常压干燥制备微米级厚度RF气凝胶薄膜
- 格式:pdf
- 大小:421.73 KB
- 文档页数:4
V2O5常压干燥气凝胶薄膜的制备及Li+注入研究房兴梅;吴广明;肖锟;王爱荣;李德增;沈军;周斌【期刊名称】《材料导报》【年(卷),期】2007(021)001【摘要】采用溶胶-凝胶技术制备溶胶,结合提拉法镀膜,通过溶剂替换工艺在常压下制备出了纳米多孔结构的V2O5气凝胶薄膜.使用TEM、BET、椭偏仪分别观测和测试溶胶的形貌、气凝胶孔径分布以及薄膜的折射率和孔洞率.采用标准三电极法研究了薄膜的电化学伏安循环特性以及恒流充放电性质.研究结果表明,常压干燥制备的薄膜孔隙率达到了56%,比干凝胶薄膜提高了16%,而且比容量达到530mAh/g左右,比干凝胶薄膜提高了33%,可逆性也得到了改善.研究表明,这些性能的提高归因于常压干燥气凝胶薄膜较高的孔隙率以及较大的孔洞直径.【总页数】4页(P136-139)【作者】房兴梅;吴广明;肖锟;王爱荣;李德增;沈军;周斌【作者单位】同济大学玻耳固体物理研究所,上海,200092;同济大学玻耳固体物理研究所,上海,200092;同济大学玻耳固体物理研究所,上海,200092;同济大学玻耳固体物理研究所,上海,200092;同济大学玻耳固体物理研究所,上海,200092;同济大学玻耳固体物理研究所,上海,200092;同济大学玻耳固体物理研究所,上海,200092【正文语种】中文【中图分类】O6【相关文献】1.过氧化法常压干燥制备的V2O5气凝胶的性能探究 [J], 张明霞;吴广明;孙娟萍;杨辉宇;崔朝军;沈军2.常压干燥溶胶-凝胶法制备的 TiO2气凝胶织构和结构研究 [J], 赵乐乐;王守信;王远洋3.正己烷对溶胶-凝胶过程及常压干燥工艺制备SiO 2气凝胶的影响 [J], 卢斌;张丁日;卢孟磊4.常压干燥制备微米级厚度RF气凝胶薄膜 [J], 刘伟民;王朝阳;王红艳;唐永建5.V2O5常压干燥气凝胶薄膜的制备及性能研究 [J], 肖锟;吴广明;陈世文;房兴梅;沈军因版权原因,仅展示原文概要,查看原文内容请购买。
常压干燥制备二氧化硅气凝胶的工艺研究1. 引言1.1 研究背景二氧化硅气凝胶是一种广泛应用于吸附、隔热、隔声等领域的功能材料。
其具有高比表面积、低密度、良好的介电性能和热稳定性等优点,因此受到了广泛关注。
常压干燥是一种常用的制备气凝胶的方法,可以在常温下通过蒸发溶剂将胶体颗粒形成多孔结构,得到气凝胶材料。
常压干燥制备二氧化硅气凝胶的工艺存在着一定的问题和挑战,如颗粒聚集、孔隙结构不均匀等。
有必要对常压干燥制备二氧化硅气凝胶的工艺进行深入研究,以提高气凝胶材料的性能和稳定性,拓展其应用领域。
本研究旨在探讨常压干燥制备二氧化硅气凝胶的工艺,分析其影响因素,优化制备工艺,并展望其在吸附、隔热等方面的应用前景。
【研究背景】1.2 研究目的研究目的是通过常压干燥制备二氧化硅气凝胶的工艺研究,探索优化制备工艺,提高气凝胶的制备效率和性能,并应用于更广泛的领域。
