数形结合就是通过数与形之间的对应和转化来解决数学问
- 格式:doc
- 大小:43.00 KB
- 文档页数:7
数形结合不仅是一种数学思想,也是一种很好的教学方法。
著名数学家华罗庚先生曾经说过:“数缺形时少直观,形少数时难入微”。
数形结合就是通过数与形的相互转化、相辅相成来解决数学问题的一种思想方法。
它既是一个重要的数学思想,又是一种常用的数学方法。
在教学中渗透数形结合的思想,可把抽象的数学概念直观化,帮助学生形成概念;可使计算中的算式形象化,帮助学生在理解算理的基础上掌握算法;可将复杂问题简单化,在解决问题的过程中,提高学生的思维能力和数学素养。
适时的渗透数形结合的思想,可达到事半功倍的效果。
一、渗透数形结合思想,把抽象的数学概念直观化,帮助学生形成概念,运用图形,建立表象,理解本质在低年级教学中学生都是从直观、形象的图形开始入门学习数学。
一年级的小学生学习数学,是从具体的物体开始认数,很多知识都是从具体形象逐步向抽象逻辑思维过渡,但这时的逻辑思维是初步的,且在很大程度上仍具有具体形象性。
数学意义所指的“意义”是人们一致公认的事物的性质、规律以及事物之间的内在联系,是比较抽象的概念。
而“数形结合”能使比较抽象的概念转化为清晰、具体的事物,学生容易掌握和理解。
这方面的例子很多,如低年级开始学习认数、学习加减法、乘除法,到中年级的分数的初步认识、高年级的认识负数等都是以具体的事物或图形为依据,学生根据已有的生活经验,在具体的表象中抽象出数,算理等等。
在小学中高年级的教学中,我们要注重运用直观图形,巧妙地把数和形结合起来,把抽象的数学概念直观化,帮助学生形成概念。
例如:如,教学“体积”概念。
教师可以借助形象物体设问,引导学生分析比较。
首先观察物体,初步感知。
让学生观察一块橡皮和铅笔盒,提问:哪个大,哪个小?又出示一个魔方和一个骰子,提问:那个大,那个小?通过观察物体,让学生对物体的大小有个感性认识。
接着在一个盛有半杯水的玻璃杯里慢慢加入一块石头,学生可以观察到,随着石头的投入,杯中的水位不断上升。
问:玻璃杯里的水位为什么会上升?学生从这一具体事例中获得了物体占有空间的表象。
专题二 数形结合【方法简介】数形结合的思想是一种重要的数学思想方法,就是通过数与形之间的对应和转化来解决数学问题,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长,是优化解题过程的重要途径之一,有助于把握数学问题的本质,“数”和“形”是紧密联系的。
我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。
由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.【应用场合】简易方程:路程问题、和差倍问题,几何应用,统计与可能性 【典型应用1】简易问题应用1:在简易方程题目中最为关键的一点就是找等量关系,通过画线段图就能清晰找出这种关系.先选对参照物,分清楚研究对象,再根据题目画出研究对象的数量关系,最后设未知数,列方程.【题1】小胖和小巧一共有208张邮票,小胖的邮票张数是小巧的3倍,小胖、小巧各有多少张邮票? [略解]解:设小巧有x 张邮票,那么小胖有3x 张邮票.2083=+x x ,2084=x ,52=x .答:小巧有52张邮票,那么小胖有156张邮票.【技巧贴士】这是一道典型的和倍问题,首先找出等量关系,从图中可以看出小巧与小胖的邮票数之和为208张,再列方程.最后提醒别忘了算小胖的邮票数. 【题2】一辆客车和一辆轿车从宁波出发开往上海,轿车比客车迟开0.3小时,客车平均每小时行驶90千米,轿车平均每小时行108千米.轿车开出多少小时后追上客车? [略解]解:设轿车开出小x 时后追上客车.x x 108903.090=+⨯,x 1827=,5.1=x答:轿车开出1.5小时后追上客车.【技巧贴士】 这是道追及问题,在本题中因为客车与轿车行驶的路程是相等的,我们可以将两辆车的路程画作两段来分析题目,这样更容易找出等量关系. 【题3】小刘和小王两家之间的路程是1500千米,两人同时从家里出发相向而行,小刘平均每分钟走72米,小王平均每分钟走75米,几分钟后两人还相距324米? [略解]解:设x 分钟后两人还相距324米.150********=++x x ,8=x答:设8分钟后两人还相距324米.【技巧贴士】本道题目是将相遇问题进行了改变,我们还可以这样理解题目,小王和小刘之间还有324米就相遇了,所以1500米减去324米,就是他们一共走的总路程,即方程为32415007572-=+x x .【巩固练习】第一期第一部分基础达标1.商店里出售精装、平装两种集邮册.精装集邮册的售价比平装集邮册贵9.6元,是平装集邮册价格的1.6倍,这两种集邮册的售价分别是多少元?2.一辆轿车和一辆大巴士先后从南京出发开往上海,大巴士先行150千米后轿车也出发了,大巴士平均每小时行80千米,轿车平均每小时行100千米.轿车几小时后追上大巴士?3.上海到宁波的高速公路全长296千米,两辆旅游巴士车同时从两地出发,途中巴士车A休息了0.6小时,结果巴士车B1.85小时后与A车在途中相遇.