第5讲 空间关系
- 格式:ppt
- 大小:1.41 MB
- 文档页数:96
空间关系知识点总结一、空间概念空间是指周围的环境由物质实体所构成的三维空间。
在这个空间中,物体可以相对移动,相对位置也会发生变化。
在空间中,我们可以观察到物体的位置、形状和大小等属性。
空间关系是指事物在空间中的相对位置关系。
空间关系有三种形式,即相对位置、方位和距离。
1.相对位置:相对位置是指两个物体在空间中的相对位置关系。
当我们描述一个事物所处的位置时,一定要以另一事物为基准来描述,这就是相对位置。
例如,A在B的左边,B在A的右边,这是相对位置的描述。
2.方位:方位是指事物在空间中的朝向关系。
方位由四个基本方向组成,即东、西、南、北。
在地理空间中还有东北、东南、西北、西南等方位。
方位是空间中非常重要的关系,能够帮助我们更准确地描述事物在空间中的位置。
3.距离:距离是指两个事物在空间中的间隔距离。
在空间中,物体可以通过距离来描述物体的相对远近。
距离是空间关系中很重要的一个方面,它可以通过度量直线距离、曲线距离来描述物体之间的相对远近。
二、空间语言描述空间关系可以通过语言来进行描述。
语言描述可以帮助我们更加准确地了解物体在空间中的位置、方位以及距离。
在语言描述中,要注意以下几点:1.使用准确的定位词语:在描述空间关系时,要使用准确的定位词语,如“上、下、左、右、前、后”等。
这些词语可以帮助我们更加准确地描述事物在空间中的位置。
2.使用准确的方向词语:在描述方位时,要使用准确的方向词语,如“东、西、南、北”等。
这些词语可以帮助我们更加准确地描述事物在空间中的朝向关系。
3.使用准确的距离词语:在描述距离时,要使用准确的距离词语,如“远、近、远离、靠近”等。
这些词语可以帮助我们更加准确地描述事物在空间中的相对远近关系。
三、空间关系的认知发展儿童对空间关系的认知发展是一个渐进的过程。
在儿童的认知过程中,从最初的“具体视觉参照”到“图形概念”再到“抽象概念”,儿童对空间关系的认知逐渐升级。
1.具体视觉参照:儿童最开始的认知是基于具体的物体进行的。
第五讲空间角与距离、空间向量及应用1.[2020湖北部分重点中学高三测试]如图8-5-1,E,F分别是三棱锥P-ABC的棱AP,BC的中点,PC=10,AB=6,EF=7,则异面直线AB与PC所成的角为( )图8-5-1A.30°B.60°C.120°D.150°2.[2020湖南长沙市长郡中学模拟]图8-5-2中的三个正方体ABCD-A1B1C1D1中,E,F,G均为所在棱的中点,过E,F,G 作正方体的截面.下列各选项中,关于直线BD1与平面EFG的位置关系描述正确的是( )图8-5-2∥平面EFG的有且只有①,BD1⊥平面EFG的有且只有②③1∥平面EFG的有且只有②,BD1⊥平面EFG的有且只有①1∥平面EFG的有且只有①,BD1⊥平面EFG的有且只有②1∥平面EFG的有且只有②,BD1⊥平面EFG的有且只有③13.[多选题]如图8-5-3,正方体ABCD-A1B1C1D1的棱长为1,则以下说法正确的是( )图8-5-31D1所成的角等于π4B.点C到平面ABC1D1的距离为√221C和BC1所成的角为π41D1-BB1C1的外接球的半径为√324.[2019吉林长春质量监测][双空题]已知正方体ABCD-A1B1C1D1的棱长为2,M,N,E,F分别是A1B1,AD,B1C1,C1D1的中点,则过EF且与MN平行的平面截正方体所得截面的面积为,CE 和该截面所成角的正弦值为.5.[2021广州市阶段模拟]如图8-5-4,在四棱锥E-ABCD中,底面ABCD为菱形,BE⊥平面ABCD,G为AC与BD的交点.(1)证明:平面AEC⊥平面BED.(2)若∠BAD=60°,AE⊥EC,求直线EG与平面EDC所成角的正弦值.图8-5-46.[2021晋南高中联考]如图8-5-5,在四棱锥P-ABCD中,平面PAD⊥底面ABCD,其中底面ABCD为等腰梯形,AD∥BC,PA=AB=BC=CD,PA⊥PD,∠PAD=60°,Q为PD的中点.(1)证明:CQ∥平面PAB.(2)求二面角P-AQ-C的余弦值.图8-5-57.[2021湖南六校联考]如图8-5-6,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=√2a,点E是SD 上的点,且DE=λa(0<λ≤2).(1)求证:对任意的λ∈(0,2],都有AC⊥BE.(2)设二面角C-AE-D的大小为θ,直线BE与平面ABCD所成的角为φ,若sin φ=cos θ,求λ的值.图8-5-68.[2020福建五校联考]图8-5-7是一个半圆柱与多面体ABB1A1C构成的几何体,平面ABC与半圆柱的下底面共面,⏜上的动点(不与B1,A1重合).且AC⊥BC,P为B1A1(1)证明:PA1⊥平面PBB1.,求二面角P-A1B1-C的余弦值.(2)若四边形ABB1A1为正方形,且AC=BC,∠PB1A1=π4图8-5-79.[2020全国卷Ⅱ,12分]如图8-5-8,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F.(2)设O为△A1B1C1的中心.若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.图8-5-810.[2021黑龙江省六校联考]如图8-5-9,正方形ABCD和ABEF所在的平面互相垂直,且边长都是1,M,N,G分别为线段AC,BF,AB上的动点,且CM=BN,AF∥平面MNG,记BG=a(0<a<1).(1)证明:MG⊥平面ABEF.(2)当MN的长度最小时,求二面角A-MN-B的余弦值.图8-5-911.[2021蓉城名校联考]如图8-5-10(1),AD是△BCD中BC边上的高,且AB=2AD=2AC,将△BCD沿AD翻折,使得平面ACD⊥平面ABD,如图8-5-10(2)所示.(1)求证:AB⊥CD.时,求直线AE与平面BCE (2)在图8-5-10(2)中,E是BD上一点,连接AE,CE,当AE与底面ABC所成角的正切值为12所成角的正弦值.图8-5-1012.[2020洛阳市联考]如图8-5-11,底面ABCD是边长为3的正方形,平面ADEF⊥平面ABCD,AF∥DE,AD⊥DE,AF=2√6,DE=3√6.(1)求证:平面ACE⊥平面BED.(2)求直线CA与平面BEF所成角的正弦值.的值;若不存在,请说明理由. (3)在线段AF上是否存在点M,使得二面角M-BE-D的大小为60°?若存在,求出AMAF图8-5-1113.如图8-5-12,三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,平面α经过棱PC的中点E,与棱PB,AC分别交于点F,D,且BC∥平面α,PA∥平面α.(1)证明:AB⊥平面α.(2)若AB=BC=PA=2,点M在直线EF上,求平面MAC与平面PBC所成锐二面角的余弦值的最大值.图8-5-1214.[2021安徽江淮十校第一次联考]如图8-5-13(1),已知圆O的直径AB的长为2,上半圆弧上有一点C,∠COB=60°,点P是弧AC上的动点,点D是下半圆弧的中点.现以AB为折痕,使下半圆所在的平面垂直于上半圆所在的平面,连接PO,PD,PC,CD,如图8-5-13(2)所示.(1)当AB∥平面PCD时,求PC的长;(2)当三棱锥P-COD体积最大时,求二面角D-PC-O的余弦值.图8-5-13答案第四讲直线、平面垂直的判定及性质1.B 如图D 8-5-8,取AC的中点D,连接DE,DF,因为D,E,F分别为AC,PA,BC的中点,所以DF∥AB,DF=12AB,DE∥PC,DE=12PC,所以∠EDF或其补角为异面直线PC与AB所成的角.因为PC=10,AB=6,所以在△DEF中,DE=5,DF=3,EF=7,由余弦定理得cos∠EDF=DE2+DF2-EF22DE×DF =25+9−492×5×3=-12,所以∠EDF=120°,所以异面直线PC与AB所成的角为60°.故选B.图D 8-5-82.A 对于题图①,连接BD,因为E,F,G均为所在棱的中点,所以BD∥GE,DD1∥EF,又BD⊄平面EFG,DD1⊄平面EFG,从而可得BD∥平面EFG,DD1∥平面EFG,又BD∩DD1=D,所以平面BDD1∥平面EFG,所以BD1∥平面EFG.对于题图②,连接DB,DA 1,设正方体的棱长为1,因为E,F,G 均为所在棱的中点,所以BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·GE ⃗⃗⃗⃗⃗ =(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(12DA 1⃗⃗⃗⃗⃗⃗⃗⃗ )=12(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ )=12(1×√2×cos 45°-√2×√2×cos 60°)=0, 即BD 1⊥EG.连接DC 1,则BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·EF ⃗⃗⃗⃗⃗ =(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(12DC 1⃗⃗⃗⃗⃗⃗⃗ )=12(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·DC 1⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ ·DC 1⃗⃗⃗⃗⃗⃗⃗ )=12(1×√2×cos 45°-√2×√2×cos 60°)=0,即BD 1⊥EF. 又EG ∩EF=E,所以BD 1⊥平面EFG.对于题图③,设正方体的棱长为1,连接DB,DG,因为E,F,G 均为所在棱的中点,所以BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·EG ⃗⃗⃗⃗⃗ =(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(DG ⃗⃗⃗⃗⃗ -DE ⃗⃗⃗⃗⃗ )=(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(DC ⃗⃗⃗⃗⃗ +12DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -12DA ⃗⃗⃗⃗⃗ )=12DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 2-DB ⃗⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ +12DB ⃗⃗⃗⃗⃗⃗ ·DA ⃗⃗⃗⃗⃗ =12-√2×1×√22+12×√2×1×√22=0, 即BD 1⊥EG.