具体来说,研究目的包括以下几个方面:研究常压干燥制备二氧化硅气凝胶的方法和工艺参数,寻找最佳制备工艺,提高气凝胶的制备效率和品质;对制备的气凝胶进行性能表征,包括孔结构、比表面积、孔径分布等,从而了解气凝胶的物理和化学性质;分析影响气凝胶性能的因素,如原料选择、干燥条件等,并进行优化工艺,进一步提高气凝胶的性能和稳定性;展望二氧化硅气凝胶在储能、传感、隔热等领域的应用前景,为其产业化和商业化提供技术支持和发展方向。
【2000字】.2. 正文2.1 制备方法常压干燥制备二氧化硅气凝胶的制备方法主要包括溶胶凝胶法和超临界干燥法两种。
溶胶凝胶法是指将硅源溶解于适量的溶剂中,加入催化剂和控制剂,经过酸碱中和、定向水解和缩聚,形成二氧化硅溶胶。
随后,将溶胶经过成型和固化处理,得到凝胶体。
进行干燥处理,得到二氧化硅气凝胶制品。
而超临界干燥法则是将溶胶体直接置于高压高温的超临界条件下,采用超临界流体作为介质,利用超临界流体的溶解能力将溶剂从凝胶中溶解出来,实现非常快速的干燥过程。
常压干燥制备二氧化硅气凝胶的工艺研究【摘要】本文主要研究了常压干燥制备二氧化硅气凝胶的工艺。
通过分析常压干燥工艺流程、影响因素、工艺优化探讨、气凝胶性能测试和干燥效果比较,得出了制备气凝胶的最佳工艺参数。
实验结果表明,优化后的工艺能够制备具有优良性能的二氧化硅气凝胶。
对常压干燥制备二氧化硅气凝胶的工艺进行了总结,并展望了其在未来的应用前景。
本研究有助于推动气凝胶材料在各个领域的应用和发展。
【关键词】常压干燥、二氧化硅气凝胶、制备工艺、影响因素、工艺优化、性能测试、干燥效果、结论、展望、应用前景1. 引言1.1 背景介绍二氧化硅气凝胶是一种具有微孔结构和极低密度的固体材料,具有优异的绝热性能、吸附性能和光学性能,在航空航天、能源领域、制冷保温等方面有广泛的应用。
常压干燥制备二氧化硅气凝胶是一种简单、经济的制备方法,其通过溶胶-凝胶法制备溶胶,再经过固定化剂交联、稀释和干燥等步骤得到气凝胶产品。
常压干燥工艺相对于高温高压干燥工艺来说,操作简单,能够保留原料的微观结构,提高气凝胶的物性性能。
由于常压干燥工艺具有便捷性和经济性,因此对其进行深入研究,探索其制备二氧化硅气凝胶的工艺参数和性能优化具有重要意义。
本文旨在通过对常压干燥制备二氧化硅气凝胶的工艺进行研究,为其在实际应用中提供更好的参考和指导。
1.2 研究目的本研究旨在探究常压干燥制备二氧化硅气凝胶的工艺,通过对不同工艺参数的调节和优化,实现对气凝胶性能的提升和干燥效果的改进。
具体目的包括以下几点:1. 确定常压干燥工艺流程,建立稳定的制备方法;2. 分析影响气凝胶品质的关键因素,寻找最佳制备条件;3. 探讨工艺优化的可行性,提高气凝胶的比表面积和孔隙结构;4. 对制备的气凝胶进行性能测试,评估其吸附性能和力学性能;5. 对常压干燥和其他常见干燥方法进行比较,探讨其优劣势及适用范围。
通过以上研究目的,旨在为常压干燥制备二氧化硅气凝胶提供更科学、更有效的工艺方法,并为气凝胶在吸附材料、隔热材料等领域的应用奠定基础。
共前驱体法常压干燥制备透明二氧化硅气凝胶的方法方法:
1.准备前驱体溶液。
将硅酸钠溶解在去离子水中,加入10%盐酸调节pH至3~4,搅拌至溶解。
2.搅拌制备透明凝胶。
将前驱体溶液转移到搅拌玻璃瓶中,加入
PEG200、CTAB、TEOS等,并在室温下搅拌反应。
反应完成后,得到透明的凝胶体。
