算相关参数。
4. 实验报告撰写:- 总结实验结果,分析实验现象。
- 讨论实验过程中遇到的问题及解决方法。
- 提出实验改进建议。
七、实验结果1. 观察到闪烁晶体在放射性同位素的作用下产生闪烁现象。
2. 通过计数实验,测得放射性活度为X mCi。
3. 利用γ相机或SPECT进行成像实验,观察到放射性同位素在体内的分布情况。
八、讨论1. 本实验验证了核医学仪器的基本原理,证明了闪烁探测和计数器的有效性。
2. 实验过程中,观察到放射性同位素在体内的分布情况,为进一步的临床诊断和治疗提供了依据。
核医学仪器Document number:PBGCG-0857-BTDO-0089-PTT1998第二章核医学仪器核医学仪器是指在医学中用于探测和记录放射性核素放出射线的种类、能量、活度、随时间变化的规律和空间分布等一大类仪器设备的统称,它是开展核医学工作的必备要素,也是核医学发展的重要标志。
根据使用目的不同,核医学常用仪器可分为脏器显像仪器、功能测定仪器、体外样本测量仪器以及辐射防护仪器等,其中以显像仪器最为复杂,发展最为迅速,在临床核医学中应用也最为广泛。
核医学显像仪器经历了从扫描机到γ照相机、单光子发射型计算机断层仪(single photon emission computed tomography,SPECT)、正电子发射型计算机断层仪(positron emission computed tomography,PET)、PET/CT、SPECT/CT 及PET/MR的发展历程。
1948年Hofstadter开发了用于γ闪烁测量的碘化钠晶体;1951年美国加州大学Cassen成功研制第一台闪烁扫描机,并获得了第一幅人的甲状腺扫描图,奠定了影像核医学的基础。
1957年Hal Anger研制出第一台γ照相机,实现了核医学显像检查的一次成像,也使得核医学静态显像进入动态显像成为可能,是核医学显像技术的一次飞跃性发展。
1975年M. M. Ter-Pogossian等成功研制出第一台PET,1976年John Keyes和Ronald Jaszezak分别成功研制第一台通用型SPECT和第一台头部专用型SPECT,实现了核素断层显像。
PET由于价格昂贵等原因,直到20世纪90年代才广泛应用于临床。
近十几年来,随着PET/CT的逐渐普及,实现了功能影像与解剖影像的同机融合,使正电子显像技术迅猛发展。
同时,SPECT/CT及PET/MR的临床应用,也极大地推动了核医学显像技术的进展。
第一节核射线探测仪器的基本原理一、核射线探测的基本原理核射线探测仪器主要由射线探测器和电子学线路组成。
核医学方法与仪器第一讲有关核医学的物理知识金永杰本讲座撰写人金永杰先生清华大学教授中国电子学会核医学电子学专业委员会副主任委员一核医学及其技术基础核医学(Nuclear Medicine)采用放射性同位素来进行疾病的诊断治疗及研究它是核技术与医学相结合的产物放射医学也以核辐射为手段但是它使用封闭型辐射源(如X光球管加速器)从人体外进行照射核医学则将开放型放射性同位素以放射性药物的形式引入体内虽然核医学包括用核辐射的生物效应治疗疾病但是诊断疾病是临床核医学的主要内容诊断核医学可划分为两类:(1) 体外诊断将放射性核素放在试管中(In Vitro)进行放射性免疫测量或活化分析(2) 体内诊断把放射性核素引入活体内(In Vivo)进行脏器功能测量或显像后者为当代核医学最主要的工作领域核医学依据放射性示踪原理进行体内诊断放射性核素及其标记物构成了放射性药物它们保持着对应稳定核素或被标记药物的化学性质和生物学行为能够正常参与机体的物质代谢放射性药物产生的γ射线能穿透机体可以在体外测量到所以核医学能够无创伤地观察放射性药物在活体中循环扩散聚集排出的过程得到药物分子的图像提供关于机体代谢的生理学的功能方面的信息由于疾病一般先表现在生理功能方面的变化然后才有脏器形态的改变所以核医学方法有助于疾病的早期诊断核医学涉及核物理化学药学电子学计算机等学科在技术上以放射性药物和核医学仪器为基础从核素的生产标记化合物的研制到新型放射性药物的寻找没有化学人员与药理学家参与是不可能的从放射免疫分析仪功能仪扫描机γ照相机到单光子发射CT(Single Photon Emission ComputedTomography SPECT)正电子发射CT(Positron Emission Tomography PET)的设计制造没有物理人员和工程人员参与也是不可能的二关于放射性衰变的一些物理知识1. 