连接AF,则BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·EF ⃗⃗⃗⃗⃗ =(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(AF ⃗⃗⃗⃗⃗ -AE ⃗⃗⃗⃗⃗ )=(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ +12DC ⃗⃗⃗⃗⃗ +12DA ⃗⃗⃗⃗⃗ )=DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 2-12DB ⃗⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ -12DB ⃗⃗⃗⃗⃗⃗ ·DA ⃗⃗⃗⃗⃗ =1-12×√2×1×√22-12×√2×1×√22=0, 即BD 1⊥EF.又EG ∩EF=E,所以BD 1⊥平面EFG.故选A.3.ABD 正方体ABCD-A 1B 1C 1D 1的棱长为1,对于A,直线BC 与平面ABC 1D 1所成的角为∠CBC 1=π4,故A 正确;对于B,点C 到平面ABC 1D 1的距离为B 1C 长度的一半,即距离为√22,故B 正确;对于C,连接AC,因为BC 1∥AD 1,所以异面直线D 1C 和BC 1所成的角即直线D 1C 和AD 1所成的角,又△ACD 1是等边三角形,所以异面直线D 1C 和BC 1所成的角为π3,故C 错误;对于D,三棱柱AA 1D 1-BB 1C 1的外接球就是正方体ABCD-A 1B 1C 1D 1的外接球,正方体ABCD-A 1B 1C 1D 1的外接球半径r=√12+12+122=√32,故D 正确.故选ABD.√2√1010如图D 8-5-9,正方体ABCD-A 1B 1C 1D 1中,设CD,BC 的中点分别为H,G,连接HE,HG,GE,HF,ME,NH.图D 8-5-9易知ME ∥NH,ME=NH,所以四边形MEHN 是平行四边形,所以MN ∥HE.因为MN ⊄平面EFHG,HE ⊂平面EFHG,所以MN ∥平面EFHG,所以过EF 且与MN 平行的平面为平面EFHG,易知平面EFHG 截正方体所得截面为矩形EFHG,EF=√2,FH=2,所以截面EFHG 的面积为2×√2=2√2.连接AC,交HG 于点I,易知CI ⊥HG,平面EFHG ⊥平面ABCD,平面EFHG ∩平面ABCD=HG,所以CI ⊥平面EFHG,连接EI,因为EI ⊂平面EFHG,所以CI ⊥EI,所以∠CEI 为直线CE 和截面EFHG 所成的角.在Rt △CIE 中,易知CE=√1+22=√5,CI=14AC=2√24=√22,所以sin ∠CEI=CICE=√1010. 5.(1)因为四边形ABCD 为菱形,所以AC ⊥BD.因为BE ⊥平面ABCD,AC ⊂平面ABCD,所以AC ⊥BE.又BE ∩BD=B,所以AC ⊥平面BED.又AC ⊂平面AEC,所以平面AEC ⊥平面BED.(2)解法一 设AB=1,在菱形ABCD 中,由∠BAD=60°,可得AG=GC=√32,BG=GD=12.因为AE ⊥EC,所以在Rt △AEC 中可得EG=AG=√32.由BE ⊥平面ABCD,得△EBG 为直角三角形,则EG 2=BE 2+BG 2,得BE=√22.如图D 8-5-10,过点G 作直线Gz ∥BE,因为BE ⊥平面ABCD, 所以Gz ⊥平面ABCD,又AC ⊥BD,所以建立空间直角坐标系 G-xyz.G(0,0,0),C(0,√32,0),D(-12,0,0),E(12,0,√22),图D 8-5-10所以GE ⃗⃗⃗⃗⃗ =(12,0,√22),DE ⃗⃗⃗⃗⃗ =(1,0,√22),CE ⃗⃗⃗⃗⃗ =(12,-√32,√22). 设平面EDC 的法向量为n=(x,y,z),由{DE ⃗⃗⃗⃗⃗ ·n =0,CE ⃗⃗⃗⃗⃗ ·n =0,得{x +√22z =0,12x -√32y +√22z =0,取x=1,则z=-√2,y=-√33,所以平面EDC 的一个法向量为n=(1,-√33,-√2).设直线EG 与平面EDC 所成的角为θ,则sin θ=|cos<GE⃗⃗⃗⃗⃗ ,n>|=|12+0−1√14+12×√1+13+2|=|-12√32×√103|=√1010. 所以直线EG 与平面EDC 所成角的正弦值为√1010. 解法二 设BG=1,则GD=1,AB=2,AG=√3.设点G 到平面EDC 的距离为h,EG 与平面EDC 所成角的大小为θ.因为AC ⊥平面EBD,EG ⊂平面EBD,所以AC ⊥EG.因为AE ⊥EC,所以△AEC 为等腰直角三角形.因为AC=2AG=2√3,所以AE=EC=√6,EG=AG=√3.因为AB=BD=2,所以Rt △EAB ≌Rt △EDB,所以EA=ED=√6.在△EDC 中,ED=EC=√6,DC=2,则S △EDC =√5.在Rt △EAB 中,BE=√EA 2-AB 2=√(√6)2-22=√2.V E-GDC =13BE ·12S △CBD =16×√2×S △ABD =16×√2×12×2×√3=√66.由V G-EDC =13h ·√5=V E-GDC =√66,得h=√62√5=√3010.所以sin θ=ℎEG =√1010.所以直线EG 与平面EDC 所成角的正弦值为√1010.解法三 如图D 8-5-11,以点B 为坐标原点,建立空间直角坐标系B-xyz.图D 8-5-11不妨设AB=2,在菱形ABCD 中,由∠BAD=60°,可得AG=GC=√3,BG=GD=1.因为AE ⊥EC,所以在Rt △AEC 中可得EG=AG=√3.由BE ⊥平面ABCD,得△EBG 为直角三角形,则EG 2=BE 2+BG 2,得BE=√2.则C(2,0,0),E(0,0,√2),D(1,√3,0),G(12,√32,0), 所以EG ⃗⃗⃗⃗⃗ =(12,√32,-√2),ED ⃗⃗⃗⃗⃗ =(1,√3,-√2),EC ⃗⃗⃗⃗⃗ =(2,0,-√2). 设平面EDC 的法向量为n=(x,y,z), 则{n ·ED ⃗⃗⃗⃗⃗ =0,n ·EC ⃗⃗⃗⃗⃗ =0,得{x +√3y -√2z =0,2x -√2z =0,令x=√3,则z=√6,y=1.所以平面EDC 的一个法向量为n=(√3,1,√6).设EG 与平面EDC 所成的角为θ,则sin θ=|cos<EG⃗⃗⃗⃗⃗ ,n>|=|√32+√32-2√3|√1+2×√3+1+6=√1010. 所以直线EG 与平面EDC 所成角的正弦值为√1010. 6.(1)如图D 8-5-12,取PA 的中点N,连接QN,BN.图D 8-5-12∵Q,N 分别是PD,PA 的中点,∴QN ∥AD,且QN=12AD. ∵PA ⊥PD,∠PAD=60°,∴PA=12AD, 又PA=BC,∴BC=12AD,∴QN=BC,又AD ∥BC,∴QN ∥BC,∴四边形BCQN 为平行四边形,∴BN ∥CQ.又BN ⊂平面PAB,CQ ⊄平面PAB,∴CQ ∥平面PAB.(2)在图D 8-5-12的基础上,取AD 的中点M,连接BM,PM,取AM 的中点O,连接BO,PO,如图D 8-5-13.图D 8-5-13设PA=2,由(1)得PA=AM=PM=2,∴△APM 为等边三角形,∴PO ⊥AM,同理BO ⊥AM.∵平面PAD ⊥平面ABCD,平面PAD ∩平面ABCD=AD,PO ⊂平面PAD,∴PO ⊥平面ABCD.以O 为坐标原点,分别以OB ⃗⃗⃗⃗⃗ ,OD⃗⃗⃗⃗⃗⃗ ,OP ⃗⃗⃗⃗⃗ 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O-xyz, 则A(0,-1,0),C(√3,2,0),P(0,0,√3),Q(0,32,√32), ∴AC⃗⃗⃗⃗⃗ =(√3,3,0),AQ ⃗⃗⃗⃗⃗ =(0,52,√32), 设平面ACQ 的法向量为m=(x,y,z),则{m ·AC⃗⃗⃗⃗⃗ =0,m ·AQ ⃗⃗⃗⃗⃗ =0,∴{√3x +3y =0,52y +√32z =0,取y=-√3,得m=(3,-√3,5)是平面ACQ 的一个法向量,又平面PAQ 的一个法向量为n=(1,0,0),∴cos<m,n>=m ·n|m|·|n|=3√3737, 由图得二面角P-AQ-C 的平面角为钝角,∴二面角P-AQ-C 的余弦值为-3√3737. 7.(1)由题意SD ⊥平面ABCD,AD ⊥DC,以D 为原点,DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DS ⃗⃗⃗⃗⃗ 的方向分别作为x,y,z 轴的正方向建立如图D 8-5-14所示的空间直角坐标系,图D 8-5-14则D(0,0,0),A(√2a,0,0),B(√2a,√2a,0),C(0,√2a,0),E(0,0,λa), ∴AC ⃗⃗⃗⃗⃗ =(-√2a,√2a,0),BE ⃗⃗⃗⃗⃗ =(-√2a,-√2a,λa), ∴AC ⃗⃗⃗⃗⃗ ·BE⃗⃗⃗⃗⃗ =2a 2-2a 2+0×λa=0, 即AC ⊥BE.(2)解法一 由(1)得EA ⃗⃗⃗⃗⃗ =(√2a,0,-λa),EC ⃗⃗⃗⃗⃗ =(0,√2a,-λa),BE ⃗⃗⃗⃗⃗ =(-√2a,-√2a,λa). 设平面ACE 的法向量为n=(x,y,z),则由n ⊥EA ⃗⃗⃗⃗⃗ ,n ⊥EC ⃗⃗⃗⃗⃗ 得 {n ·EA ⃗⃗⃗⃗⃗ =0,n ·EC ⃗⃗⃗⃗⃗ =0,得{√2x -λz =0,√2y -λz =0,取z=√2,得n=(λ,λ,√2)为平面ACE 的一个法向量,易知平面ABCD 与平面ADE 的一个法向量分别为DS⃗⃗⃗⃗⃗ =(0,0,2a)与DC ⃗⃗⃗⃗⃗ =(0,√2a,0), ∴sin φ=|DS ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ ||DS⃗⃗⃗⃗⃗ |·|BE ⃗⃗⃗⃗⃗ |=√λ2+4,易知二面角C-AE-D 为锐二面角,∴cos θ=|DC⃗⃗⃗⃗⃗ ·n||DC⃗⃗⃗⃗⃗ |·|n|=√2λ2+2,由sin φ=cos θ得√λ2+4=√2λ2+2,解得λ2=2,又λ∈(0,2],∴λ=√2.解法二 如图D 8-5-15,连接BD,由SD ⊥平面ABCD 知,∠DBE=φ.图D 8-5-15由(1)易知CD ⊥平面SAD.过点D 作DF ⊥AE 于点F,连接CF,则∠CFD 是二面角C-AE-D 的平面角,即∠CFD=θ.在Rt △BDE 中,BD=2a,DE=λa,∴BE=√4a 2+λ2a 2,sin φ=DEBE =√λ2+4,在Rt △ADE 中,AD=√2a,DE=λa,∴AE=a √λ2+2,∴DF=AD ·DE AE=√2λa√λ2+2, 在Rt △CDF 中,CF=√DF 2+CD 2=2√λ2+1√λ2+2a,∴cos θ=DFCF =√2λ2+2,由sin φ=cos θ得√λ2+4=√2λ2+2,解得λ2=2,又λ∈(0,2],∴λ=√2.8.