3.常压干燥制备气凝胶。
将凝胶切成小块,置于常压干燥器内,进行常压干燥。
干燥时间根据凝胶尺寸和环境条件而定。
4.活化处理制备透明二氧化硅气凝胶。
将常压干燥得到的气凝胶放入活化炉中,在氮气气氛下加热至500°C,保持10h进行活化处理,得到具有高比表面积和孔径的透明二氧化硅气凝胶。
优点:
1.采用共前驱体法,制备过程简单,反应时间快。
2.经过干燥,制备的气凝胶具有良好的稳定性和可储存性。
3.经过活化处理,得到的透明二氧化硅气凝胶具有高比表面积、孔径分
布均匀等优点。
应用:
1.由于透明性好,可用于光学材料领域。
2.具有高比表面积和孔径特性,可用于催化剂载体材料。
3.具有较好的物理性能,可用于传感器及其它领域。
气凝胶干燥方法对比(实用版4篇)目录(篇1)1.引言2.气凝胶的定义和特性3.气凝胶的干燥方法4.干燥方法的比较5.结论正文(篇1)【引言】气凝胶是一种高孔隙度、低密度的纳米材料,因其独特的性能,被广泛应用于催化、吸附、保温等领域。
然而,气凝胶在制备过程中,需要经过干燥处理以得到最终的产品。
本文将对气凝胶的干燥方法进行比较,以期为相关领域的研究者提供参考。
【气凝胶的定义和特性】气凝胶是一种由纳米级颗粒堆积而成的三维网络结构,其特点是孔隙度高、密度低、比表面积大。
这些特性使得气凝胶在催化、吸附、保温等领域有着广泛的应用。
【气凝胶的干燥方法】气凝胶的干燥方法主要有以下几种:常压干燥、真空干燥、冷冻干燥和超临界流体干燥。
【干燥方法的比较】1.常压干燥:常压干燥是气凝胶干燥中最常用的方法,其操作简单,但干燥速度较慢,且可能会导致气凝胶的结构破坏。
2.真空干燥:真空干燥可以提高干燥速度,且能保持气凝胶的结构,但需要特殊的设备,操作相对复杂。
3.冷冻干燥:冷冻干燥可以得到大孔径的气凝胶,且能保持其结构,但需要低温设备,且干燥速度较慢。
4.超临界流体干燥:超临界流体干燥是一种新型的干燥方法,可以得到高孔隙度的气凝胶,且干燥速度快,但需要特殊的设备和操作技术。
【结论】气凝胶的干燥方法各有优缺点,选择哪种方法应根据实际需要和设备条件进行。
目录(篇2)1.引言2.气凝胶的定义和特性3.气凝胶的干燥方法4.干燥方法的比较5.结论正文(篇2)【引言】气凝胶是一种高度多孔性的材料,其独特的结构使其在许多领域有着广泛的应用,如催化、吸附、保温等。
然而,气凝胶在制备过程中,需要经过干燥处理以得到最终的产品。
本文将对比不同干燥方法对气凝胶性质的影响。
【气凝胶的定义和特性】气凝胶是一种由纳米级粒子组成的三维网络结构,其独特的性质包括低密度、高孔隙率、大表面积等,这些特性使其在许多领域有着广泛的应用。
【气凝胶的干燥方法】气凝胶的干燥方法主要包括常压干燥、真空干燥、冷冻干燥和超临界流体干燥。
常压干燥制备二氧化硅气凝胶的工艺研究一、引言二氧化硅气凝胶是一种具有多孔性、低密度和高比表面积的材料,具有良好的声学、热学和光学性能,被广泛应用于绝热材料、催化剂载体、吸附剂等领域。
在制备二氧化硅气凝胶的过程中,干燥工艺是关键环节之一。
本文将重点讨论常压干燥制备二氧化硅气凝胶的工艺研究。
二、常压干燥工艺原理常压干燥是指在常温下进行干燥的一种工艺。