同位素和放射性衰变一切物质都是由原子组成的原子又是由质子和中子构成的原子核以及围绕原子核运动的电子组成的质子的数量决定了原子的种类质子数相同中子数不同的核素在元素周期表中处于同一位置故称为同位素(Isotopes)它们具有相同的化学及生物性质自然界中存在的核素大多是稳定的但是它们的一些同位素是不稳定的会自发地蜕变成其他的核素或改变其能态并伴随αβγ辐射这个过程称为放射性衰变(Radioactive Decay)放射性衰变的发生是随机的我们用单位时间内平均发生衰变的次数来衡量样品的放射性衰变能力称作放射性强度或放射性活度(Activity)它的单位是贝克尔(Bq)或居里(Ci)1Bq=1次核衰变/秒1Ci=3.71010次核衰变/秒不难得出1mCi(10-3Ci)=37MBq随着衰变进行样品中放射性核素逐渐减少其放射性强度呈负指数规律下降A=A o e-t为核素的衰变常数放射性强度减弱一半所需的时间称为半衰期T可以推出T1/2=0.693/除了物理半衰期以外核医学中还有一个生物半衰1/2期的概念它是指生物体内的放射性核素由于生物代谢从体内排出一半所需的时间用T b表示假定生物代谢造成的放射性强度减少也符合指数规律A(t)=Ae-bt则生物体内的放射性强度由于放射性衰变和生物代谢共同作用造成的衰减: A(t)=Ae-t.e-bt =A o e-(b)t总衰减速度大于任何单一因素所造成的衰减速度α粒子是两个质子和两个中子构成的氦原子核β辐射就是电子流γ射线的本质是与无线电波和可见光一样的电磁波由于它的波长比可见光更短有更强烈的粒子性表现所以我们也常称之为γ光子(Photon)这些粒子所具有的能量用电子伏特(electron V olt eV)来量度1eV就是电子经过1V的电场加速所获得的能量更大的单位是千电子伏特(kilo electron V olt keV)和兆电子伏特(Mega electron V olt MeV)1keV=1000eV1MeV =1000keV2. 同质异能素与辐射核内质子数和中子数都相同而处在不同能量状态的核素互称同质异能素(Isomer)例如m 9943Tc 和9943Tc 互为同质异能素m 9943Tc 的能态比9943Tc 高它处于亚稳态(Metastable State)处于亚稳态的原子核在回到基态时会放出γ光子这种原子核能态的改变称为同质异能跃迁(Isomeric Transition IT)例如m 9943Tc在跃迁时伴随γ辐射主要产生140keV 的低能γ射线3. 正负电子对湮灭许多缺中子核素会发生质子转变成中子并放出一个正电子的β蜕变结果变成原子序数少1的核素如189F +β188O 正电子是普通电子的反粒子它从原子核放出来以后与周围物质的原子发生碰撞迅速损失能量一般在几个毫米距离内就停止下来然后正电子与普通电子发生湮灭反应它们的质量转变为能量以两个向相反方向运动的511keV 的湮灭光子的形式释放出来4. 射线与物质的作用αβ是带电粒子它们在人体组织中会与各种分子原子发生碰撞减慢速度失去能量最后被吸收掉而被碰撞的分子原子则被电离和激发获得的能量最终转变为热(分子原子的振动)由于α和β粒子很快就失去了能量所以它们很难穿过人体组织γ光子的本质为电磁波它与物质作用的机理主要有以下三种:(1) 光电效应(Photoelectric Effect)即γ光子与原子壳层电子相互作用把能量全部交给电子使之成为自由电子的过程γ光子丧失全部能量后消失壳层电子逸出造成的空缺会导致荧光辐射而电子由光电效应获得的动能在与周围物质的作用中迅速耗散(2) 康普顿散射(Compton Scattering)γ光子与原子最外壳层电子发生弹性碰撞将部分能量交给电子使之脱离原子核的束缚从原子中逸出而光子运动方向改变能量减少(3) 电子对生成(Pair Production)能量大于1.02MeV 的光子经过原子核场转化为一个正电子和一个负电子γ光子消失强度为I 0(Photons/cm 2s)的γ光子束(或称γ射线)穿过物质时一部分光子与物质发生作用被吸收掉穿出厚度为x 的吸收物质后γ光子束强度被衰减为:I=I 0 e -µrc 式中ρ为吸收物质的密度单位为g/cm 