已知B车平均每小时行驶92千米,A车平均每小时行多少千米?第二部分强化训练4.动物园里的狮子和老虎的数量相差14只,狮子的数量比老虎的2倍还多2只,则动物园里的狮子和老虎各有多少只?5.一盒巧克力平均分给几个小朋友,如果每人分6颗,那么还剩下14颗;如果每人分8颗,那么正好分完.一共有多少小朋友?这盒巧克力有多少颗?6.甲乙两人相距若干米,如果两人相对而行,2分钟可以相遇;如果两人同时同向而行,甲在乙后,6分钟可以追上乙.如果乙每分钟走60米,那么甲每分钟走多少米?7.暑假里小诗和小琪从学校出发骑车去电影院看电影.已知小诗骑车速度为每分钟220米,小琪为每分钟280米.小诗出发6分针后小琪去追赶,结果两人同时达到电影院,小琪骑了多少分钟?如果小诗19:00出发,电影19:30开始,那么他们两人能否在电影院开映前进入电影院?8.甲、乙两地相距1500米,有两人分别从甲、乙两地同时相向出发,10分钟后相遇,如果两人各自提速20%,仍从甲、乙两地同时相向出发,则出发后多少秒后相遇?9.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?10.甲、乙二人分别从A、B两地同时出发匀速相向而行,出发后8小时两人相遇.若两人每小时都多走2千米,则出发后6小时两人就相遇在距离AB中点3千米的地方.已知甲比乙行得快.甲原来每小时行多少千米?【典型应用2】几何应用应用2:几何题目的实质是以形化数,现阶段我们应该掌握基础图形的面积公式、周长公式和体积公式。
r b e i n g a r e g o o d f o r s o 专题二 数形结合【方法简介】数形结合的思想是一种重要的数学思想方法,就是通过数与形之间的对应和转化来解决数学问题,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长,是优化解题过程的重要途径之一,有助于把握数学问题的本质,“数”和“形”是紧密联系的。
我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。
由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.【应用场合】简易方程:路程问题、和差倍问题,几何应用,统计与可能性【典型应用1】简易问题应用1:在简易方程题目中最为关键的一点就是找等量关系,通过画线段图就能清晰找出这种关系.先选对参照物,分清楚研究对象,再根据题目画出研究对象的数量关系,最后设未知数,列方程.【题1】小胖和小巧一共有208张邮票,小胖的邮票张数是小巧的3倍,小胖、小巧各有多少张邮票?[略解]解:设小巧有张邮票,那么小胖有3张邮票.x x ,,.2083=+x x 2084=x 52=x 答:小巧有52张邮票,那么小胖有156张邮票.【技巧贴士】这是一道典型的和倍问题,首先找出等量关系,从图中可以看出小巧与小胖的邮票数之和为208张,再列方程.最后提醒别忘了算小胖的邮票数.【题2】一辆客车和一辆轿车从宁波出发开往上海,轿车比客车迟开0.3小时,客车平均每小时行驶90千米,轿车平均每小时行108千米.轿车开出多少小时后追上客车?[略解]e a n d A l l t h i n g s i n t h e i r b e i n g a r e g o o df o r s o解:设轿车开出小时后追上客车.x ,,x x 108903.090=+⨯x 1827=5.1=x 答:轿车开出1.5小时后追上客车.【技巧贴士】这是道追及问题,在本题中因为客车与轿车行驶的路程是相等的,我们可以将两辆车的路程画作两段来分析题目,这样更容易找出等量关系.【题3】小刘和小王两家之间的路程是1500千米,两人同时从家里出发相向而行,小刘平均每分钟走72米,小王平均每分钟走75米,几分钟后两人还相距324米?[略解]解:设分钟后两人还相距324米.x ,150********=++x x 8=x 答:设8分钟后两人还相距324米.【技巧贴士】本道题目是将相遇问题进行了改变,我们还可以这样理解题目,小王和小刘之间还有324米就相遇了,所以1500米减去324米,就是他们一共走的总路程,即方程为.32415007572-=+x x【巩固练习】第一期第一部分基础达标1.商店里出售精装、平装两种集邮册.精装集邮册的售价比平装集邮册贵9.6元,是平装集邮册价格的1.6倍,这两种集邮册的售价分别是多少元?2.一辆轿车和一辆大巴士先后从南京出发开往上海,大巴士先行150千米后轿车也出发了,大巴士平均每小时行80千米,轿车平均每小时行100千米.轿车几小时后追上大巴士?3.上海到宁波的高速公路全长296千米,两辆旅游巴士车同时从两地出发,途中巴士车A休息了0.6小时,结果巴士车B1.85小时后与A车在途中相遇.已知B车平均每小时行驶92千米,A车平均每小时行多少千米?第二部分强化训练4.动物园里的狮子和老虎的数量相差14只,狮子的数量比老虎的2倍还多2只,则动物园里的狮子和老虎各有多少只?5.一盒巧克力平均分给几个小朋友,如果每人分6颗,那么还剩下14颗;如果每人分8颗,那么正好分完.一共有多少小朋友?这盒巧克力有多少颗?6.