材料的输运性质能带理论
- 格式:pptx
- 大小:1.08 MB
- 文档页数:40
电子在固体中的输运性质在固体材料中,电子的输运性质是研究材料导电和电子迁移的重要课题。
通过深入分析电子在固体中的输运性质,可以揭示材料的导电机制,进而指导材料的设计和应用。
1. 入门介绍电子输运性质是指电子在固体中运动的行为和特性。
它直接影响了材料的导电能力和电子迁移速度,对于材料的电子学性能具有重要意义。
本文将探讨电子的输运行为以及影响因素,并分析不同材料系统中电子的输运机制。
2. 能带理论与电子输运能带理论描述了固体中电子能量的分布规律。
电子在固体中的态密度与能带结构密切相关,不同态密度分布对电子输运性质有不同影响。
禁带宽度决定了材料是否是导体、绝缘体或半导体。
导带和价带的分布特征影响着电子的迁移。
3. 扩散与迁移率在固体中,电子的输运主要通过扩散和迁移两种方式进行。
扩散是指电子自由运动并传播的过程,而迁移是指电子在晶格中受到散射并移动的过程。
迁移率是电子迁移的速率指标,与材料的晶格结构、杂质和缺陷等因素密切相关。
4. 散射与电阻散射是固体中电子输运过程中的重要现象,它导致电子的运动方向发生变化并降低电子的迁移速度。
材料中的杂质、缺陷和声子都会引起电子的散射现象。
电阻是电流通过材料时所遇到的阻碍,与散射强度和电子迁移率有关。
5. 良好导体和半导体的电子输运良好导体和半导体是两种最常见的材料类型,它们的电子输运性质各不相同。
良好导体的电子迁移率很高,并且电子在晶体中呈现近自由电子气的行为;而半导体的电子迁移率相对较低,电子处于导带和价带之间的状态。
6. 新型材料的电子输运性质近年来,一些新型材料的电子输运性质引起了广泛的关注。
例如,二维材料具有优异的电子迁移性能;拓扑绝缘体表现出特殊的边界态;量子点结构的材料具有尺寸限制效应等。
这些新型材料的研究为电子输运性质提供了新的视角和机会。
7. 应用展望电子输运性质的研究在能源、电子器件、光电子学等领域有着重要的应用价值。
通过深入理解材料的电子输运机制,可以设计与调控材料的导电性能,提高电子器件的性能和效率。
Mg-Si基热电材料的能带计算和电输运性质摘要热电材料是一种将热能和电能进行转换的功能材料,在国民生产中具有很重大的意义。
本文详细阐述了热电材料发展的历史,理论基础和实际应用。
镁化硅是一种重要的半导体热电材料,其具有反萤石结构,更重要的是它具有较大的塞贝克系数,低电阻率,低热导率,因此被认为是一种优良的热电材料。
本文从镁化硅的能带和态密度出发,考查掺杂Al情况下,利用MS软件,探究镁化硅材料性能的变化。
同时从理论出发,运用波尔兹曼输运理论和RBA方法,计算在不同掺杂浓度下,对费米能级,塞贝克系数的影响。
最后结合实验热导参数,估算了700K时最高热电优值ZT可以达到0.93。
关键词:热电材料;Mg2Si;Al掺杂,热电输运性质AbstractThermoelectric material is a functional material which can convert heat to electricity, it is insignificant to our life. This paper makes a detail elaboration about the history of thermoelectric material,theoretical basis and practical applications.Magnesium silicide (Mg2Si) is a particular semiconducting thermoelectric material which has an antifluorite structure (space group Fm3m) and has been proposed to be good candidates for high-performance thermoelectric materials, because of their superior features such as its large Seebeck coefficient, low electrical resistivity, and low thermal conductivity. The paper starts