3; µ为质量衰减系数(Mass Attenuation Coefficient)单位为cm 2/g 它取决于γ光子的能量E 和吸收物质的原子序数Zµ是上述三种效应的衰减系数之和:µ=τ+σ+k 式中光电效应衰减系数τZ 3/E 3低能γ光子和重元素原子作用时光电效应显著; 康普顿散射效应衰减系数σZ/E 随Z E 变化不大中等能量的γ光子与中等原子序数的物质作用时康普顿散射是主要因素在E> 1.02MeV 时才发生电子对生成其衰减系数k Z logE 高能光子经过重元素核场时才有电子对生成效应图1表示不同能量(E)的γ光子在不同原子序数(Z)的吸收物质中主要的作用机制可以看出对于核医学使用的能量范围为50~500keV 的γ光子来说与Z 20的人体组织的主要作用机制是康普顿散射与Z=82的铅主要作用机制是光电效应与αβ相比γ射线能够穿透更厚的吸收物质而且能量越高的γ射线穿透物质的能力越强对于m 9943Tc 产生的能量为140keV 的γ射线来说46mm 厚的人体组织才使它的强度衰减一半然而0.9mm 的铅便可使它的强度衰减10倍γ光子不像带电粒子那样直接引起物质的电离但是它引起的原子壳层电子发射和正负电子对会导致电离效应5. 临床使用的放射性核素用于临床的放射性核素应符合以下要求:(1) 半衰期合适使用较大强度的放射性核素可以缩短数据采集时间减小统计误差为了减少病人的辐照剂量半衰期要尽可能短短半衰期核素还便于在短时间内重复施用而不增加残留本底考虑到操作方便常选用半衰期为几小时到几天的核素现在半衰期为几分钟的放射性核素也开始在临床上使用(2) 射线的种类和能量恰当用于诊断的核素所产生的射线应该能穿出机体被探测到所以常用γ射线其能量如果过低在体内吸收太多; 能量过高则屏蔽准直困难影响空间分辨率探测效率也下降临床使用的γ射线能量一般在50~500keV 之间(3) 产生的射线种类及能量单一以减少散射和其他效应形成的测量本底核素的衰变产物应该是稳定核素以下介绍几种核医学常用的放射性核素a. m9943Tc(Technetium锝)经IT衰变产生140keV的能量γ射线(90%)不伴生β辐射适合用闪烁探测器探测半衰期为6.02h99m Tc标记的化合物络合物几乎可以用于所有器官的显像和血流动力学研究如: 脑血流灌注显像剂99m Tc-HMPAO异腈类心肌灌注显像剂99m Tc-MIBI最近还出现了99m Tc标记的抗体和其他导向药物例如: 浓集于心内膜炎的病损部位的99m Tc-抗葡萄球抗体检测血栓的99m Tc-抗血小板的单克隆抗体等99m Tc是理想的体外显影用核素它的用量占放射性核素总用量的90%左右b. 13153I(Iodine碘)经β-衰变产生605keV的β (90.4%)364keV的γ(82%)和637keV的γ (6.8%)物理半衰期为8.04h适于作甲状腺肾肝脑肺胆的显像功能测量和治疗但由于γ能量偏高γ相机探测效率低图像分辨率差c. 13154Xe(Xenon氙)经β-衰变产生346keV的β(99.3%)和81keV的γ (98%)半衰期为5.29天113Xe 气和113Xe生理盐水用于肺通气灌注显像d. 正电子衰变类放射性核素11 6C的半衰期为20.3min137N的半衰期为10min158O的半衰期为123s18 9F的半衰期为110min它们用于PET显像三γ射线探测器1. 闪烁探测器的构造和工作原理核医学仪器大多采用闪烁探测器来测量γ射线它的性/价比很好图2是一种闪烁探头的结构它主要由闪烁晶体和光电倍增管组成入射的γ光子在闪烁晶体中发生光电效应和康普顿散射把能量传给电子这些电子最终通过电离或激发作用将能量沉积在晶格中然后晶体发生退激释放出被沉积的能量其中一部分能量以可见光的形式释放出来X光增强屏和夜光手表盘使用的就是这类闪烁物质晶体产生的闪烁光非常微弱为了避免光逃逸除了与光学窗接触的表面以外晶体四周都填入白色的MgO或Al2O3反光粉为了屏蔽外界的光线防止潮气侵蚀晶体和机械损伤整个探测器用铝制或薄不锈钢制外壳包裹起来铝和薄不锈钢不透光但对γ射线的衰减很小NaI(Tl)晶体的密度大(ρ= 