甲乙两人相距若干米,如果两人相对而行,2分钟可以相遇;如果两人同时同向而行,甲在乙后,6分钟可以追上乙.如果乙每分钟走60米,那么甲每分钟走多少米?7.暑假里小诗和小琪从学校出发骑车去电影院看电影.已知小诗骑车速度为每分钟220米,小琪为每分钟280米.小诗出发6分针后小琪去追赶,结果两人同时达到电影院,小琪骑了多少分钟?如果小诗19:00出发,电影19:30开始,那么他们两人能否在电影院开映前进入电影院?8.甲、乙两地相距1500米,有两人分别从甲、乙两地同时相向出发,10分钟后相遇,如果两人各自提速20%,仍从甲、乙两地同时相向出发,则出发后多少秒后相遇?9.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?10.甲、乙二人分别从A、B两地同时出发匀速相向而行,出发后8小时两人相遇.若两人每小时都多走2千米,则出发后6小时两人就相遇在距离AB中点3千米的地方.已知甲比乙行得快.甲原来每小时行多少千米?l l t h i n g s i n t h e i r b e i n g a r e g o o d f o r s o 【典型应用2】几何应用应用2:几何题目的实质是以形化数,现阶段我们应该掌握基础图形的面积公式、周长公式和体积公式。
思想方法专题数形结合思想【思想方法诠释】一、数形结合的思想所谓的数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.数形结合的实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.二、数形结合思想解决的问题常有以下几种:1.构建函数模型并结合其图象求参数的取值范围;2.构建函数模型并结合其图象研究方程根的范围;3.构建函数模型并结合其图象研究量与量之间的大小关系;4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;5.构建立体几何模型研究代数问题;6.构建解析几何中的斜率、截距、距离等模型研究最值问题;7.构建方程模型,求根的个数;8.研究图形的形状、位置关系、性质等。
三、数形结合思想是解答高考数学试题的一种常见方法与技巧,特别是在解选择题、填空题时发挥奇特功效,具体操作时,应注意以下几点:1.准确画出函数图象,注意函数的定义域;2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图)然后作出两个函数的图象,由图求解。
四、在运用数形结合思想分析问题和解决问题时,需做到以下四点:1.要清楚一些概念和运算的几何意义以及曲线的代数特征;2.要恰当设参,合理用参,建立关系,做好转化;3.要正确确定参数的取值范围,以防重复和遗漏;4.精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。
数形结合思想1. 数形结合思想的概念。
数形结合思想就是通过数和形之间的对应关系和相互转化来解决问题的思想方法。
数学是研究现实世界的数量关系与空间形式的科学,数和形之间是既对立又统一的关系,在一定的条件下可以相互转化。
这里的数是指数、代数式、方程、函数、数量关系式等,这里的形是指几何图形和函数图象。
在数学的发展史上,直角坐标系的出现给几何的研究带来了新的工具,直角坐标系与几何图形相结合,也就是把几何图形放在坐标平面上,使得几何图形上的每个点都可以用直角坐标系里的坐标(有序实数对)来表示,这样可以用代数的量化的运算的方法来研究图形的性质,堪称数形结合的完美体现。
数形结合思想的核心应是代数与几何的对立统一和完美结合,就是要善于把握什么时候运用代数方法解决几何问题是最佳的、什么时候运用几何方法解决代数问题是最佳的。
2. 数形结合思想的重要意义。
数形结合思想可以使抽象的数学问题直观化、使繁难的数学问题简捷化,使得原本需要通过抽象思维解决的问题,有时借助形象思维就能够解决,有利于抽象思维和形象思维的协调发展和优化解决问题的方法。
“数形结合”一词正式出现在华罗庚先生于1964年1月撰写的《谈谈与蜂房结构有关数学问题》的科普小册子中,书中有一首小词:“数与形,本是相倚依,焉能分作两边飞。
数无形时少直觉,形少数时难入微。
数形结合百般好,隔离分家万事非;切莫忘,几何代数统一体,永远联系,切莫分离!”“数无形时少直觉,形少数时难入微。
”这句话深刻地揭示了数形之间的辩证关系以及数形结合的重要性。
众所周知,小学生的逻辑思维能力还比较弱,在学习数学时必须面对数学的抽象性这一现实问题;教材的编排和课堂学习都在千方百计地使抽象的数学问题转化成学生易于理解的方式呈现,借助数形结合思想中的图形直观手段,可以提供非常好的学习方法和解决方案。
如从数的认识、计算到比较复杂的实际问题,经常要借助图形来理解和分析,也就是说,在小学数学中,数离不开形。
浅谈数形结合思想在小学三年级数学教学中的渗透与应用第一篇:浅谈数形结合思想在小学三年级数学教学中的渗透与应用浅谈数形结合思想在小学三年级数学教学中的渗透与应用数形结合思想是一种重要的数学思想。
数形结合就是通过数(数量关系)与形(空间形式)的相互转化、互相利用来解决数学问题的一种思想方法。