(1)在半圆柱中,BB 1⊥平面PA 1B 1,PA 1⊂平面PA 1B 1,所以BB 1⊥PA 1.因为A 1B 1是上底面对应圆的直径,所以PA 1⊥PB 1.因为PB 1∩BB 1=B 1,PB 1⊂平面PBB 1,BB 1⊂平面PBB 1,所以PA 1⊥平面PBB 1.(2)根据题意,以C 为坐标原点建立空间直角坐标系C-xyz,如图D 8-5-16所示.图D 8-5-16设CB=1,则C(0,0,0),A 1(0,1,√2),B 1(1,0,√2), 所以CA 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,√2),CB 1⃗⃗⃗⃗⃗⃗⃗ =(1,0,√2).易知n 1=(0,0,1)为平面PA 1B 1的一个法向量. 设平面CA 1B 1的法向量为n 2=(x,y,z),则{n 2·CA 1⃗⃗⃗⃗⃗⃗⃗ =0,n 2·CB 1⃗⃗⃗⃗⃗⃗⃗ =0,即{y +√2z =0,x +√2z =0,令z=1,则x=-√2,y=-√2,所以n 2=(-√2,-√2,1)为平面CA 1B 1的一个法向量.所以cos<n 1,n 2>=1×√5=√55.由图可知二面角P-A 1B 1-C 为钝角,所以所求二面角的余弦值为-√55.9.(1)因为M,N 分别为BC,B 1C 1的中点,所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN.因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 11C 1⊥MN,故B 1C 1⊥平面A 1AMN.所以平面A 1AMN ⊥平面EB 1C 1F.(2)由已知得AM ⊥BC.以M 为坐标原点,MA ⃗⃗⃗⃗⃗⃗ 的方向为x 轴正方向,|MB ⃗⃗⃗⃗⃗⃗ |为单位长度,建立如图D 8-5-17所示的空间直角坐标系M-xyz,则AB=2,AM=√3.图D 8-5-17连接NP,则四边形AONP 为平行四边形,故PM=2√33,E(2√33,13,0).由(1)知平面A 1AMN ⊥平面ABC.作NQ ⊥AM,垂足为Q,则NQ ⊥平面ABC.设Q(a,0,0),则NQ=(2√331(a,1,(2√33故B 1E ⃗⃗⃗⃗⃗⃗⃗ =(2√33-a,-23,-√4−(2√33-a)2),|B 1E ⃗⃗⃗⃗⃗⃗⃗ |=2√103. 又n=(0,-1,0)是平面A 1AMN 的一个法向量,故 sin(π2- n,B 1E ⃗⃗⃗⃗⃗⃗⃗ )=cos n,B 1E ⃗⃗⃗⃗⃗⃗⃗ =n ·B 1E⃗⃗⃗⃗⃗⃗⃗⃗ |n|·|B 1E ⃗⃗⃗⃗⃗⃗⃗⃗ |=√1010.所以直线B 1E 与平面A 1AMN 所成角的正弦值为√1010. 10.(1)因为AF ∥平面MNG,且AF ⊂平面ABEF,平面ABEF ∩平面MNG=NG,所以AF ∥NG,所以CM=BN=√2a,所以AM=√2(1-a),所以AMCM =AGBG =1−a a,所以MG ∥BC,所以MG ⊥AB.又平面ABCD ⊥平面ABEF,且MG ⊂平面ABCD,平面ABCD ∩平面ABEF=AB,所以MG ⊥平面ABEF.(2)由(1)知,MG ⊥NG,MG=1-a,NG=a,所以MN=√a 2+(1−a)2=√2a 2-2a +1=√2(a -12)2+12≥√22,当且仅当a=12时等号成立,即当a=12时,MN 的长度最小.以B 为坐标原点,分别以BA,BE,BC 所在的直线为x 轴、y 轴、z 轴建立如图D 8-5-18所示的空间直角坐标系B-xyz,则A(1,0,0),B(0,0,0),M(12,0,12),N(12,12,0),图D 8-5-18设平面AMN 的法向量为m=(x 1,y 1,z 1),因为AM ⃗⃗⃗⃗⃗⃗ =(-12,0,12),MN⃗⃗⃗⃗⃗⃗⃗ =(0,12,-12), 所以{m ·AM ⃗⃗⃗⃗⃗⃗ =−x12+z12=0,m ·MN⃗⃗⃗⃗⃗⃗⃗ =y 12-z 12=0,取z 1=1,得m=(1,1,1)为平面AMN 的一个法向量.设平面BMN 的法向量为n=(x 2,y 2,z 2),因为BM ⃗⃗⃗⃗⃗⃗ =(12,0,12),MN ⃗⃗⃗⃗⃗⃗⃗ =(0,12,-12), 所以{n ·BM ⃗⃗⃗⃗⃗⃗ =x22+z22=0,n ·MN ⃗⃗⃗⃗⃗⃗⃗ =y 22-z 22=0,取z 2=1,得n=(-1,1,1)为平面BMN 的一个法向量.所以cos<m,n>=m ·n|m||n|=13, 又二面角A-MN-B 为钝二面角,所以二面角A-MN-B 的余弦值为-13.11.(1)由题图(1)知,在题图(2)中,AC ⊥AD,AB ⊥AD.∵平面ACD ⊥平面ABD,平面ACD ∩平面ABD=AD,AB ⊂平面ABD,∴AB ⊥平面ACD,又CD ⊂平面ACD,∴AB ⊥CD.(2)以A 为坐标原点,AC,AB,AD 所在的直线分别为x,y,z 轴建立如图D 8-5-19所示的空间直角坐标系,不妨设AC=1,则A(0,0,0),B(0,2,0),C(1,0,0),D(0,0,1),AD ⃗⃗⃗⃗⃗ =(0,0,1),BC ⃗⃗⃗⃗⃗ =(1,-2,0),DB⃗⃗⃗⃗⃗⃗ =(0,2,-1).图D 8-5-19设E(x,y,z),由DE ⃗⃗⃗⃗⃗ =λDB ⃗⃗⃗⃗⃗⃗ (0<λ<1),得(x,y,z-1)=(0,2λ,-λ), 得E(0,2λ,1-λ),∴AE⃗⃗⃗⃗⃗ =(0,2λ,1-λ),又平面ABC 的一个法向量为AD ⃗⃗⃗⃗⃗ =(0,0,1),AE 与底面ABC 所成角的正切值为12, 所以|tan AD ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ |=2,于是|cos AD ⃗⃗⃗⃗⃗ ,AE⃗⃗⃗⃗⃗ |=√5=√55, 即|√(2λ)2+(1−λ)2|=√55,解得λ=12,则E(0,1,12),AE ⃗⃗⃗⃗⃗ =(0,1,12),BE⃗⃗⃗⃗⃗ =(0,-1,12). 设平面BCE 的法向量为n=(x,y,z),则{n ·BC⃗⃗⃗⃗⃗ =0,n ·BE ⃗⃗⃗⃗⃗ =0,即{x -2y =0,-y +12z =0, 令y=1,得x=2,z=2,则n=(2,1,2)是平面BCE 的一个法向量,设直线AE 与平面BCE 所成的角是θ,则sin θ=|cos AE ⃗⃗⃗⃗⃗ ,n |=|AE⃗⃗⃗⃗⃗ ·n||AE ⃗⃗⃗⃗⃗ ||n|=√52×3=4√515, 故直线AE 与平面BCE 所成角的正弦值为4√515.12.(1)因为平面ADEF ⊥平面ABCD,平面ADEF ∩平面ABCD=AD,DE ⊂平面ADEF,DE ⊥AD,所以DE ⊥平面ABCD.因为AC ⊂平面ABCD,所以DE ⊥AC.又四边形ABCD 是正方形,所以AC ⊥BD.因为DE ∩BD=D,DE ⊂平面BED,BD ⊂平面BED,所以AC ⊥平面BED.又AC ⊂平面ACE,所以平面ACE ⊥平面BED.(2)因为DA,DC,DE 两两垂直,所以以D 为坐标原点,建立如图D 8-5-20所示的空间直角坐标系D-xyz. 则A(3,0,0),F(3,0,2√6),E(0,0,3√6),B(3,3,0),C(0,3,0),所以CA⃗⃗⃗⃗⃗ =(3,-3,0),BE ⃗⃗⃗⃗⃗ =(-3,-3,3√6),EF ⃗⃗⃗⃗⃗ =(3,0,-√6).图D 8-5-20设平面BEF 的法向量为n=(x,y,z), 则{n ·BE ⃗⃗⃗⃗⃗ =−3x -3y +3√6z =0,n ·EF ⃗⃗⃗⃗⃗ =3x -√6z =0,取x=√6,得n=(√6,2√6,3)为平面BEF 的一个法向量.所以cos<CA ⃗⃗⃗⃗⃗ ,n>=CA⃗⃗⃗⃗⃗ ·n |CA⃗⃗⃗⃗⃗ ||n|=√63√2×√39=-√1313. 所以直线CA 与平面BEF 所成角的正弦值为√1313.(3)假设在线段AF 上存在符合条件的点M,由(2)可设M(3,0,t),0≤t ≤2√6,则BM ⃗⃗⃗⃗⃗⃗ =(0,-3,t).设平面MBE 的法向量为m=(x 1,y 1,z 1), 则{m ·BM ⃗⃗⃗⃗⃗⃗ =−3y 1+tz 1=0,m ·BE⃗⃗⃗⃗⃗ =−3x 1-3y 1+3√6z 1=0,令y 1=t,得m=(3√6-t,t,3)为平面MBE 的一个法向量.由(1)知CA ⊥平面BED,所以CA ⃗⃗⃗⃗⃗ 是平面BED 的一个法向量,|cos<m,CA ⃗⃗⃗⃗⃗ >|=|m ·CA⃗⃗⃗⃗⃗ ||m||CA⃗⃗⃗⃗⃗ |=√6-3√2×√(3√6-t)2+t 2+9=cos 60°=12,整理得2t 2-6√6t+15=0,解得t=√62,故在线段AF 上存在点M,使得二面角M-BE-D 的大小为60°,此时AMAF =14. 13.(1)因为BC ∥平面α,BC ⊂平面PBC,平面α∩平面PBC=EF,所以BC ∥EF,且F 为棱PB 的中点,因为BC ⊥AB,所以EF ⊥AB.因为PA ∥平面α,PA ⊂平面PAC,平面α∩平面PAC=DE,所以PA ∥DE.因为PA ⊥平面ABC,所以PA ⊥AB, 所以DE ⊥AB.又DE ∩EF=E,DE ⊂平面DEF,EF ⊂平面DEF,所以AB ⊥平面DEF,即AB ⊥平面α.(2)如图D 8-5-21,以点B 为坐标原点,分别以BA,BC 所在直线为x,y 轴,过点B 且与AP 平行的直线为z 轴建立空间直角坐标系,则B(0,0,0),A(2,0,0),C(0,2,0),P(2,0,2),E(1,1,1),F(1,0,1),AC⃗⃗⃗⃗⃗ =(-2,2,0),BC ⃗⃗⃗⃗⃗ =(0,2,0), BP⃗⃗⃗⃗⃗ =(2,0,2).图D 8-5-21设M(1,t,1),平面MAC 的法向量为m=(x 1,y 1,z 1),则AM ⃗⃗⃗⃗⃗⃗ =(-1,t,1),则{m ·AC⃗⃗⃗⃗⃗ =−2x 1+2y 1=0,m ·AM ⃗⃗⃗⃗⃗⃗ =−x 1+ty 1+z 1=0,令x 1=1,则y 1=1,z 1=1-t,所以m=(1,1,1-t)为平面MAC 的一个法向量.设平面PBC 的法向量为n=(x 2,y 2,z 2),则{n ·BC ⃗⃗⃗⃗⃗ =2y 2=0,n ·BP ⃗⃗⃗⃗⃗ =2x 2+2z 2=0,得y 2=0,令x 2=1,则z 2=-1,所以n=(1,0,-1)为平面PBC 的一个法向量.设平面MAC 与平面PBC 所成的锐二面角为θ,则cos θ=|cos<m,n>|=|m ·n||m|×|n|=√12+12+(1-t)2×√2=√t 2-2t+3×√2.当t=0时,cos θ=0; 当t ≠0时, cos θ=√3t 2-2t+1×√2=√3(1t -13)+23×√2,当且仅当1t =13,即t=3时,3(1t -13)2+23取得最小值23,cos θ取得最大值,最大值为√23×√2=√32.所以平面MAC 与平面PBC 所成锐二面角的余弦值的最大值为√32.14.(1)因为AB ∥平面PCD,AB ⊂平面OCP,平面OCP ∩平面PCD=PC,所以AB ∥PC.又∠COB=60°,所以∠OCP=60°.