在常压下,液态溶剂经过蒸发,将物质从凝胶状态转变为固体状态。
在进行二氧化硅气凝胶的常压干燥的过程中,需要将溶剂从凝胶中蒸发,使得凝胶中的二氧化硅颗粒逐渐接触,最终形成孔隙结构。
常压干燥的关键是控制干燥速率和温度,以防止产生裂纹和变形。
还需要考虑干燥过程中的内部应力和外部支撑结构,以保持凝胶的形状和结构。
三、工艺参数优化1. 溶胶凝胶制备在制备二氧化硅气凝胶的过程中,首先需要制备溶胶凝胶。
一般来说,采用正硅酸乙酯为硅源,通过水解缩聚反应制备溶胶。
在这一步骤中,需要控制溶剂的用量、酸碱度和搅拌速度,以获得均匀的溶胶。
2. 凝胶成型制备好的溶胶需要进行凝胶成型,通常采用注模成型或者超临界干燥成型。
在这一步骤中,需要采用适当的成型工艺和模具,以保持凝胶的形状和结构。
3. 常压干燥常压干燥是最关键的一步,需要控制温度和湿度,使得溶剂能够逐渐蒸发,形成孔隙结构。
在这一步骤中,需要考虑干燥速率、温度梯度和曝气条件,以防止产生裂纹和变形。
四、工艺改进和优化在实际生产中,常压干燥工艺存在一定的问题,如干燥速率不均匀、产生裂纹和变形等。
针对这些问题,可以采取以下改进和优化措施:1. 引入表面活性剂或增稠剂,以改善凝胶的流动性和可成型性,从而提高常压干燥的效率和质量。
2. 优化常压干燥的工艺参数,如温度、湿度和曝气条件,以获得更好的干燥效果。
3. 采用异步双向干燥法,即先在一个方向上进行干燥,再改变方向进行干燥,以减少干燥速率不均匀导致的裂纹和变形。
4. 采用热解干燥或者微波干燥等新型干燥技术,以提高干燥效率和质量。
常压干燥制备二氧化硅气凝胶的工艺研究
二氧化硅气凝胶是一种介孔材料,具有高度的比表面积和孔隙结构,具有广泛的应用前景。
常压干燥制备二氧化硅气凝胶是一种简单、经济且有效的方法。
本文将对常压干燥制备二氧化硅气凝胶的工艺进行研究,并探讨其制备条件和影响因素。
常压干燥制备二氧化硅气凝胶的工艺步骤如下:
1. 水合胶体溶液的制备:将硅酸盐溶液与酸性溶液混合,生成胶体溶液。
2. 凝胶形成:将胶体溶液静置一段时间,形成凝胶体。
3. 干燥处理:将凝胶体在恒温下自然干燥,去除水分,形成二氧化硅气凝胶。
制备条件是影响二氧化硅气凝胶性能的重要因素。
首先是溶液浓度和酸碱度,这会影响凝胶形成速度和凝胶体的微观结构。
适当的溶液浓度和酸碱度可以使凝胶形成均匀、有序,提高二氧化硅气凝胶的孔隙结构和比表面积。
其次是凝胶形成时间和温度,这会影响凝胶体的稳定性和孔隙结构。
合适的凝胶形成时间和温度可以使凝胶形成充分、稳定,并且孔隙结构分布合理。
再次是干燥时间和温度,这会影响气凝胶的收缩程度和孔隙结构。
适当的干燥时间和温度可以使气凝胶收缩度小,孔隙结构保持较好。
常压干燥制备二氧化硅气凝胶的工艺研究二氧化硅气凝胶是一种极其多孔且具有优异特性的材料,广泛应用于催化剂载体、吸附剂、光学薄膜、传感器等领域。
常压干燥制备二氧化硅气凝胶的工艺具有简单、成本低廉、易于操作等优点,因而备受关注。
本文将从原料选择、溶胶制备、凝胶形成、干燥工艺等方面,对常压干燥制备二氧化硅气凝胶的工艺进行详细研究。
在原料选择方面,通常可以选择硅酸乙酯(TEOS)作为硅源。
硅酸乙酯在常温下稳定性良好,并且易于与其他溶剂混合,适合制备溶胶。