它既是一个重要的数学思想,又是一种常用的数学方法。
数形结合,可将抽象的数学语言与直观的图形相结合,是抽象思维与形象思维结合。
有些数量关系,借助于图形的性质,可以使抽象的概念和关系直观化、形象化、简单化;而图形的一些性质,借助于数量的计量和分析,得以严谨化。
那么在小学数学教学中如何去挖掘并适时地加以渗透呢?一、在理解算理过程中渗透数形结合思想小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理。
在教学时,教师应以清晰的理论指导学生理解算理,在理解算理的基础上掌握计算方法,正所谓“知其然、知其所以然。
” 根据教学内容的不同,引导学生理解算理的策略也是不同的,数形结合是帮助学生理解算理的一种很好的方式。
比如:小学数学三年级上册第六单元“乘法”,借助点子图帮助学生理解乘法竖式的计算过程。
“蚂蚁做操”一课的第二个问题教学中可以借助点子图把12×4拆分成2×4和10×4,并与竖式计算中的每一步对应起来,清晰地呈现出两位数乘一位数的乘法竖式的计算过程,同时还把列表的方法与两者建立了对应关系,沟通了表格、抽象竖式、直观点子图三者之间的内在联系,帮助学生理解每一步的具体含义。
对学生来说,这样处理直观生动、易于理解、印象深刻。
二、在教学新知中渗透数形结合思想在教学新知时,不少教师都会发现很多学生对题意理解不透彻、不全面,尤其是到了高年级,随着各种已知条件越来越复杂,更是让部分学生“无从下手”。
基于此,把从直观图形支持下得到的模型应用到现实生活中,沟通图形、表格及具体数量之间的联系,强化对题意的理解。
数学能力专题训练(数形结合)要点:数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含以形助数和以数解形两个方面。
利用它可使复杂问题简单化、抽象问题具体化,它兼有数的严谨与形的直观之长,是优化解题过程的重要途径之一,是一种基本的数学方法。
一,选择题 。
1,已知I={1,2,3,4,5,6,7,8,9,10}为全集,集合A 、B 为全集I 的子集,且A B ={1,4,7},A B={2,3},A B ={6,8,9,10},那么集合A 等于( )A 、{1,4,5,6,7,8,9,10}B 、{1,4,7}C 、{1,4,5,7}D 、{1,2,3,4,5,7}2, 函数y=|log 2|x -1||的单调递减区间是 ( )A 、(-∞,-2)与(-1,0]B 、[-2,-1)与[0,+∞)C 、(-∞,0]与(1,2]D 、[0,1)与[2,+∞)3,若奇函数y=f(x)(x ≠0),在x ∈(0,+∞)时,f(x)=x -1,那么f(x -1)<0的x 的集合( )A 、{x|1<x<2}B 、{x|-1<x<0}C 、{x|x<0或1<x<2}D 、{x|x<-2或-1<x<0}4,设复数z 满足arg(x +i)=32π,则|3||6|1i z z -++的最大值是 ( ) A 、155 B 、91 C 、336- D 、105 5,若曲线y=22x x -(0≤x ≤2)与直线y=k(x -2)+2有两个交点,则实数k 的取值范围为 ( )A 、(43,1)B 、(43,+∞)C 、(43,1]D 、[43,+∞) 6,函数f(x)=Msin(ωx +ϕ)(ω>0)在区间[a ,b]上是增函数,且f(a)=-M ,f(b)=M ,则函数g(x)=Mcos(ωx +ϕ)在[a ,b]上 ( )A 、是增函数B 、是减函数C 、可以取得最大值MD 、可以取得最小值-M 7,复数z 满足|z|≤21,则1-z 的辐角主值的取值范围是 ( ) A 、[0,6π] [611π,2π) B 、[3π,35π] C 、[0,3π] [35π,2π) D 、[-6π,6π] 8,已知函数y=log a (-x 2+log 2a x)对任意x ∈(0,21)有意义,则实数a 的取值范围为( )A 、0<a<21B 、321<a<21 C 、21<a<1 D 、a>1 9, 已知f(x)=2-x 2,g(x)=x ,规定:当f(x)≤g(x)时f(x)g(x)=f(x),当f(x)>g(x)时f(x)g(x)=g(x),则f(x)g(x)的最大值为 ( )A 、2B 、1C 、2D 、不能确定10,当x ∈[0,2π]时,不等式sinx>21>cosx 的解集是 ( ) A 、(6π,2π) B 、(6π,3π) C 、(3π,2π] D 、Φ 11,若已知集合A={x|lg(x 2-2ax +a 2+1)<lg2},B={x|(x -a)(x -2)>0},若A B=R ,则实数a 的取值范围为 ( )A 、(1,4)B 、(1,3)C 、[1,3]D 、[1,3)12,已知a n =9798--n n (n ∈N),则数列{a n }的前20项中最大项和最小项分别为 ( )A 、a 1,a 20B 、a 9,a 10C 、a 1,a 9D 、a 10,a 20二,填空题。
动点的函数图象问题数形结合思想:所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3所给的等式或代数式的结构含有明显的几何意义。