又OC=OP,所以△OCP 为正三角形,所以PC=1.(2)由题意知DO ⊥平面COP,而V P-COD =V D-COP ,S △COP =12·OC ·OP ·sin ∠COP, 所以当OC ⊥OP 时,三棱锥P-COD 的体积最大.解法一 易知OP,OD,OC 两两垂直,以O 为坐标原点,OP⃗⃗⃗⃗⃗ ,OD ⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ 的方向分别为x 轴、y 轴、z 轴的正方向,建立如图D 8-5-22所示的空间直角坐标系O-xyz,则P(1,0,0),D(0,1,0),C(0,0,1),PC ⃗⃗⃗⃗⃗ =(-1,0,1),DP ⃗⃗⃗⃗⃗ =(1,-1,0).图D 8-5-22设平面DPC 的法向量为n 1=(x,y,z),则{PC⃗⃗⃗⃗⃗ ·n 1=0,DP ⃗⃗⃗⃗⃗ ·n 1=0,即{-x +z =0,x -y =0,取x=1,得平面DPC 的一个法向量为n 1=(1,1,1).易知平面PCO 的一个法向量为n 2=(0,1,0),设二面角D-PC-O 的平面角为α,由题图知,二面角D-PC-O 的平面角为锐角,则cos α=|n 1·n 2||n 1||n 2|=√33, 所以二面角D-PC-O 的余弦值为√33.解法二如图D 8-5-23所示,取PC的中点H,连接OH,DH.图D 8-5-23 因为OC=OP,DC=DP,所以OH,DH都与PC垂直,即∠OHD为所求二面角的平面角.在Rt△OPC中,可得OH=√22,在Rt△OHD中,DH=(√22=√62,所以cos∠OHD=√22√62=√33,所以二面角D-PC-O的余弦值为√33.。
空间的五种关系空间是人类生活和活动的重要场所,空间的关系影响着人们的生活和行为。
空间的关系可以分为五种:接触关系、包含关系、相邻关系、远离关系和互斥关系。
首先,接触关系是指两个不同的空间界面相互接触的关系,比如门和门框、人和椅子等。
接触关系直接决定了物体之间是否可以互相作用和影响,同时也直接影响了物体的形态和结构。
在人类生活中,接触关系可以带来舒适感和安全感,比如人们在座椅上坐下时会觉得安心舒适。
其次,包含关系是指一个空间内部包含另一个空间的关系,比如一个房子内部包含了多个房间。
包含关系可以让人感受到清晰明了的层次感和秩序感,因为在包含关系中物体有严格的上下级关系和组织结构。
在人们生活中,包含关系也很常见,比如把不同的书籍放在书桌的不同抽屉里,让人在需要时可以方便地取得。
第三,相邻关系是指两个空间之间相邻或者靠近的关系,比如两个房间之间的门或者一个街区内的相邻建筑物。
相邻关系可以通过空间的连续性串联起来,形成连续而又成体系的建筑或者城市空间。
在人类生活中,相邻关系常常显现出社交的和情感的维度,比如相邻的邻居可以更容易地产生互动和交流。
第四,远离关系是指两个空间之间相距较远的关系,比如两个城市之间的距离或者大海和陆地之间的距离。
远离关系可以产生一种自由、开阔和潜力的感觉,同时也激发人们的探索精神和冒险意识。
在人们生活中,远离关系可以带来一种对自己价值和归属的肯定,比如人们可以通过旅行和探险来体验广阔的天地。
最后,互斥关系是指两个或者多个空间相互排斥或者不能在同一空间中共存的关系,比如两个城市之间的对立和竞争,或者同一个空间内部不同功能之间的冲突。
互斥关系可以激发人们的理性思辨和抉择能力,因为不同的空间和功能之间必须寻找平衡点和妥协点。
在人们生活中,互斥关系也可以产生创造性的火花和思维的碰撞,比如企业之间的竞争可以激发创新和进步。
总的来说,空间的关系是人们生活和行为的重要基础,需要我们充分关注和理解。
第5讲 空间中的垂直关系本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
随堂演练稳固l 不垂直于平面α,那么α内与l 垂直的直线有( )B.1条D.α内所有直线【答案】C【解析】可以有无数条.m 、n 是两条不同的直线αβγ,,,是三个不同的平面,给出以下四个命题,其中正确命题的序号是( ) ①假设m n α⊥,∥α,那么m n ⊥;②假设α∥ββ,∥m γα,⊥,那么m γ⊥;③假设m ∥n α,∥α,那么m ∥n ;④假设αγβγ⊥,⊥,那么α∥β.A.①和②B.②和③C.③和④D.①和④ 【答案】A3.PA 垂直于正方形ABCD 所在平面,连接PB ,P C,P D,AC ,BD ,那么以下垂直关系正确的选项是( ) ①平面PAB ⊥平面PBC ②平面PAB ⊥平面PAD ③平面PAB ⊥平面PCD ④平面PAB ⊥平面PACA.①②B.①③C.②③D.②④ 【答案】A【解析】易证BC ⊥平面PAB ,那么平面PAB ⊥平面PBC ,又AD ∥BC ,故AD ⊥平面PAB ,那么平面PAD ⊥平面PAB ,因此选A.4.如图,三棱锥P -ABC 中PA ,⊥平面90ABC BAC ,∠=,PA =AB ,那么直线PB 与平面ABC 所成的角是( )【答案】C【解析】∵PA ⊥平面ABC ,∴PB 在平面ABC 上的射影是AB .∴PBA ∠是直线PB 与平面ABC 所成的角.又在△PAB 中90BAP ,∠=,PA =AB ,∴45PBA ∠=.∴直线PB 与平面ABC 所成的角是45.课后作业夯基α、β是两个不同的平面,l 是一条直线,以下命题正确的选项是( )l ααβ⊥,⊥,那么l β⊂l αα⊥,∥β,那么l β⊥ l ∥αα,∥β,那么l β⊂l ∥ααβ,⊥,那么l β⊥ 【答案】B【解析】对于选项A 、C,可能l ∥β,所以A 、C 均不正确.对于选项D,可能l ∥β或者l β⊂,所以D 不正确.2.命题(1)〞直线l 垂直于平面α内的无数条直线,那么l α⊥〞,命题(2)〞假设l α⊥,那么直线l 垂直于平面α内的无数条直线〞,那么( )A.(1)是真命题,(2)是真命题B.(1)是真命题,(2)是假命题C.(1)是假命题,(2)是真命题D.(1)是假命题,(2)是假命题【答案】C【解析】直线l 垂直于平面α内的无数条直线,那么l 有可能与α斜交;反之假设l α⊥,那么直线l 垂直于平面α内的无数条直线.3.αβ,表示两个不同的平面,m 为平面α内的一条直线,那么〞αβ⊥〞是〞m β⊥〞的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】由平面与平面垂直的断定定理知,假如m 为平面α内的一条直线m β,⊥,那么αβ⊥,反过来那么不一定,所以〞αβ⊥〞是〞m β⊥〞的必要不充分条件.4.如图,六棱锥P -ABCDEF 的底面是正六边形PA ,⊥平面ABC ,PA =2AB ,那么以下结论正确的选项是( )A.PB AD ⊥ PAB ⊥平面PBCBC ∥平面PAEP D 与平面ABC 所成的角为45【答案】D【解析】∵AD 与PB 在平面ABC 内的射影AB 不垂直,∴A 不成立;又平面PAB ⊥平面PAE ,∴平面PAB ⊥平面PBC 也不成立;∵BC ∥AD ,∴BC ∥平面PAD .∴直线BC ∥平面PAE 也不成立.在Rt △PAD 中,PA =AD =2AB ,∴45PDA ∠=.∴D 正确.α所成的角为3π,那么这条直线和平面内的直线所成角的取值范围是( ) A.(0)3π, B.[]32ππ, C.[]33π2π, D.[3π,π] 【答案】B【解析】由最小角定理,知这条直线和平面内的直线所成角中最小角为3π,最大角是当斜线与平面α内的一条直线垂直时所成的角,它为2π.6.A(-1,2,7),B(-3,-10,-9),那么线段AB 中点关于原点对称的点的坐标是( )A.(4,8,2)B.(4,2,8)C.(4,2,1)D.(2,4,1) 【答案】D【解析】∵线段 AB 的中点M 的坐标是1321079()222----,,,即M(-2,-4,-1), ∴M 关于原点对称的点为(2,4,1).ABCD -1111A B C D 中,M 、N 分别是棱1AA 和AB 上的点,假设1B MN ∠是直角,那么1C MN ∠= .【答案】90【解析】在正方体中11C B ,⊥平面11ABB A ,而MN ⊂平面11ABB A ,∴11C B MN ⊥.又1B MN ∠是直角,即1MN MB ⊥,而1111MB C B B ⋂=,∴MN ⊥平面11MB C .∴1MN MC ⊥,即190C MN ∠=.8.α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线,给出四个论断:①m n ⊥;②αβ⊥;③n β⊥;④m α⊥.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题为 .【答案】 ②③④⇒①(或者①③④⇒②)【解析】根据线面、面面垂直的定义、断定定理和性质可知,正确的有②③④⇒①或者①③④⇒②.O 与正方体ABCD -1111A B C D 各面都相切,P 是球O 上一动点,AP 与平面ABCD 所成的角为α,那么α最大时,其正切值为 .【答案】【解析】过正方体的对角面11ACC A 作截面,如下图,M 、N 为切点,当AP 与平面ABCD 所成的角最大时,AP 为圆O 的切线.设正方体的棱长为2, 那么12OM AM =,=,tan 22OAM ∠=,tan α=tan 2OAM ∠22tan 1tan OAM OAM∠==-∠22. α、β、γ为彼此不重合的三个平面,l 为直线,给出以下命题:①假设α∥βαγ,⊥,那么βγ⊥;②假设αγβγ⊥,⊥,且l αβ⋂=,那么l γ⊥;③假设直线l 与平面α内的无数条直线垂直,那么直线l 与平面α垂直;④假设α内存在不一共线的三点到β的间隔 相等,那么平面α平行于平面β.上面命题中,真命题的序号为 .(写出所有真命题的序号)【答案】①②【解析】由题可知③中无数条直线不能认定为任意一条直线,所以③错,④中的不一共线的三点有可能是在平面β的两侧,所以两个平面可能相交也可能平行,故填①②.11.如下图,在长方体ABCD -1111A B C D 中112AB BC AA E ,==,=,是侧棱1BB 的中点.(1)求证:1A E ⊥平面ADE ;(2)求三棱锥1A -ADE 的体积.【解】(1)证明:由勾股定理知:1112112A E AE =+=,=+=,那么22211A A A E AE =+,∴1A E AE ⊥.∵AD ⊥平面111AA B B A E ,⊂平面11AA B B ,∴1A E AD ⊥.而AD AE A ⋂=,∴1A E ⊥平面ADE .11(2)2212AA E S =⋅⋅=, ∴11111133A ADE D A AE AA E V V S AD --==⋅⋅=⋅⋅1=13.12.(2021沂水)在直平行六面体1AC 中,四边形ABCD 是菱形,60DAB ∠=1AC BD O AB AA ,⋂=,=.(1)求证:1C O ∥平面11AB D ;(2)求证:平面11AB D ⊥平面11ACC A .【证明】 (1)连接11A C 交11B D 于1O ,连接1AO .