from the band structure and density of states and then examines the case of doping Al byMS software , at last we will find the changes in materials performances.At the same time,we calculate the value about the influences of the Fermi level, the Seebeck coefficient at different doping concentration by Boltzmann transport theory and RBA from theory.Finally ,by connecting to experimental thermal conductivity parameter, we estimate that maximum thermoelectric figure of merit ZT can reach 0.93 at 700K.Key words:Thermoelectric material;Mg2Si;doping Al;Thermoelectric transport properties1绪论 (1)1.1热电材料研究的艰难历程 (1)1.2热电效应的理论基础 (3)1.2.1 Seebeck效应 (3)1.2.2 Peltier效应 (4)1.2.3 Thomson效应 (5)1.3热电材料研究的意义[6] (5)1.4热电效应的应用 (6)2热电材料的研究现状 (7)2.1热电材料的种类及其进展 (7)2.2提高热电优值的方法 (13)3热电性能的测试方法及其原理 (16)3.1 Seebeck系数及其测量 (16)3.2电导率及其测量 (18)3.3热导率及其测量 (18)4 Mg-Si基热电材料研究进展 (20)4.1 Mg2Si的基本性能 (20)4.2 Mg2Si基热电材料的制备方法 (21)4.2.1溶体生长法 (21)4.2.2固相烧结法 (21)4.2.3机械合金化 (22)4.2.4放电等离子烧结法 (22)4.2.5电场激活压力辅助合成法 (22)5实验部分 (24)5.1理论模型与计算方法 (24)5.2计算结果和讨论 (25)5.3 Al含量对性能的影响 (27)6总结 (32)致谢 ................................................................................................................ 错误!未定义书签。
材料的电导性与能带理论导电性是材料科学中一项非常重要的性质。
在现代科技领域中,电子设备的发展离不开高导电性材料的应用。
为了更好地理解和掌握材料的导电性质,科学家们提出了能带理论。
能带理论为解释材料的导电性提供了重要的理论基础。
能带理论认为,材料中的电子在晶格场中运动,其能量呈离散的能级分布。
这些能级又可进一步细分为分立的能带和能隙。
能带是指能量范围内的能级集合,而能隙则是相邻两个能带之间的间隔。
电子能量低于能隙的区域称为价带,而高于能隙的区域则称为导带。
在材料的电导性中,主要是电子在导带和价带之间的跃迁扮演了关键的角色。
绝缘体是一种导电性很差的材料,其能带结构中存在较大的能隙。
在绝缘体中,价带和导带之间的能隙宽度能阻止电子的跃迁,因此绝缘体没有或者只有微弱的电导性。
在室温下,绝缘体的导电性主要来源于其表面或者缺陷中的杂质。
半导体是一种介于绝缘体和导体之间的材料。
半导体在常温下的导电性很弱,但是当加上适当的电场或者加热后,半导体中的电子就可以克服能隙的限制,跃迁到导带中,从而实现电导。
半导体的能隙大小通常在1至5电子伏范围内。
导体是指具有良好导电性的材料。
在导体中,能带之间的能隙几乎为零,电子可以自由地在导带中移动。
常见的金属材料就是典型的导体。
由于金属中电子跃迁的自由度不受限制,所以金属具有很好的导电性。
除了绝缘体、半导体和导体外,还存在一些特殊的材料,如超导体和磁体导体。
超导体在一定的温度下,可以表现出零电阻的特性,电流可以无阻力地通过。
磁体导体则具有较高的磁导率,可以用于制造电感器等电子元件。