【典例1】如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD=2,CD⊥AB于点D,点E、F、G分别是边CD、CA、AD的中点,连接EF、FG,动点M从点B出发,以每秒2个单位长度的速度向点A方向运动(点M运动到AB的中点时停止);过点M作直线MP∥BC与线段AC交于点P,以PM为斜边作Rt△PMN,点N在AB 上,设运动的时间为t(s),Rt△PMN与矩形DEFG重叠部分的面积为S,则S与t之间的函数关系图象大致为()A.B.C.D.本题考查几何动点问题的函数图象,正确分段并分析是解题的关键.根据题意先分段,分为0≤t≤0.5,0.5<t≤1,1<t≤2三段,分别列出三段的函数解析式便可解决,本题也可只列出0≤t≤0.5,1<t≤2两段,用排除法解决.解:分析平移过程,①从开始出发至PM与点E重合,由题意可知0≤t≤0.5,如图,则BM=2t,过点M作MT⊥BC于点T,∵∠B=60°,CD⊥AB,∴BC=2BD=4,CD==BT=12BM=t,∵∠ACB=90°,MP∥BC,∴∠ACB=∠MPA=90°,∴四边形CTMP为矩形,∴PM=CT=BC―BT=4―t,∵∠PMN=∠B=60°,PN⊥AB,∴MN=PM2=4―t2,∴DN=MN―MD=MN―BD+BM=3t2,∵E为CD中点,∴DE=CD2=∴S=DE⋅DN=∴S与t的函数关系是正比例函数;②当0.5<t≤1,即从PM与E重合至点M与点D重合,如图,由①可得QN=ED=DM=2―2t,DN=32t,S矩形EDNQ=∵∠PMN=∠B=60°,CD⊥AB,∴SD==,∴ES=ED―SD=∴ER ==2t ―1,∴S =S 矩形EDNQ ―S △ERS =12(2―2t ―1)=―2+此函数图象是开口向下的二次函数;③当1<t ≤2,即从点M 与点D 重合至点M 到达终点,如图,由①可得DN =32t ,MN =4―t 2,∵AD ==6, DG =12AD =3,∴NG =DG ―DN =3―32t ,∴QF =NG =3―32t ,∴PQ==,∴HQ ==1―12t ,∴S =(HQ+MN )×QN 2==―∴S 与t 的函数关系是一次函数,综上,只有选项A 的图象符合,故选:A .1.(2024·四川广元·二模)如图,在矩形ABCD 中,AB =4cm ,AD =2cm ,动点M 自点A 出发沿AB 方向以每秒1cm 的速度向点 B 运动,同时动点N 自点A 出发沿折线AD -DC -CB 以每秒2cm 的速度运动,到达点B 时运动同时停止.设△AMN的面积为y (cm2),运动时间为x (秒),则下列图象中能大致反映y 与x 之间的函数关系的是( )A .B .C .D .2.(22-23九年级上·安徽合肥·期中)如图,在△ABC 中,∠C =135°,AC =BC =P 为BC 边上一动点,PQ∥AB 交AC 于点Q ,连接BQ ,设PB =x ,S △BPQ =y ,则能表示y 与x 之间的函数关系的图象大致是( )A .B .C .D .3.(2024·河北石家庄·二模)如图所示,△ABC 和△DEF 均为边长为4的等边三角形,点A 从点D 运动到点E 的过程中,AB 和DF 相交于点G ,AC 和EF 相交于点H ,(S △BGF +S △FCH )为纵坐标y ,点A 移动的距离为横坐标x ,则y 与x 关系的图象大致为( )A.B.C.D.4.(2023·辽宁铁岭·模拟预测)如图,矩形ABCD中,AB=8cm,AD=12cm,AC与BD交于点O,M是BC 的中点.P、Q两点沿着B→C→D方向分别从点B、点M同时出发,并都以1cm/s的速度运动,当点Q到达D点时,两点同时停止运动.在P、Q△OPQ的面积随时间t变化的图象最接近的是()A.B.C.D.5.(2023·江苏南通·模拟预测)如图,在矩形ABCD中,AB=4,BC=6,E为AB中点,动点P从点B开始沿BC方向运动到点C停止,动点Q从点C开始沿CD→DA方向运动,与点P同时出发,同时停止;这两点的运动速度均为每秒1个单位;若设他们的运动时间为x(s),△EPQ的面积为y,则y与x之间的函数关系的图像大致是()A.B.C.D.6.(2024·河南开封·一模)如图1,在△ABC中,∠B=60°,点D从点B出发,沿BC运动,速度为1cm/s.点P在折线BAC上,且PD⊥BC于点D.点D运动2s时,点P与点A重合.△PBD的面积S(cm2)与运动时间t(s)的函数关系图象如图2所示,E是函数图象的最高点.当S(cm2)取最大值时,PD的长为()A.B.(1+cm C.(1+cm D.(2+cm7.(2024·安徽·一模)如图,在四边形ABCD中,∠A=60°,CD⊥AD,∠BCD=90°,AB=BC=4,动点P,Q同时从A点出发,点Q以每秒2个单位长度沿折线A―B―C向终点C运动;点P以每秒1个单位长度沿线段AD向终点D运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x秒,△APQ的面积为y 个平方单位,则y随x变化的函数图象大致为()A.B.C.D.8.