3.67g/cm3)又含有高原子序数的碘(Z=53)是γ射线的良好吸收物只要有一定厚度就可以将入射的γ光子的全部能量沉积在晶体中它的光产额高每keV辐射能量平均产生40个可见光光子输出的闪光信号强NaI(Tl)晶体产生的闪光亮度与入射γ光子的能量成正比所以可以用来测量γ光子的能量此外NaI(Tl)晶体对它产生的闪光是透明的即使很厚的晶体因自吸收造成的光损失也很小因此核医学仪器广泛使用NaI(Tl)晶体制作闪烁探测器一些核医学仪器中如PET还采用锗酸铋(Bi4Ge3O12也称BGO)氟化铯(CsF)等闪烁晶体光电倍增管(Photo Multiplier Tube PMT)是一种电子管它能够将微弱的光信号转换成电流脉冲NaI(Tl)晶体中的闪烁光经光学窗进入光电倍增管在光阴极上打出光电子离光阴极不远处的第一打拿极上加有200~400V的正电压光电子被它吸引和加速高速光电子撞在打拿极上会产生多个二次电子二次电子又被加有更高电压(+50~+150V)的第二打拿极吸引和加速并在它上面撞出更多二次电子然后第三打拿极使电子进一步倍增经过9~12个打拿极的连续倍增二次电子簇流最后被阳极收集起来形成电流脉冲每个打拿极的倍增因子一般为3~6总倍增因子可以达到105~108从阳极上得到的电子簇流与进入光电倍增管的闪光强度成正比因而也与入射闪烁晶体的γ光子的能量成正比所以闪烁探测器是一种能量灵敏探测器外界磁场能影响在打拿极之间飞行的二次电子的运动轨迹从而使倍增因子发生变化因此在光电倍增管外面通常包裹着高导磁系数材料制造的磁屏蔽层以降低外界磁场的影响2. 光电倍增管的高压供电在光电倍增管工作的时候必须给各个打拿极D和阳极A分配相对于光阴极K依次递增的电位通常采用对高压电源HV(1000V左右)进行电阻分压的方法供电图3是采用正高压供电的情况R1~R8是分压电阻因为最后几个打拿极流过的脉冲电流较大C1和C2并联在相应的分压电阻上可以保持脉冲发生时打拿极电位稳定减少信号噪声和畸变RL给阳极电流脉冲提供通路由于它连在正高压上必须有高耐压的电容Ca把直流高压与后续电路隔离开而让脉冲信号通过由于RL下端不接地输出信号容易引入干扰但是正高压供电时光阴极是接地的这对光阴极的安全有利而且暗电流小输出噪声低图4是负高压供电的电路图它也能给各个打拿极和阳极提供依次递增的电位由于RL下端接地所以不需要高耐压的隔直电容可以克服干扰问题因此负高压供电较为常用但因为紧贴光电倍增管管壁的金属支架或磁屏蔽套通常是接地的负高压供电会使电子撞击光电倍增管内壁产生噪声光电倍增管的放大因子随各打拿极的电压而变化高压HV的1%改变会造成输出脉冲幅度10%以上的变化因此要求高压电源的长期稳定性和温度稳定性都非常好一般应比所要求的增益的稳定度高一个数量级直流高压输出应该不受电源电压和负载电流变化的影响交流纹波应该小于0.1V正确选择工作点很重要让光电倍增管工作在坪区(即灵敏度受高压变化影响最小的区域)不但有利于提高增益的稳定度而且常常能获得较佳的信号/噪声比3. 闪烁探测器测得的γ能量谱γ光子与闪烁晶体作用产生闪光由于作用过程不同各次闪光的强度不尽相同有一定的分布图5a是理想情况下单一能量γ光子入射NaI(Tl)晶体所产生的光脉冲其幅度大小不等图5b是脉冲幅度的统计分布即γ能谱其中右端的高峰是由光电效应产生的称为光电峰(Photopeak)由于在光电效应中γ光子把全部能量转换成可见光所以光电峰的横坐标对应γ光子的能量Er在康普顿散射中γ光子只把部分能量通过反冲电子传递给闪烁晶体被γ光子带走的能量和散射角有关因此探测器的输出脉冲幅度有很宽的分布在光电峰左边的低能区形成康普顿坪如果被散射的γ光子接着又被探测器吸收产生的脉冲也在光电峰里由于γ射线在NaI(Tl)晶体中产生可见光光子的数目可见光光子到达PMT光阴极的数目光阴极释放光电子的数目打拿极的倍增因子都有随机的统计涨落以及PMT光阴极各处灵敏度的不均匀加在PMT上的高压的波动及PMT的电子学噪声都会造成虽然γ光子沉积在NaI(Tl)晶体中的能量相同但是闪烁探测器输出的脉冲幅度参差不齐的现象这在图5b的脉冲幅度谱上表现为光电峰有一定的宽度也就是说探测器有一定的能量分辨率我们可以用光电峰高度一半处的宽度E来描述探测器的能量分辨率称为半高宽(Full Width at Half MaximumFWHM)通常FWHM表示为E与光电峰能量Er的百分比: FWHM(%)=(E/E r) 100%能量高的γ射线在闪烁晶体中可以产生更多的可见光光子相对的统计涨落较小探测器的能量分辨率也较好对140keV的γ射线NaI(Tl)闪烁探测器的FWHM(%)大约为11~15%未完待续。