在平行四边形11AAC C 中11C O ,∥11AO C O AO ,=,∴四边形11AOC O 为平行四边形.∴1C O ∥1AO .∵1C O ⊄平面11AB D ,1AO ⊂平面11AB D ,∴1C O ∥平面11AB D .(2)在直平行六面体1AC 中1A A ,⊥平面1111A B C D ,∴111A A B D ⊥.∵四边形1111A B C D 为菱形,∴1111B D A C ⊥.∵111111AC AA A AC ⋂=,⊂平面111ACC A AA ,⊂平面11ACC A ,∴11B D ⊥平面11ACC A .∵11B D ⊂平面11AB D ,∴平面11AB D ⊥平面11ACC A .13.如图,在四棱锥E -ABCD 中,△ADE 是等边三角形,侧面ADE ⊥底面ABCD ,AB ∥DC ,BD =2DC =4,AD =3,AB =5.(1)假设F 是EC 上任一点,求证:平面BDF ⊥平面ADE ;(2)求三棱锥C -BDE 的体积.【解】(1)证明:∵在△ABD 中,BD =4,AD =3,AB =5,∴222AB AD BD =+.∴BD AD ⊥. 又平面ADE ⊥平面ABCD ,平面ADE ⋂平面ABCD =AD ,∴BD ⊥平面ADE .∵BD ⊂平面BDF ,∴平面BDF ⊥平面ADE .(2)取AD 的中点H,连接E H,由△ADE 为等边三角形得EH AD ⊥,∵平面ADE ⊥平面ABCD ,∴EH ⊥平面ABCD . ∴--13C BDE E BCD BCD V V S EH ==⋅⋅.又∵在△ADE 中332EH ,=,在△ABD 中,AB 边上的高为341255⨯=. ∴BCD ABCD S S =-梯形112(25)25ABD S =⨯+⨯-12⨯12345⨯=. ∴-33631123525C BDE V =⨯⨯=. ∴三棱锥C -BDE 的体积为635. 拓展延伸14.如图,在棱长为2的正方体ABCD -1111A B C D 中,E 、F 分别为1DD 、DB 的中点.(1)求证:EF ∥平面11ABC D ;(2)求证:1EF B C ⊥;(3)求三棱锥1B -EFC 的体积. 【解】(1)证明:连接1BD ,在△1DD B 中,E 、F 分别为1D D 、DB 的中点,那么EF ∥1D B . 又EF ⊄平面111ABC D D B ,⊂平面11ABC D ,∴EF ∥平面11ABC D .(2)证明:由题易得111B C AB B C BC AB ⊥,⊥,⋂1BC B =,∴1B C ⊥平面11ABC D .又1BD ⊂平面11ABC D ,∴11B C BD ⊥.又EF ∥1BD ,∴1EF B C ⊥.(3)∵11CF BD CF BB BD BB B ⊥,⊥,⋂=,∴CF ⊥平面11BDD B ,即CF ⊥平面1EFB .又易得1CF BF BD ===∴112EF BD ==∴113B F B E ======,∴22211EF B F B E +=,故190EFB ∠=,111122B EF S EF B F =⋅==∴111--13B EFC C B EF B EF V V S CF ==⋅⋅113==.本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
第5讲 空间向量及其运算一、知识梳理1.空间向量的有关定理(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在唯一的实数λ,使得a =λb .(2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c .其中{a ,b ,c }叫做空间的一个基底.2.两个向量的数量积(与平面向量基本相同)(1)两向量的夹角:已知两个非零向量a ,b ,在空间中任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉.通常规定0≤〈a ,b 〉≤π.若〈a ,b 〉=π2,则称向量a ,b互相垂直,记作a ⊥b .(2)两向量的数量积两个非零向量a ,b 的数量积a ·b =|a ||b |cos 〈a ,b 〉. (3)向量的数量积的性质①a ·e =|a |cos 〈a ,e 〉(其中e 为单位向量); ②a ⊥b ⇔a ·b =0; ③|a |2=a ·a =a 2; ④|a ·b |≤|a ||b |.(4)向量的数量积满足如下运算律 ①(λa )·b =λ(a ·b ); ②a ·b =b ·a (交换律);③a ·(b +c )=a ·b +a ·c (分配律). 3.空间向量的坐标运算 (1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). a +b =(a 1+b 1,a 2+b 2,a 3+b 3), a -b =(a 1-b 1,a 2-b 2,a 3-b 3),λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3, a ⊥b ⇔a 1b 1+a 2b 2+a 3b 3=0,a ∥b ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ), cos 〈a ,b 〉=a ·b|a |·|b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. (2)设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB →=OB →-OA →=(x 2-x 1,y 2-y 1,z 2-z 1). 4.直线的方向向量与平面的法向量的确定(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量,显然一条直线的方向向量可以有无数个.(2)平面的法向量①定义:与平面垂直的向量,称做平面的法向量.一个平面的法向量有无数多个,任意两个都是共线向量.②确定:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n·a =0n·b =0. 5.空间位置关系的向量表示1.向量三点共线定理在平面中A ,B ,C 三点共线的充要条件是:OA →=xOB →+yOC →(其中x +y =1),O 为平面内任意一点.2.向量四点共面定理在空间中P ,A ,B ,C 四点共面的充要条件是:OP →=xOA →+yOB →+zOC →(其中x +y +z =1),O 为空间任意一点.二、教材衍化1.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则BM →=________(用a ,b ,c 表示).解析:BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .答案:-12a +12b +c2.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________. 解析:|EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)=2,所以|EF →|=2,所以EF 的长为 2. 答案: 23.在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________.解析:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,设DA =2,则A (2,0,0),M (0,0,1),O (1,1,0),N (2,1,2),所以AM →=(-2,0,1),ON →=(1,0,2),AM →·ON →=-2+0+2=0,所以AM ⊥ON .答案:垂直一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)空间中任意两非零向量a ,b 共面.( ) (2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( ) (3)对于非零向量b ,由a ·b =b ·c ,则a =c .( )(4)若{a ,b ,c }是空间的一个基底,则a ,b ,c 中至多有一个零向量.( ) (5)两向量夹角的范围与两异面直线所成角的范围相同.( ) (6)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.( ) 答案:(1)√ (2)× (3)× (4)× (5)× (6)√二、易错纠偏复习指导| (1)忽视向量共线与共面的区别; (2)使用数量积公式出错.1.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( )A .垂直B .平行C .异面D .相交但不垂直解析:选B .由题意得,AB →=(-3,-3,3),CD →=(1,1,-1), 所以AB →=-3CD →,所以AB →与CD →共线, 又AB 与CD 没有公共点,所以AB ∥CD .2.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+t OC →,若P ,A ,B ,C 四点共面,则实数t =________.解析:因为P ,A ,B ,C 四点共面,所以34+18+t =1,所以t =18.答案:18考点一 空间向量的线性运算(基础型)复习指导| 了解空间向量的概念,掌握空间向量的线性运算及其坐标表示. 核心素养:数学运算、数学抽象1.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是 ( )A .-12a +12b +cB .12a +12b +cC .-12a -12b +cD .12a -12b +c解析:选A .由题意,根据向量运算的几何运算法则,BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .2.在空间四边形ABCD 中,若AB →=(-3,5,2),CD →=(-7,-1,-4),点E ,F 分别为线段BC ,AD的中点,则EF →的坐标为( )A .(2,3,3)B .(-2,-3,-3)C .(5,-2,1)D .(-5,2,-1)解析:选B .因为点E ,F 分别为线段BC ,AD 的中点,O 为坐标原点,所以EF →=OF →-OE →,OF →=12(OA →+OD →),OE →=12(OB →+OC →).所以EF →=12(OA →+OD →)-12(OB →+OC →)=12(BA →+CD →)=12[(3,-5,-2)+(-7,-1,-4)]=12(-4,-6,-6)=(-2,-3,-3). 3.