(23-24九年级上·浙江温州·期末)某兴趣小组开展综合实践活动:在Rt△ABC中,∠C=90°,CD=,D为AC上一点,动点P以每秒1个单位的速度从C点出发,在三角形边上沿C→B→A匀速运动,到达点A时停止,以DP为边作正方形DPEF,设点P的运动时间为t s,正方形DPEF的面积为S,当点P由点C运动到点A 时,经探究发现S是关于t的二次函数,并绘制成如图2所示的图象,若存在3个时刻t1,t2,t3(t1<t2<t3)对应的正方形DPEF的面积均相等,当t3=5t1时,则正方形DPEF的面积为()C.4D.5A.3B.3499.(22-23九年级上·浙江嘉兴·期中)如图,在Rt △ABC 中,∠C =90°,∠ABC =60°,BC =6,点O 为AC 中点,点D 为线段AB 上的动点,连接OD ,设BD =x ,OD 2=y ,则y 与x 之间的函数关系图像大致为( )A .B .C .D .10.(2024·广东深圳·三模)如图,在Rt △ABC 中,∠C =90°,AC =12,BC =8,点D 和点E 分别是AB 和AC 的中点,点M 和点N 分别从点A 出发,沿着A→C→B 方向运动,运动速度都是1个单位/秒,当点N 到达点B 时,两点间时停止运动.设△DMN 的面积为S ,运动时间为t ,则S 与t 之间的函数图象大致为( )A .B .C.D.11.(2024·河南南阳·二模)如图是一种轨道示意图,其中A、B、C、D分别是菱形的四个顶点,∠A=60°.现有两个机器人(看成点)分别从A,C两点同时出发,沿着轨道以相同的速度匀速移动,其路线分别为A→B→C和C→D→A.若移动时间为t,两个机器人之间距离为d.则d²与t之间的函数关系用图象表示大致为()A.B.C.D.12.(2024·山东聊城·二模)如图,等边△ABC与矩形DEFG在同一直角坐标系中,现将等边△ABC按箭头所指的方向水平移动,平移距离为x,点C到达点F为止,等边△ABC与矩形DEFG重合部分的面积记为S,则S关于x的函数图象大致为()A.B.C.D.13.(2024·河南·模拟预测)如图,在等腰直角三角形ABC中,∠ABC=90°,BD是AC边上的中线,将△BCD 沿射线BA方向匀速平移,平移后的三角形记为△B1C1D1,设△B1C1D1与△ABD重叠部分的面积为y,平移距离为x,当点B1与点A重合时,△B1C1D1停止运动,则下列图象最符合y与x之间函数关系的是()A.B.C.D.14.(23-24九年级上·安徽滁州·期末)如图,菱形ABCD的边长为3cm,∠B=60°,动点P从点B出发以3cm/ s的速度沿着边BC―CD―DA运动,到达点A后停止运动;同时动点Q从点B出发,以1cm/s的速度沿着边BA 向A点运动,到达点A后停止运动.设点P的运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象为()A.B.C.D.15.(2023·辽宁盘锦·中考真题)如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴的正半轴上,顶点B、C在x轴的正半轴上,D,P(―1,―1).点M在菱形的边AD和DC上运动(不与点A,C重合),过点M作MN∥y轴,与菱形的另一边交于点N,连接PM,PN,设点M的横坐标为x,△PMN的面积为y,则下列图象能正确反映y与x之间函数关系的是()A.B.C.D.16.(22-23九年级上·安徽蚌埠·期末)如图,在平面直角坐标系中,点A(2,0),点B,点C(―,点P从点O出发沿O→A→B路线以每秒1个单位的速度运动,点Q从点O出发沿O→C→B的速度运动,当一个点到达终点时另一个点随之停止运动,设y=PQ2,运动时间为t秒,则正确表达y与t的关系图象是()A.B.C.D.17.(2022·辽宁·中考真题)如图,在等边三角形ABC中,BC=4,在Rt△DEF中,∠EDF=90°,∠F=30°,DE=4,点B,C,D,E在一条直线上,点C,D重合,△ABC沿射线DE方向运动,当点B与点E 重合时停止运动.设△ABC运动的路程为x,△ABC与Rt△DEF重叠部分的面积为S,则能反映S与x之间函数关系的图象是( )A.B.C.D.18.(2023·山东聊城·三模)如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P ,Q 同时从点B 出发,点P 沿折线BE ―ED ―DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒,设P ,Q 同时出发t 秒时,△BPQ 的面积为y cm 2.已知y 与t 的函数关系图像如图(2)(曲线OM 为抛物线的一部分),则下列结论不正确的是( )A .AB:AD =4:5B .当t =2.5秒时,PQ =C .当t =294时,BQ PQ =53D .当△BPQ 的面积为4cm 2时,t 或475秒19.(2023·辽宁·中考真题)如图,∠MAN =60°,在射线AM ,AN 上分别截取AC =AB =6,连接BC ,∠MAN 的平分线交BC 于点D ,点E 为线段AB 上的动点,作EF ⊥AM 交AM 于点F ,作EG∥AM 交射线AD 于点G ,过点G 作GH ⊥AM 于点H ,点E 沿E 与点B 重合时停止运动.设点E 运动的路程为x ,四边形EFHG 与△ABC 重叠部分的面积为S ,则能大致反映S 与x 之间函数关系的图象是( )A .B .C .D .20.(22-23九年级上·安徽滁州·期末)如图,在平面直角坐标系中,菱形ABCD的边长为4,且点A与原点O 重合,边AD在x轴上,点B的横坐标为―2,现将菱形ABCD沿x轴以每秒1个单位长度的速度向右平移,设平移时间为t(秒),菱形ABCD位于y轴右侧部分的面积为S,则S关于t的函数图像大致为()A.B.C.D.。