总之,材料的导电性与能带理论密切相关。
通过研究材料中的能量带结构,我们可以更好地理解和解释材料的电导性质。
从而为材料科学和电子器件的研发提供指导,并有助于推动科技的进步与应用的发展。
能带理论能带理论是目前研究固体中电子运动的一个主要理论基础,它预言固体中电子能量会落在某些限定范围或“带"中,因此,这方面的理论称为能带理论。
对于晶体中的电子,由于电子和周围势场的相互作用,晶体电子并不是自由的,因而其能量与波失间的关系E (k )较为复杂,而这个关系的描述这是能带理论的主要内容.本章采用一些近似讨论能带的形成,并通过典型的模型介绍能带理论的一些基本结论和概念。
一、三个近似绝热近似:电子质量远小于离子质量,电子运动速度远高于离子运动速度,故相对于电子的运动,可以认为离子不动,考察电子运动时,可以不考虑离子运动的影响,取系统中的离子实部分的哈密顿量为零。
平均场近似:让其余电子对一个电子的相互作用等价为一个不随时间变化的平均场。
周期场近似: 无论电子之间相互作用的形式如何,都可以假定电子所感受到的势场具有平移对称性。
原本哈密顿量是一个非常复杂的多体问题,若不简化求解是相当困难的,但 经过三个近似处理后使复杂的多体问题成为周期场下的单电子问题,从而本章的中心任务就是求解晶体周期势场中单电子的薛定谔方程,即其中二、两个模型(1)近自由电子模型1、模型概述 在周期场中,若电子的势能随位置的变化(起伏)比较小,而电子的平均动能要比其势能的绝对值大得多时,电子的运动就几乎是自由的.因此,我们可以把自由电子看成是它的零级近似,(222U m ∇+)()(r U R r U n=+而将周期场的影响看成小的微扰来求解。
(也称为弱周期场近似)2、怎样得到近自由电子模型近自由电子近似是晶体电子仅受晶体势场很弱的作用,E (K )是连续的能级。
由于周期性势场的微扰 E (K )在布里渊区边界产生分裂、突变形成禁带,连续的能级形成能带,这时晶体电子行为与自由电子相差不大,因而可以用自由电子波函数来描写今天电子行为。
3、近自由电子近似的主要结果1) 存在能带和禁带:在零级近似下,电子被看成自由粒子,能量本征值 E K0 作为 k 的函数具有抛物线形式.由于周期势场的微扰,E (k )函数将在 处断开,本征能量发生突变,出现能量间隔2︱V n ︱,间隔内不存在允许的电子能级,称禁带;其余区域仍基本保持自由电子时的数值。
能带理论在材料学中的应用能带理论(Energy band theory )是讨论晶体(包括金属、绝缘体和半导体的晶体)中电子的状态及其运动的一种重要的近似理论。
它把晶体中每个电子的运动看成是独立的在一个等效势场中的运动,即是单电子近似的理论;对于晶体中的价电子而言,等效势场包括原子实的势场、其他价电子的平均势场和考虑电子波函数反对称而带来的交换作用,是一种晶体周期性的势场。
金属能带图在固体金属内部构成其晶格结点上的粒子,是金属原子或正离子,由于金属原子的价电子的电离能较低,受外界环境的影响(包括热效应等),价电子可脱离原子,且不固定在某一离子附近,而可在晶格中自由运动,常称它们为自由电子。
正是这些自由电子将金属原子及离子联系在一起,形成了金属整体。
这种作用力称为金属键。
当然固体金属也可视为等径圆球的金属原子(离子)紧密堆积成晶体。
这时原子的配位数可高达8至12。
金属中为数不多的价电子不足以形成如此多的共价键。
这些价电子只能为整个金属晶格所共有。
所以金属键不同于离子键;也不同于共享电子局限在两个原子间的那种共价键(定域键)。
广义地说,金属键属于离域键,即共享电子分布在多个原子间的一种键,但它是一种特殊的离域键,既无方向性,也无饱和性。
我的理解:能带理论在阐明电子在晶格中的运动规律、固体的导电机构、合金的某些性质和金属的结合能等方面取得了重大成就,但它毕竟是一种近似理论,存在一定的局限性。
例如某些晶体的导电性不能用能带理论解释,即电子共有化模型和单电子近似不适用于这些晶体。
多电子理论建立后,单电子能带论的结果常作为多电子理论的起点,在解决现代复杂问题时,两种理论是相辅相成的。
能带理论在材料学中的应用:1.单壁碳纳米管的能带计算在碳纳米管的研究中,其电子结构是人们最关注的问题之一。
能带理论为阐明许多固体的物性提供了理论基础,如振动谱、磁有序、电导率、光学介电函数等,原则上这些都可以由固体的能带理论阐明和解释,尤其在说明金属和半导体特性上很有成效。