在三棱锥O -ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量OA →,OB →,OC →表示(1)MG →;(2)OG →.解:(1)MG →=MA →+AG → =12OA →+23AN → =12OA →+23(ON →-OA →) =12OA →+23[12(OB →+OC →)-OA →] =-16OA →+13OB →+13OC →.(2)OG →=OM →+MG → =12OA →-16OA →+13OB →+13OC → =13OA →+13OB →+13OC →.用已知向量表示未知向量的解题策略(1)用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键. (2)要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们可把这个法则称为向量加法的多边形法则.(3)在立体几何中要灵活应用三角形法则,向量加法的平行四边形法则在空间仍然成立.考点二 共线、共面向量定理的应用(基础型)复习指导| 了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.核心素养:数学运算如图所示,已知斜三棱柱ABC -A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面? (2)直线MN 是否与平面ABB 1A 1平行? 【解】 (1)因为AM →=kAC 1→,BN →=kBC →, 所以MN →=MA →+AB →+BN → =kC 1A →+AB →+kBC → =k (C 1A →+BC →)+AB → =k (C 1A →+B 1C 1→)+AB → =kB 1A →+AB →=AB →-kAB 1→=AB →-k (AA 1→+AB →) =(1-k )AB →-kAA 1→,所以由共面向量定理知向量MN →与向量AB →,AA 1→共面.(2)当k =0时,点M ,A 重合,点N ,B 重合,MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内,又由(1)知MN →与AB →,AA 1→共面,所以MN ∥平面ABB 1A 1.三点P ,A ,B 共线空间四点M ,P ,A ,B 共面 P A →=λPB →MP →=xMA →+yMB →对空间任一点O ,=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x )OB →对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB →1.若A (-1,2,3),B (2,1,4),C (m ,n ,1)三点共线,则m +n =________. 解析:AB →=(3,-1,1),AC →=(m +1,n -2,-2). 因为A ,B ,C 三点共线,所以存在实数λ, 使得AC →=λAB →.即(m +1,n -2,-2)=λ(3,-1,1)=(3λ,-λ,λ), 所以⎩⎪⎨⎪⎧m +1=3λn -2=-λ-2=λ,解得λ=-2,m =-7,n =4.所以m +n =-3. 答案:-32.如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是平行四边形,E ,F ,G 分别是A 1D 1,D 1D ,D 1C 1的中点.(1)试用向量AB →,AD →,AA 1→表示AG →;(2)用向量方法证明平面EFG ∥平面AB 1C . 解:(1)设AB →=a ,AD →=b ,AA 1→=c . 由题图得AG →=AA 1→+A 1D 1→+D 1G →=c +b +12AB →=12a +b +c=12AB →+AD →+AA 1→. (2)证明:由题图,得AC →=AB →+BC →=a +b , EG →=ED 1→+D 1G →=12b +12a =12AC →,因为EG 与AC 无公共点,所以EG ∥AC ,因为EG ⊄平面AB 1C ,AC ⊂平面AB 1C , 所以EG ∥平面AB 1C . 又因为AB 1→=AB →+BB 1→=a +c , FG →=FD 1→+D 1G →=12c +12a =12AB 1→,因为FG 与AB 1无公共点,所以FG ∥AB 1,因为FG ⊄平面AB 1C ,AB 1⊂平面AB 1C , 所以FG ∥平面AB 1C ,又因为FG ∩EG =G ,FG ,EG ⊂平面EFG , 所以平面EFG ∥平面AB 1C .考点三 空间向量数量积的应用(基础型)复习指导| 掌握空间向量的数量积及其坐标表示. 核心素养:数学运算如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →;(2)EG →·BD →.【解】 设AB →=a ,AC →=b ,AD →=c .则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,(1)EF →=12BD →=12c -12a ,BA →=-a ,EF →·BA →=⎝⎛⎭⎫12c -12a ·(-a )=12a 2-12a ·c =14.(2)EG →·BD →=(EA →+AD →+DG →)·(AD →-AB →) =⎝⎛⎭⎫-12AB →+AD →+AG →-AD →·(AD →-AB →) =⎝⎛⎭⎫-12AB →+12AC →+12AD →·(AD →-AB →) =⎝⎛⎭⎫-12a +12b +12c ·(c -a )=12(-1×1×12+1×1×12+1+1-1×1×12-1×1×12) =12. 【迁移探究1】 (变问法)在本例条件下,求证EG ⊥AB . 证明:由例题知EG →=12(AC →+AD →-AB →)=12(b +c -a ),所以EG →·AB →=12(a ·b +a ·c -a 2)=12⎝⎛⎭⎫1×1×12+1×1×12-1=0. 故EG →⊥AB →,即EG ⊥AB .【迁移探究2】 (变问法)在本例条件下,求EG 的长. 解:由例题知EG →=-12a +12b +12c ,|EG →|2=14a 2+14b 2+14c 2-12a ·b +12b ·c -12c ·a =12,则|EG →|=22,即EG 的长为22.【迁移探究3】 (变问法)在本例条件下,求异面直线AG 与CE 所成角的余弦值. 解:由例题知AG →=12b +12c ,CE →=CA →+AE →=-b +12a ,cos 〈AG →,CE →〉=AG →·CE →|AG →||CE →|=-23,由于异面直线所成角的范围是⎝ ⎛⎦⎥⎥⎤0π2.所以异面直线AG 与CE 所成角的余弦值为23.空间向量数量积的三个应用求夹角 设向量a ,b 所成的角为θ,则cos θ=a ·b|a ||b |,进而可求两异面直线所成的角求长度(距离) 运用公式|a |2=a ·a ,可使线段长度的计算问题转化为向量数量积的计算问题 解决垂直问题利用a ⊥b ⇔a ·b =0(a ≠0,b ≠0),可将垂直问题转化为向量数量积的计算问题三棱柱ABC -A 1B 1C 1中,M ,N 分别是A 1B ,B 1C 1上的点,且BM =2A 1M ,C 1N=2B 1N .设AB →=a ,AC →=b ,AA 1→=c .(1)试用a ,b ,c 表示向量MN →;(2)若∠BAC =90°,∠BAA 1=∠CAA 1=60°,AB =AC =AA 1=1,求MN 的长. 解:(1)由题图知MN →=MA 1→+A 1B 1→+B 1N →=13BA 1→+AB →+13B 1C 1→=13(c -a )+a +13(b -a )=13a +13b +13c . (2)由题设条件知,因为(a +b +c )2=a 2+b 2+c 2+2a ·b +2b ·c +2a ·c =1+1+1+0+2×1×1×12+2×1×1×12=5,所以|a +b +c |=5,|MN →|=13|a +b +c |=53.考点四 利用向量证明平行与垂直(应用型)复习指导| 1.理解直线的方向向量与平面的法向量. 2.能用向量语言表述线线、线面、面面的垂直、平行关系.3.能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理). 核心素养:逻辑推理 角度一 证明平行问题(一题多解)如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:(1)PB ∥平面EFG ; (2)平面EFG ∥平面PBC .【证明】 (1)因为平面P AD ⊥平面ABCD ,且ABCD 为正方形,所以AB ,AP ,AD 两两垂直.以A为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).法一:EF →=(0,1,0),EG →=(1,2,-1), 设平面EFG 的法向量为n =(x ,y ,z ), 则⎩⎨⎧n ·EF →=0n ·EG →=0即⎩⎪⎨⎪⎧y =0x +2y -z =0令z =1,则n =(1,0,1)为平面EFG 的一个法向量, 因为PB →=(2,0,-2), 所以PB →·n =0,所以n ⊥PB →,因为PB ⊄平面EFG ,所以PB ∥平面EFG .法二:PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1).设PB →=sFE →+tFG →, 即(2,0,-2)=s (0,-1,0)+t (1,1,-1),所以⎩⎪⎨⎪⎧t =2t -s =0-t =-2解得s =t =2.所以PB →=2FE →+2FG →,又因为FE →与FG →不共线, 所以PB →,FE →与FG →共面.因为PB ⊄平面EFG ,所以PB ∥平面EFG . (2)因为EF →=(0,1,0),BC →=(0,2,0), 所以BC →=2EF →, 所以BC ∥EF .又因为EF ⊄平面PBC ,BC ⊂平面PBC , 所以EF ∥平面PBC , 同理可证GF ∥PC , 从而得出GF ∥平面PBC .又EF ∩GF =F ,EF ⊂平面EFG ,GF ⊂平面EFG , 所以平面EFG ∥平面PBC . 角度二 证明垂直问题如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .【证明】 (1)如图所示,以O 为坐标原点,以射线DB 方向为x 轴正方向,射线OD 为y 轴正半轴,射线OP 为z 轴的正半轴建立空间直角坐标系Oxyz .则O(0,0,0),A(0,-3,0),B(4,2,0),C(-4,2,0),P(0,0,4).于是AP→=(0,3,4),BC→=(-8,0,0),所以AP→·BC→=(0,3,4)·(-8,0,0)=0,所以AP→⊥BC→,即AP⊥BC.