数形结合思想在解题中的应用(包含30例子)一、知识整合1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。
如等式()()x y -+-=214223.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。
这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。
二、例题分析例1.的取值范围。
之间,求和的两根都在的方程若关于k k kx x x 310322-=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >,()()02bf f k a-=-<10(10)k k -<<∈-同时成立,解得,故,例2. 解不等式x x +>2 解:法一、常规解法:“数形结合”在解题中的应用原不等式等价于或()()I x x x x II x x ≥+≥+>⎧⎨⎪⎩⎪<+≥⎧⎨⎩02020202 解,得;解,得()()I x II x 0220≤<-≤<综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222 法二、数形结合解法: 令,,则不等式的解,就是使的图象y x y x x x y x 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。
四种数学思想在解题中的应用太和二中 赵玉苗编1.数形结合数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过―以形助数,以数解形‖,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
要争取胸中有图,见数想图,以开拓自己的思维视野。
二、例题分析例1.的取值范围。
之间,求和的两根都在的方程若关于k k kx x x 310322-=++ 例2. 曲线y =1+24x - (–2≤x ≤2)与直线y = r (x –2)+4有两个交点时,实数r 的取值范围 例3. 已知,则方程的实根个数为01<<=a ax x a |||log |()A. 1个B. 2个C. 3个D. 1个或2个或3个例4. 如果实数、满足,则的最大值为x y x y yx()()-+=2322A B C D ....1233323例5. 已知,满足,求的最大值与最小值x y x y y x 22162513+=- 例6. 若集合,,集合,M x y x y N x y y x b ===⎧⎨⎩<<⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪==+()cos sin (){()|}330θθθπ 且≠,则的取值范围为。
M N b ∅例7. 点是椭圆上一点,它到其中一个焦点的距离为,为M x y F N 221251612+= MF 1的中点,O 表示原点,则|ON|=( ) A B C D . (32)248例8. 已知复数满足,求的模的最大值、最小值的范围。
z z i z ||--=222例9. 求函数的值域。
y x x =+-sin cos 22例10.求函数的最值。
u t t =++-246三、总结提炼数形结合思想是解答数学试题的的一种常用方法与技巧,特别是在解决选择、填空题是发挥着奇特功效,复习中要以熟练技能、方法为目标,加强这方面的训练,以提高解题能力和速度。
数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含以形助数和以数解形两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长,是优化解题过程的重要途径之一,是一种基本的数学方法。
数"和"形"是数学中两个最基本的概念,它们既是对立的,又是统一的,每一个几何图形中都蕴含着与它们的形状,大小,位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述.数形结合的实质就是将抽象的数学语言与直
观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路;或者在研究
图形时,利用代数的性质,解决几何的问题.实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.
作为最基本的数学思想之一的数形结合思想在新课程中又是怎样体现的呢?