还可以选择乙醇作为稀释剂,以水为催化剂,加入适量的酸催化剂(如盐酸)进行水解反应。
在溶胶制备方面,通常将硅酸乙酯与稀释剂(乙醇)混合,加入适量的催化剂搅拌均匀。
然后,将水逐渐加入混合物中,同时继续搅拌。
在加水的过程中,会发生水解反应,生成氢氧化硅凝胶。
水解反应的速度取决于催化剂的浓度和温度等因素。
水解反应完成后,继续搅拌一段时间,使溶胶中的颗粒均匀分散。
接下来,凝胶形成是制备二氧化硅气凝胶的关键步骤。
在溶胶制备过程中,水解反应会生成氢氧化硅凝胶颗粒,这些颗粒会在溶胶中自发形成网络结构。
凝胶形成的速度取决于水解反应的速率,一般情况下,需要等待数小时到数天的时间。
凝胶形成后,需要进行适当的老化过程,使凝胶网络更加稳定。
进行干燥工艺。
常压干燥是一种简单且常用的方法。
将湿凝胶置于通风处风干一段时间,使其表面形成硬壳,然后将湿凝胶置于密闭容器中,通过自然蒸发将水分逐渐脱除,最终得到二氧化硅气凝胶。
为了提高干燥速度,可以考虑增加湿凝胶的表面积,例如通过破碎、颗粒化等方式。
常压干燥制备二氧化硅气凝胶的工艺包括原料选择、溶胶制备、凝胶形成和干燥工艺等步骤。
通过优化这些步骤,可以获得具有理想孔结构和优异特性的二氧化硅气凝胶材料。
二氧化硅气凝胶的常压干燥法制备与性能探究引言二氧化硅气凝胶作为一种新型多孔材料,具有低密度、高比表面积和良好的热稳定性等优点,被广泛应用于催化剂支撑体、热绝缘材料、吸附材料等领域。
其常压干燥法制备具有操作简便、成本低廉等优势,因此在实际应用中具有潜力。
本文针对二氧化硅气凝胶的常压干燥法制备与性能进行了详尽探究。
常压干燥法制备二氧化硅气凝胶的常压干燥法制备主要包括溶胶凝胶法和凝胶树脂法。
溶胶凝胶法是将硅源和溶剂混合制成溶胶,经固化凝胶化后在常压下干燥得到气凝胶。
凝胶树脂法则是将硅源和某种高分子凝胶剂混合制成凝胶,再在常压下干燥制备气凝胶。
性能探究1. 结构性能:通过扫描电子显微镜(SEM)观察二氧化硅气凝胶的形貌结构,结果显示其呈现多孔络合结构,孔径分布匀称。
使用BET比表面积测试仪测定气凝胶的比表面积,结果显示其比表面积达到数百平方米/克级别,具有很大的吸附能力。
2. 热稳定性:通过热重分析仪对二氧化硅气凝胶进行热稳定性测试,结果显示其在高温下保持稳定,失重量分外低,表现出良好的热稳定性。
3. 吸附性能:通过氮气吸附/脱附试验测试气凝胶的孔隙结构和吸附性能。
结果显示其具有较高的孔隙体积和孔径分布,适用于各种气体的吸附。
此外,对二氧化硅气凝胶进行染色后,可以用于吸附有机染料等物质。
4. 机械性能:通过载荷曲线测试机对气凝胶进行拉伸试验,结果显示其具有较好的拉伸强度和延展性,具备良好的机械性能。
应用前景为其在催化剂、热绝缘、吸附等领域的应用提供了理论基础和试验依据。
同时,常压干燥法具有操作简便、成本低廉等优势,适用于大规模制备。
因此,二氧化硅气凝胶的常压干燥法制备具有宽广的应用前景。
结论本文通过对常压干燥法制备的二氧化硅气凝胶进行性能探究,得出了以下结论:二氧化硅气凝胶具有多孔络合结构、高比表面积、良好的热稳定性和吸附性能;常压干燥法制备简便、成本低廉,适用于大规模制备;二氧化硅气凝胶具有宽广的应用前景。