(2)由(1)知AP=5,又AM=3,且点M在线段AP上,所以AM→=35AP→=⎝⎛⎭⎪⎪⎫095125,又BA→=(-4,-5,0),所以BM→=BA→+AM→=⎝⎛⎭⎪⎪⎫-4-165125,则AP→·BM→=(0,3,4)·⎝⎛⎭⎪⎪⎫-4-165125=0,所以AP→⊥BM→,即AP⊥BM,又根据(1)的结论知AP⊥BC,所以AP⊥平面BMC,于是AM⊥平面BMC.又AM⊂平面AMC,故平面AMC⊥平面BMC.(1)利用空间向量解决平行、垂直问题的一般步骤①建立空间直角坐标系,建系时,要尽可能地利用已知图形中的垂直关系;②建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、平面的要素;③通过空间向量的坐标运算研究平行、垂直关系;④根据运算结果解释相关问题.(2)空间线面位置关系的坐标表示设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为u =(a 3,b 3,c 3),v =(a 4,b 4,c 4).①线线平行l ∥m ⇔a ∥b ⇔a =k b ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2. ②线线垂直l ⊥m ⇔a ⊥b ⇔a ·b =0⇔a 1a 2+b 1b 2+c 1c 2=0. ③线面平行(l ⊄α)l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 3+b 1b 3+c 1c 3=0. ④线面垂直l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 3,b 1=kb 3,c 1=kc 3. ⑤面面平行α∥β⇔u ∥v ⇔u =k v ⇔a 3=ka 4,b 3=kb 4,c 3=kc 4. ⑥面面垂直α⊥β⇔u ⊥v ⇔u ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0.如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证: AC 1⊥BD .解:(1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,所以a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝⎛⎭⎫12+12+12=6, 所以|AC 1→|=6,即AC 1的长为 6. (2)证明:因为AC 1→=a +b +c ,BD →=b -a , 所以AC 1→·BD →=(a +b +c )·(b -a ) =a ·b +|b |2+b ·c -|a |2-a ·b -a ·c =b ·c -a ·c=|b ||c |cos 60°-|a ||c |cos 60°=0.所以AC 1→⊥BD →,所以AC 1⊥BD .[基础题组练]1.已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ=( ) A .9 B .-9 C .-3D .3解析:选B .由题意知c =x a +y b ,即(7,6,λ)=x (2,1,-3)+y (-1,2,3),所以⎩⎪⎨⎪⎧2x -y =7x +2y =6-3x +3y =λ解得λ=-9.2.(多选)有下列四个命题,其中不正确的命题有( ) A .已知A ,B ,C ,D 是空间任意四点,则AB →+BC →+CD →+DA →=0 B .若两个非零向量AB →与CD →满足AB →+CD →=0,则AB →∥CD →C .分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量不是共面向量D .对于空间的任意一点O 和不共线的三点A ,B ,C ,若OP →=xOA →+yOB →+zOC →(x ,y ,z ∈R ),则P ,A ,B ,C 四点共面解析:选ACD .对于A,已知A ,B ,C ,D 是空间任意四点,则AB →+BC →+CD →+DA →=0,错误;对于B,若两个非零向量AB →与CD →满足AB →+CD →=0,则AB →∥CD →,正确;对于C,分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量可以是共面向量,不正确;对于D,对于空间的任意一点O 和不共线的三点A ,B ,C ,若OP →=xOA →+yOB →+zOC →(x ,y ,z ∈R ),仅当x +y +z =1时,P ,A ,B ,C 四点共面,故错误.3.在空间四边形ABCD 中,AB →·CD →+AC →·DB →+AD →·BC →=( ) A .-1 B .0 C .1D .不确定解析:选B .如图,令AB →=a ,AC →=b ,AD →=c ,则AB →·CD →+AC →·DB →+AD →·BC →=a ·(c -b )+b·(a -c )+c·(b -a )=a·c -a·b +b·a -b·c +c·b -c·a =0.4.如图,在大小为45°的二面角A EF D 中,四边形ABFE ,四边形CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )A . 3B . 2C .1D .3- 2解析:选D .因为BD →=BF →+FE →+ED →,所以|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2,所以|BD →|=3- 2.5.已知A (1,0,0),B (0,-1,1),O 为坐标原点,OA →+λOB →与OB →的夹角为120°,则λ的值为( ) A .±66 B .66C .-66D .± 6解析:选C .OA →+λOB →=(1,-λ,λ),cos 120°=λ+λ1+2λ2·2=-12,得λ=±66.经检验λ=66不合题意,舍去,所以λ=-66. 6.如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________.解析:因为OC →=12AC →=12(AB →+AD →),所以OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→.答案:12AB →+12AD →+AA 1→7.已知P A 垂直于正方形ABCD 所在的平面,M ,N 分别是CD ,PC 的中点,并且P A =AD =1.在如图所示的空间直角坐标系中,则MN =________.解析:连接PD ,因为M ,N 分别为CD ,PC 的中点,所以MN =12PD ,又P (0,0,1),D (0,1,0),所以PD =02+(-1)2+12=2, 所以MN =22. 答案:228.如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π3,则cos 〈OA →,BC →〉的值为________.解析:设OA →=a ,OB →=b ,OC →=c ,由已知条件得〈a ,b 〉=〈a ,c 〉=π3,且|b |=|c |,OA →·BC →=a ·(c -b )=a ·c -a ·b =12|a ||c |-12|a ||b |=0, 所以OA →⊥BC →,所以cos 〈OA →,BC →〉=0. 答案:09.如图所示,在直三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C 和平面AA 1B 1B 都是正方形且互相垂直,M 为AA 1的中点,N 为BC 1的中点.求证:(1)MN ∥平面A 1B 1C 1; (2)平面MBC 1⊥平面BB 1C 1C ;证明:由题意知,AA 1,AB ,AC 两两垂直,则以A 为坐标原点,建立如图所示的空间直角坐标系.设AA 1=2,则A (0,0,0),A 1(2,0,0),B (0,2,0),B 1(2,2,0),C (0,0,2),C 1(2,0,2),M (1,0,0),N (1,1,1). (1)因为AA 1⊥A 1B 1,AA 1⊥A 1C 1, 且A 1B 1∩A 1C 1=A 1, 所以AA 1⊥平面A 1B 1C 1. 因为MN →=(0,1,1),AA 1→=(2,0,0), 所以MN →·AA 1→=0,即MN ⊥AA 1. 因为MN ⊄平面A 1B 1C 1, 故MN ∥平面A 1B 1C 1.(2)设平面MBC 1与平面BB 1C 1C 的法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). 因为MB →=(-1,2,0),MC 1→=(1,0,2), 所以⎩⎪⎨⎪⎧n 1·MB →=0n 1·MC →1=0⇒⎩⎪⎨⎪⎧x 1-2y 1=0x 1+2z 1=0令x 1=2,则n 1=(2,1,-1).同理可得n 2=(0,1,1). 因为n 1·n 2=2×0+1×1+(-1)×1=0, 所以平面MBC 1⊥平面BB 1C 1C .10.如图,在底面是矩形的四棱锥P -ABCD 中,P A ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2.求证:(1)EF ∥平面P AB ; (2)平面P AD ⊥平面PDC .证明:以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E⎝⎛⎭⎪⎪⎫12112,F⎝⎛⎭⎪⎫0112,EF→=⎝⎛⎭⎪⎫-12,PB→=(1,0,-1),PD→=(0,2,-1),AP→=(0,0,1),AD→=(0,2,0),DC→=(1,0,0),AB→=(1,0,0).(1)因为EF→=-12AB→,所以EF→∥AB→,即EF∥AB.又AB⊂平面P AB,EF⊂/ 平面P AB,所以EF∥平面P AB.(2)因为AP→·DC→=(0,0,1)·(1,0,0)=0,所以AP→⊥DC→,AD→⊥DC→,即AP⊥DC,AD⊥DC.又AP∩AD=A,所以DC⊥平面P AD.所以平面P AD⊥平面PDC.[综合题组练]1.已知空间任意一点O和不共线的三点A,B,C,若OP→=xOA→+yOB→+zOC→(x,y,z∈R),则“x =2,y=-3,z=2”是“P,A,B,C四点共面”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选B.当x=2,y=-3,z=2时,即OP→=2OA→-3OB→+2OC→.则AP→-AO→=2OA→-3(AB→-AO→)+2(AC→-AO→),即AP→=-3AB→+2AC→,根据共面向量定理知,P,A,B,C四点共面;反之,当P,A,B,C四点共面时,根据共面向量定理,设AP→=mAB→+nAC→(m,n∈R),即OP→-OA→=m(OB→-OA→)+n(OC→-OA→),即OP→=(1-m-n)OA→+mOB→+nOC→,即x=1-m-n,y=m,z=n,这组数显然不止2,-3,2.