下面我结合它在以下几方面的运用浅谈一下。
一、数与代数中的数形结合
这部分内容与原教学大纲比,数形结合的内容有很大改变和加强。
它重视渗透和揭示基本的数学思想方法,加强数学内部的联系及其相关学科的联系,如提前安排平面直角坐标系,用坐标的方法处理更多的内容包括二元一次方程组,平移变换,对称变换,函数等。
又如,它改变了“先集中出方程,后集中出函数”的做法,而是按照一次和二次的数量关系,使方程和函数交替出现,分层递进,螺旋上升。
在数与代数的教学里,我认为,应该抓住实数与树轴上的点一一对应的关系,有序实数对与坐标平面上的点的一一对应关系,从数形结合的角度出发,借助数轴处理好相反数和绝对值的意义,有理数大小的比较,有理数的分类,有理数的加法运算,不等式的解集在数轴上的表示等。
教师要赋予这些系统内容新的活力,采用符合课标理念的教法,在吃透新课程标准和教材的基础上,让学生经历试验、探索的过程,体验如何用数形结合思想分析和解决,培养学生学习和应用的能力,从而激发其学习数学的原动力。
例1、一元二次方程解的意义:
ax2+bx+c=0(a≠0)是一元二次方程。
它的解可以理解为函数y= ax2+bx+c的图象与常值函数y=0,即x轴的交点的横坐标。
那么当公共点有两个时,对应的一元二次方程有两个不相等的实数解;当公共点只有一个时,对应的一元二次方程有两个相等的实数解;当没有公共点时,对应的一元二次方程没有实数解。
例:①x2-x-6=0,x1=-2,x2=3,y=x2-x-6与x轴的公共点A(-2,0),B(3,0)。
②x2-2x+1=0,x1=x2=1,y= x2-2x+1与x轴的公共点A(1,0)。
③x2+1=0,没有实数解,y= x2+1与x轴没有公共点。
图① 图② 图③
例2、二元一次方程组的解的意义:
二元一次方程组的解有三种情况:
① 无解;②无数个解;③ 只有一个解。
这三种情况可以转化为两条直线a1x+b1y+c1=0、a2x+b2y+c2=0的三种位置关系:①平行;②重合;③ 相交。
方程组的解转化为两条直线的交点。
当a1:a2=b1:b2≠c1:c2时,两条直线的斜率相同,y轴上的截距不同。
此时两条直线平行,无交点,因而方程组无解。
当a1:a2=b1:b2=c1:c2时,两条直线的斜率相同,y轴上的截距相同。
此时两条直线重合,有无数个公共点,因而方程组有无数个解。
当a1:a2≠b1:b2时,两条直线的斜率不相同,两条直线相交,只有一个交点,因而方程组只有一个解。
例:①,方程组无解。
两条直线2x+y+3=0、4x+2y+1=0的位置关系如图:平行。
②,方程组只有一个解。
两条直线2x+y+1=0、x+2y=0的位置关系如图:相交。
③,方程组有无数个解。
两条直线2x+4y=0、x+2y=0的位置关系如图:重合。
教师先让学生思考,让学生经历观察、比较、归纳、提出猜想的过程后提供以上图形,运用图形的直观性帮助学生理解,使学生从数
与形的联系中发现规律,让学生了解这两个代数知识的几何背景,感受数学的神奇魅力。
在“数与代数”的教学中,教师应强调数与形的结合,让学生建立由数想到形,由形想倒数的思想,这样可以加深学生对“数与代数”的理解和认识,如利用图形理解完全平方公式、平方差公式,利用函数图像理解函数的变化趋势等都是培养学生数形结合思想的极好的方法。
二、“空间与图形”中的数形结合
新课程中的几何内容做了较大的删改,削弱了以演绎推理为主要形式的定理证明,降低了论证过程形式化的要求和证明的难度。
我想,这无疑给了教师充分脱脂的空间。
教师要把握好数学思想方法在整个教学发展中的地位,对于“数形结合”,教师要善于挖掘教材和生活中的素材,从形到数,揭示“形”中“数”的本质。
例6、如图,是连接在一起的两个正方形,大正方形的边长是小正方形边长的2倍。
问:若只许剪两刀应如何裁剪,使之能拼成一个新的大正方形?
对于这一问题学生往往采取实验的方法,这里裁一刀,那里试一剪,但却极少有人能在短时间内拼凑好。
如果对题目认真加以分析,我们不难发现,从已知到结论,图形虽然变了,但其中却还有没变的
东西——面积,若设小正方形的面积为1,则其边长就是1,这样一来,
我们仅需沿着图4中边长为的线段去考虑裁剪即可,而图中这样的线段没有几条,于是很快就能找到答案。
问题之所以能很快解决,关键是我们从问题“变”中看到了
“不变”,从“形”的表面找到了“数”这一实质。
一个似乎是纯几
何的问题,在“数”的引导下获得了最好的解决方式,这种由表及里,
形中有数的思想方法,正是数学中“数形结合”的思想方法。
又如,
以下几个题目也是数形结合的很好的例子。
例7、(1)如图,用长30m的篱笆与一堵墙围一方土地,求篱笆
能包围的土地的最大面积。
(2)如图,用长30m的篱笆与两堵墙(两堵墙成120°角)围一
方土地,求篱笆能包围的土地的最大面积。
(3)如图8,用长12m的木方,做一个有一条横档的矩形窗子,
围使透进的阳光最多,应选择窗子的长宽各为多少m?
在教学中,教师应该不失时机的让学生透过形的外表,触及其内
在的数量关系,探索由形到数的联系与规律。
三、“统计与概率”中的数形结合
新课标中的统计与概率,在内部编排和内容要求上却由所加强,
真正让学生经历统计的全过程,发现并提出问题,运用适当的方法,
收集和整理数据,运用合适的统计表统计图来展示数据做出决策。
例6如图(略)
概率是新增加的内容,其抽象性使它成为教学的难点,在计算简单事件的概率时,采用画树状图的方法,树形结合,能收到化难为易的效果。
例7、一布袋中方有黄、白两种球,其中一个黄球,两个白球,它们除颜色外其它都一样,小亮从布袋中摸出一个球后放回去摇匀,再摸出一个球,求两次都摸到白球的概率。
由于数形结合具有形象直观、易于接受的优点,它对于沟通中知识间的联系,活跃课堂气氛,开阔学生的思路,发展学生的潜能,提高学生的创造思维能力和开拓精神,使学生充分张扬个性,充分发挥潜能,真正实现个体的最优化发展都有很大帮助。