故“x=2,y=-3,z=2”是“P,A,B,C四点共面”的充分不必要条件.2.如图,正方形ABCD与矩形ACEF所在平面互相垂直,AB=2,AF=1,M在EF上,且AM∥平面BDE,则M点的坐标为()A.(1,1,1)B .⎝ ⎛⎭⎪⎫23231C .⎝ ⎛⎭⎪⎫22221D .⎝ ⎛⎭⎪⎫24241解析:选C .设M 点的坐标为(x ,y ,1),因为AC ∩BD =O ,所以O ⎝ ⎛⎭⎪⎫22220,又E (0,0,1),A (2,2,0),所以OE →=⎝ ⎛⎭⎪⎫-22-221,AM →=(x -2,y -2,1),因为AM ∥平面BDE ,所以OE →∥AM →,所以⎩⎪⎨⎪⎧x -2=-22y -2=-22⇒⎩⎪⎨⎪⎧x =22y =22 所以M 点的坐标为⎝ ⎛⎭⎪⎫22221.3.在正三棱柱ABC -A 1B 1C 1中,侧棱长为2,底面边长为1,M 为BC 的中点,C 1N →=λNC →,且AB 1⊥MN ,则λ的值为________.解析:如图所示,取B 1C 1的中点P ,连接MP ,以MC →,MA →,MP →的方向为x ,y ,z 轴正方向建立空间直角坐标系,因为底面边长为1,侧棱长为2,则A⎝ ⎛⎭⎪⎪⎫0320,B 1(-12,0,2),C ⎝ ⎛⎭⎪⎫1200,C 1⎝ ⎛⎭⎪⎫1202,M (0,0,0),设N ⎝ ⎛⎭⎪⎫120t ,因为C 1N →=λNC →,所以N ⎝ ⎛⎭⎪⎪⎫1221+λ, 所以AB 1→=⎝ ⎛⎭⎪⎫-12-322,MN →=⎝ ⎛⎭⎪⎪⎫12021+λ. 又因为AB 1⊥MN ,所以AB 1→·MN →=0. 所以-14+41+λ=0,所以λ=15.答案:154.如图,四面体ABCD 中,E ,F 分别为AB ,DC 上的点,且AE =BE ,CF =2DF ,设DA →=a ,DB →=b ,DC →=c .(1)以{a,b,c}为基底表示FE→,则FE→=______;(2)若∠ADB=∠BDC=∠ADC=60°,且|DA→|=4,|DB→|=3,|DC→|=3,则|FE→|=______.解析:(1)如图所示,连接DE.因为FE→=FD→+DE→,FD→=-DF→=-13DC→,DE→=12(DA→+DB→),所以FE→=-13c+12a+12b.(2)|FE→|2=⎝⎛⎭⎫12a+12b-13c2=14a2+14b2+19c2+12a·b-13a·c-13b·c=14×42+14×32+19×32+12×4×3×12-13×4×3×12-13×3×3×12=274.所以|FE→|=332.答案:-13c+12a+12b3325.在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点.(1)求证:EF⊥CD;(2)在平面P AD内是否存在一点G,使GF⊥平面PCB?若存在,求出点G坐标;若不存在,试说明理由.解: (1)证明:由题意知,DA,DC,DP两两垂直.如图,以DA,DC,DP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,设AD=a,则D(0,0,0),A(a,0,0),B(a,a,0),C(0,a,0),E⎝⎛⎭⎪⎫aa2,P(0,0,a),F⎝⎛⎭⎪⎪⎫a2a2a2.EF→=⎝⎛⎭⎪⎪⎫-a2a2,DC→=(0,a,0).因为EF→·DC→=0,所以EF→⊥DC→,从而得EF⊥CD.(2)存在.理由如下:假设存在满足条件的点G,设G (x ,0,z ),则FG →=⎝ ⎛⎭⎪⎪⎫x -a 2-a 2z -a 2, 若使GF ⊥平面PCB ,则由 FG →·CB →=⎝ ⎛⎭⎪⎪⎫x -a 2-a 2z -a 2·(a ,0,0) =a ⎝⎛⎭⎫x -a 2=0,得x =a 2; 由FG →·CP →=⎝ ⎛⎭⎪⎪⎫x -a 2-a 2z -a 2·(0,-a ,a )=a 22+a ⎝⎛⎭⎫z -a 2=0,得z =0. 所以G 点坐标为⎝ ⎛⎭⎪⎫a 200, 故存在满足条件的点G ,且点G 为AD 的中点.6.如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.解:(1)证明:设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,所以A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, 所以AO 2+A 1O 2=AA 21,所以A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,且平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,所以A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1→=(0,1,3),AA 1→·BD →=0×(-23)+1×0+3×0=0,所以BD →⊥AA 1→,即BD ⊥AA 1.(2)存在.理由如下:假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ).设平面DA 1C 1的法向量为n =(x 2,y 2,z 2),则⎩⎨⎧n ⊥A 1C 1→n ⊥DA 1→ 又A 1C 1→=(0,2,0),DA 1→=(3,0,3),则⎩⎪⎨⎪⎧2y 2=03x 2+3z 2=0 取n =(1,0,-1),因为BP ∥平面DA 1C 1,则n ⊥BP →,即n ·BP →=-3-3λ=0,得λ=-1,即点P 在C 1C 的延长线上,且C 1C =CP .。
大班数学教案空间关系一、引言本篇教案旨在帮助大班幼儿学习空间关系的概念和相关概念。
通过丰富的活动和任务,幼儿将能够掌握不同物体之间的位置关系和方位关系的概念,并能够运用这些概念进行问题求解。
二、教学目标1.了解空间关系的概念,如前后、左右、上下等。
2.能够识别和描述简单的物体位置和方位关系。
3.能够解决简单的与空间关系有关的问题。
4.培养观察力和空间想象力。
三、教学内容1. 物体的位置关系•序数词:第一、第二、第三、最后等。
•前后关系:在某个物体之前或之后。
•左右关系:在某个物体的左边或右边。
•上下关系:在某个物体的上面或下面。
2. 物体的方位关系•前方、后方、左方、右方、上方、下方等。
3. 解决空间关系问题的方法•观察并描述物体的位置和方位关系。
•进行游戏和活动来锻炼观察力和想象力。
四、教学活动1. 定位游戏目标:培养幼儿观察和空间想象力。
1.让幼儿站成一排,并随机挑选一名幼儿站在某个位置。
2.其他幼儿观察并尝试找出该幼儿的位置。
3.由观察到的幼儿描述该幼儿的位置关系和方位关系。
2. 方向识别游戏目标:帮助幼儿学习物体的方位关系。
1.在幼儿面前放置一些物体,如玩具、纸张等。
2.提问幼儿某个物体的左边是什么,右边是什么等。
3.让幼儿描述物体之间的位置关系和方位关系。
3. 故事时间目标:通过故事帮助幼儿理解和运用空间关系的概念。
1.选择一本与空间关系有关的绘本,如《迷失的小牛》。
2.朗读故事并重点强调物体的位置关系和方位关系。
3.提问幼儿关于故事中空间关系的问题,并鼓励幼儿参与讨论和回答。
4. 小组活动目标:通过小组合作来解决空间关系问题。
1.分成小组,每组给出一些小物体。
2.让幼儿根据老师的指示,在一张纸上绘制这些物体的位置关系和方位关系。
3.小组交换纸张并观察、分析和描述其他小组绘制的位置关系和方位关系。
五、评估与反思在本节课中,幼儿通过各种活动和任务来学习和运用空间关系的概念。
通过评估幼儿对物体位置和方位关系的理解和描述,可以判断他们是否掌握了本节课所学内容。
空间关系大班数学教案一、教学目标1.理解和掌握平面几何中的基本概念,例如线段、角、三角形等;2.能够运用平面几何知识解决问题,例如计算周长、面积等;3.培养学生的观察能力、空间想象力,提高解决实际问题的能力;4.培养学生合作意识和动手能力。
二、教学内容及安排1. 线段和角•线段的定义和基本性质•角的定义和分类•角的度量和运算法则2. 三角形•三角形的定义和分类•三角形的性质•三角形的面积计算方法3. 四边形•四边形的定义和分类•四边形的性质•正方形、长方形、菱形和平行四边形的性质和计算方法4. 圆和圆的运算•圆的定义和基本性质•圆的周长和面积计算方法•圆与直线和圆与圆的关系三、教学方法1.探究式学习:通过问题探究和实际示例引入相关知识,激发学生的学习兴趣和思考能力。
2.合作学习:进行小组讨论和合作解决问题,培养学生的团队合作意识和独立思考能力。
3.案例分析:通过实际问题的分析和解决,培养学生运用知识解决实际问题的能力。
四、教学流程1.导入:通过一个有关空间关系的问题引入本节课的主题。
2.知识讲解:依次介绍线段和角的定义和基本性质,引导学生进行思考和讨论。
3.练习:布置一些与线段和角相关的练习题,引导学生运用所学知识解决问题。
4.概念讲解:讲解三角形的定义和分类,引导学生认识三角形的性质和计算面积的方法。
5.练习:布置一些与三角形相关的练习题,巩固所学知识。
6.概念讲解:讲解四边形的定义和分类,引导学生认识各类四边形的特点和计算方法。
7.练习:布置一些与四边形相关的练习题,提高学生的解决问题的能力。
8.概念讲解:讲解圆的定义和基本性质,引导学生计算圆的周长和面积,并认识圆与直线和圆与圆的关系。
9.练习:布置一些与圆相关的练习题,巩固所学知识。
10.总结:复习本节课的重点内容,强调空间关系在解决实际问题中的重要性。
五、教学评价1.观察学生在课堂上的表现和参与情况,评估学生的思维能力和合作意识。
2.收集学生完成的练习和作业,评估学生对所学知识的掌握程度。
空间关系
空间关系为建筑设计的平面配置,一般可以分为两类:
1.相邻关系(adjacency)─ 即两个空间是否相邻。
2.连通关系(connectivity)─ 亦即两个空间相邻以外是否相通,比如以门窗将原本相邻但各自封闭的两空间打通。
空间关系虽为平面图的配置呈现,一组空间关系可以对应到一个以上的平面图,也就是一对多的形式。
进行基本空间配置时,通常有一组最基本的空间关系,称为“泡泡图(Bubbles Diagram)”,用一个个的圈圈来表达各个空间的位置关系,足以描述任何其他复杂的空间关系,将某些所需的关系表达成空间关系。
换言之,泡泡图是基本的建筑架构,概念式的房屋规划,空间初步定位,可养成图释思考(graphic thinking)的习惯,学会做草图的技巧,将空间设计的初步概念融于简易的图示中。
在建筑计划的步骤中,最重要的就是分析建筑物的机能,再以不同的图面表现以表达建筑物内部空间所必须满足的机能关系。
例如“空间矩阵表(Space Matrix)”可将所有空间和其他空间的相互关系(邻近的程度和活动密切的程度)以不同的圆点大小显示其密切性,再以泡泡图将所需的空间做出一基本但没有方向性的布局。
这个时候由于没有任何环境、气候、美感和哲理上的考虑,因此设计者能专心的把最基本而重要的内部机能关系分析清楚,并提出合理的方案。